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PD-1 knockout on cytotoxic
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Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL

responses and is impaired when CTLs become exhausted, e.g. during chronic

retroviral infections. A prominent T cell exhaustion marker is programmed cell

death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-

ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade

affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be

attributed selectively to CTLs. To overcome this problem, we performed CRISPR/

Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus

(FV)-specific CTLs. We transferred 1,000 of these cells into mice where they

proliferated upon FV-infection. Using intravital two-photon microscopy we

visualized CTL motility in the bone marrow and evaluated cytotoxic molecule

expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at

14 days post infection and enhanced the expression of cytotoxicity markers. Our

data show the potential of genetic tuning of naive antiviral CTLs and might be

relevant for future designs of improved T cell-mediated therapies.
KEYWORDS

cytotoxic T lymphocytes, cell motility, anti-viral response, retrovirus, CRISPR/Cas9,
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Introduction

Cytotoxic T lymphocytes (CTLs) play a key role in the host immune response against

virus infections including retroviruses like Human Immunodeficiency Virus (HIV) (1–4).

Their function is to actively migrate and search for virus-infected cells for their elimination

through the release of lytic granules (5–7). However, in the course of a persistent infection,
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CTLs can become exhausted, leading to inefficient virus elimination

and the establishment of chronic infection (8, 9). T cell exhaustion

affects the immune response against various diseases, including

virus infections and many forms of cancer (10). A murine model to

study the immune response throughout a chronic retroviral

infection is the Friend virus (FV) model. Infection of C57BL/6

mice is controlled during the acute phase of the infection but the

virus cannot be completely eliminated, resulting in T cell exhaustion

and viral chronicity. Studies in the FV model paved the way to a

better understanding of the immune response in chronic virus

infections and hence FV is a valuable tool to investigate T cell

exhaustion (11).

Understanding T cell exhaustion and finding ways to reactivate

CTLs from this state poses a highly relevant goal of medical

research. One aspect of T cell exhaustion receiving little attention

thus far, is the motility of CTLs. The anti-viral response of CTLs is

accompanied by excessive motility of the individual CTLs, which

they need to effectively search for and find target cells (6, 12, 13).

However, CTLs have been shown to lose much of their motility

during the development of T cell exhaustion (12, 14). This loss of

motility contributes to inefficient virus elimination (12).

Modulating CTL motility might, therefore, be a target of interest

to improve CTL responses.

One of themost studiedmolecular interactions in T cell exhaustion

focuses on the interaction of the immune checkpoint molecules

programmed cell death protein 1 (PD-1) and its ligand PD-L1.

Previous studies in Lymphocytic Choriomeningitis Virus (LCMV)

showed that blocking the PD-1-PD-L1 axis restores effective CTL

responses (9). PD-1 expression on T cells is increased at day 10 post FV

infection (15) and immune checkpoint therapy, which included PD-L1

blocking antibodies, has also been shown to improve CTL function and

FV control in chronic infection (16). In addition, blocking the PD-1-

PD-L1 axis increased CTL motility in persistent LCMV infection (14).

This interesting study highlights a possible impact of the PD-1-PD-L1

axis on CTL motility. However, blocking antibodies affect all cells that

express PD-1 and secondary effects of this treatment can therefore not

be ruled out. Hence, we performed a CRISPR/Cas9 mediated knockout

(KO) of the PD-1 coding gene PDCD1 on naïve primary CD8+ T cells

that are specific for an immunodominant FV epitope (17). We used

our established two-photon intravital bonemarrow imagingmodel (12,

18) to evaluate the impact of cell-selective PD-1 knockout on CTL

motility in the bone morrow of living FV-infected mice. Bone morrow

was chosen because it is an organ of massive viral replication during

acute FV-infection (19). Our results contribute to a better

understanding of the factors that influence CTL motility and might

be relevant for future genetic editing of CTLs for T-cell therapy.
Methods

Mice

Experiments were performed using female and male C57BL/6

(C57BL/6JOlaHsd, Envigo, Horst, Netherlands) and DEREG-

transgenic C57BL/6 mice (min. 8 weeks old) expressing a simian

diphtheria toxin (DT) receptor–enhanced GFP (DTR-EGFP) fusion
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protein under the control of the endogenous forkhead box P3

(Foxp3) promoter/enhancer regions on the BAC transgene as

recipient mice (20). DEREG mice were originally provided by

Tim Sparwasser and bred at the University of Duisburg-Essen

and the University Hospital Essen under pathogen-restricted

conditions. For donor mice we used the previously described

TCR-Lck-tdTom mice, which show a T cell specific expression of

tdTomato (tdTom) as well as a FV-specific TCR directed against the

GagL85-93 -epitope on more than 90% of all CD8+ T cells (17, 18).

All animal experiments were reviewed by the central animal

laboratory (ZTL) and office for nature, environment and consumer

protection of North-Rhine Westphalia (LANUV) and conducted in

accordance with the regulations of the local animal welfare. Mice

were kept at pathogen-restricted conditions and handled in

accordance with institutional guidelines.
Virus and viral infection

For infection we used FV stocks, which contained a complex of

B-tropic Friend murine leukemia helper virus (F-MuLV) and

spleen-focus forming virus (SFFV). The virus stocks were

prepared as previously described (12, 21). Recipient mice were

infected by intravenous injection of 20,000 spleen focus-forming

units of FV in 100 µL PBS. The virus stocks were free of lactate

dehydrogenase-elevating virus (22).
Cell isolation and adoptive cell transfer

Blood draw from donor mice, CD8 T cell isolation and

preparation for cell transfer was carried out as previously described

(12, 18). For transfer of PDCD1 targeted and control CD8+ cells, gene

editing was performed as described below prior to cell transfer. 1,000

purified cells were transferred intravenously, suspended in 100 µL

PBS, into recipient mice approximately 4h after FV-infection.
CRISPR/Cas 9 based gene editing

The Lonza P3 primary cell 4D-Nucleofection Kit (Lonza, Basel,

Switzerland) based nucleofection protocol was adapted to the

previously published protocol by Nüssing et al. (23). P3 buffer

was freshly prepared for each experiment by mixing 3.6 µl

Supplement 1 to 16.4 µL Primary Cell Solution per sample and

kept at the 4°C until shortly before use. Three different gRNA

complexes (24) were formed from PDCD1 crRNAs AA-AC (IDT,

Coralville, IA, USA, Design ID: Mm.Cas9.PDCD1.1.AA - AC) and

tracrRNA (IDT, cat. No. 1072533), respectively. Complex was

formed by equimolar mix of PDCD1 crRNA with tracrRNA and

incubation for 5 minutes at 95°C followed by letting the formed

gRNA complexes cool down to room temperature for up to three

minutes. 1 µL of each formed gRNA complex was pooled in one

tube and 0.6 µL Cas9 protein (IDT, cat. No. 1081059) was added,

topped up with 0.4 µL RNase free water and mixed, briefly spun

down and incubated for 10 min at room temperature for RNP
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formation. For control nuclefection, unspecific negative ctrl crRNA

(IDT, cat. No. 1072544) was used for gRNA complex formation and

subsequent RNP formation. After incubation 1 µL electroporation

enhancer (IDT, cat. No. 1075916) was added to the solution and

isolated CD8+ T cells were resuspended in 20 µL freshly prepared

P3 buffer, added to the 5 µL gRNA/Cas9-RNP mix and transferred

to the bottom hole of a well of the Lonza nucleofector strip.

Nucleofection was performed using the DN100 puls of the 4D-

Nucleofector system (Lonza) in the Institute for Cell Biology

(Cancer research) in the University Hospital Essen. Cells were

transferred to 175 µL 37°C pre-warmed RPMI medium (Thermo-

Fisher Scientific, Waltham, MA, USA) supplemented with 10% FCS

(Thermo Fisher Scientific), 100 U/mL Penicillin and Streptavidin

(Sigma-Aldrich), 1x non-essential amino acids (Thermo Fisher

Scientific), 2 mM L-glutamine (Thermo Fisher Scientific), 10 mM

2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid (HEPES)

(Sigma-Aldrich), 1 mM sodium pyruvate (Thermo Fisher Scientific)

and 50 µM b-mercaptoethanol (Thermo Fisher Scientifc) (T cell

medium). Cells were stored in a cell culture incubator (5% CO2, 37°

C) until preparation for cell transfer or preparation of in-vitro KO

validation. Datasets were excluded from analysis upon insufficient

PD-1 KO efficiency.
In-vitro KO validation

Nunc MaxiSorp 96-well flat bottom plates (Invitrogen,

Carlsbad, CA, USA) were coated with CD3e monoclonal antibody

(eBioscience, San Diego, CA USA, cat No.16-0031-85) the day

before nucleofection by adding 100 µL NaCO3 containing 10 µg/mL

antibody and incubated at 4°C overnight. Before cell seeding, wells

were carefully washed with PBS two times. For in-vitro KO

validation up to 6 x 105 nucleofected cells or 105 unnucleofected

CD8+ T cells were re-suspended in T cell medium supplemented

with 1 µg/mL CD28 monoclonal antibody (eBioscience, cat. No. 14-

0281-82) and seeded into anti-CD3e pre-coated well.
Infectious centre assay

Serial dilutions of isolated bone marrow cells were seeded onMus

dunni cells and incubated at 37°C and 5% CO2 for 3 days. Cells were

fixed with 96% Ethanol followed by staining with F-MuLV envelope-

specific mAb 720 (25). Subsequently cells were stained with

peroxidase-conjugated goat anti mouse IgG Ab (Sigma-Aldrich, St.

Louis, MO, USA) and an aminoethylcarbazol (Sigma-Aldrich)

substrate to visualize foci that originated from infected cells.
Intravital two-photon microscopy and
movie analysis

Intravital two-photon microscopy was carried out as previously

described (12, 18, 26–28). Two-photon microscopy was done using

a Leica TCS SP8 MP microscope (Leica Microsystems, Mannheim,

Germany) with HCX IRAPO L25×/0.95-NA water-immersion
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objective, two external hybrid reflected-light detectors (HyD), and

two external photomultiplier tubes (PMT). Imaging was performed

with a titanium-sapphire laser (Coherent Cameleon Vision II, Santa

Clara, CA, USA) tuned to 950 nm for intravital microscopy. FV-

specific tdTom+ CTLs (PMT, 585/40 filter) and solid bone

visualized by second-harmonic-generation (SHG) signal (HyD,

460/50 filter) were detected. For videos, one z-stack of up to

227.86 µm per minute or less time with a maximum step size of 3

µm, an imaging speed of 400 Hz and a pixel size of 1.16 was

recorded in a format of a minimum of 590.48 µm x 590.48 µm for a

collective video time of up to 30 minutes. Videos were recorded in

the LAS X software (Leica Microsystems Mannheim, Germany).

Movie analysis was carried out using IMARIS version 9 and 10

as previously described (12). Movies were excluded from analysis if

no cell motility was observable or KO validation showed insufficient

KO efficiency.
Flow cytometry

Antibodies used for cell surface and intracellular staining are

listed in Supplementary Table 1. Fixable viability dye (eF780,

eBioscience) was used for the exclusion of dead cells.

To maintain the cytoplasmic tdTom signal, cells were pre-fixed

(3.5 min) using the Cytofix/Cytoperm kit (BD Biosciences) as

described (12, 18, 29). For intracellular staining a second fixation/

permeabilization using the Cytofix/Cytoperm kit (BD Biosciences)

for a minimum of 30 min was performed followed by intracellular

staining. For intracellular IFN-g staining, cells were first stimulated

as previously described (12). Samples were acquired on a BD

Symphony A5 cytometer or BD Canto II flow cytometer and up

to 2,000,000 events were recorded.
Statistics and software

GraphPad Prism version 8 software (GraphPad, San Diego, CA,

USA) was used for statistical analyses. To determine statistical

significance between two groups Mann-Whitney test was used. To

evaluate significance between multiple groups, Kruskal-Wallis test

followed by corrected Dunn’s multiple comparison test was used.

Differences were defined to be significant from p values ≤ 0.05.

Radar charts were created with Excel 2019. Illustrations and figures

were created with BioRender.com and Adobe Illustrator 2023.

Movie editing was carried out using Adobe Premiere Pro 2023.
Results

Nucleofection-based CRISPR/Cas9 gene
editing generates PD-1-deficient primary
CD8+ T cells that are suitable for cell
transfer and intravital imaging

We have previously demonstrated, that PD-1 is upregulated on

CTLs already during early stages of FV infection (15), but is
frontiersin.org
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associated with CTL dysfunction only in later infection stages.

Immune checkpoint therapy is able to restore CTL function to a

certain extent in chronic FV infection (16). We were curious,

whether PD-1 expression on our transferred cells is associated

with their motility. Therefore, we evaluated the PD-1 expression

on our transferred FV-specific tdTom+ CTLs at 10 dpi, the time

point when CTLs are at their peak of motility, and 14 dpi, when

CTL motility is reduced (12). Consistent proportions of PD-1

expressing FV-specific tdTom+ CTLs were measured at both 10

dpi and 14 dpi (Supplementary Figure 1). However, it is known, that

PD-1 expression is not restricted to exhausted cells, but upregulated

on T cells upon activation, and PD-1 expressing CTLs may still

provide efficient anti-viral responses (15, 30). As the PD-1-PD-L1

axis was previously shown to impair T cell motility (14), we aimed

to evaluate the impact of PD-1 expression on CTL motility and

effector functions in the late phase of acute FV infection. For this we

adapted the protocol of Nüssing et al. (23) and Seki et al. (24) for

our established intravital bone marrow imaging protocol (12, 18).

We formed RNP complexes using three different guide RNAs

targeting the PDCD1 gene and nucleofected freshly isolated naive

tdTom+ FV-specific CD8+ T cells with a mix of these three

complexes (23, 24). To evaluate the impact of nucleofection itself

without specific gene targeting we also nucleofected naive FV-

specific tdTom+ CD8+ T cells with an unspecific gRNA/Cas9

RNP complex and transferred them into FV infected mice as a

control group. Our approach enabled the adoptive transfer of gene-

edited naïve primary CD8+ T cells into hosts within a few hours

after FV infection (Figure 1A). The transferred cells recognize their

cognate antigen, become activated and proliferate together with the

endogenous FV-specific CTLs of the recipient (18). We then

performed intravital two-photon microscopy (12, 18, 26–28) at 14

days post FV infection to visualize individual moving CTL in the

bone marrow of hosts. We chose this time point because we

previously described that CTL exhaustion and impairment of

CTL motility start at 14 days post FV infection (12). To also

evaluate the expression of cytotoxic molecules of CTLs we

subsequently performed flow cytometry. To validate the efficiency

of PD-1 KO in the transferred primary cells, we cultured a fracture

of the freshly edited cells and activated them with anti-CD3 and

anti-CD28 in vitro . This induced PD-1 expression on

approximately 65% of unnucleofected control CD8+ T cells and

31% of CD8+ T cells which were nucleofected with unspecific RNP

(control) within one day of culture. In contrast, only ~5% of PDCD1

targeted cells expressed PD-1 after one day of culture (Figure 1B),

thus showing efficient genetic manipulation. Notably, nucleofection

itself appeared to impair the expression of PD-1 within 24 hours. At

this time span, cells might still be under stress due to the

nucleofection, which might impair the activation of the cells. To

assess, whether this is a transient effect, we additionally validated

PD-1 molecule expression on PDCD1 targeted transferred versus

endogenous cells at 14 days post FV infection in vivo. At this time

point a median of 94% activated endogenous CD8+ cells and 99% of

control CTLs (unspecifically nucleofected) expressed PD-1, whereas

this was found only in ~7% of PDCD1 targeted transferred cells

(Figure 1C). Representative contour plots for Figures 1B, C can be

found in Supplementary Figures 2A, B. The data demonstrated the
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stability and specificity of the PD-1 KO in vivo in T cells that

recognized their cognate antigen, became activated and strongly

proliferated. Hence, the used nucleofection protocol is suitable for

functional gene KO in naïve primary murine CD8+ T cells followed

by the adoptive transfer and intravital imaging of these cells in

virus-infected hosts.
PD-1 KO improves CTL motility and
functionality in FV infection

It was previously shown that T cell motility improves during

LCMV infection upon systemic antibody blockade of the PD-1-PD-

L1 axis (14). Since targeting PD-1 specifically on CD8+ T cells

allows a more detailed investigation of the impact of the PD-1-PD-

L1 axis on CTL motility, we used PD-1-KO CTLs to study their

motility by intravital two-photon microscopy in the bone marrow.

We compared the motility results to our recently published data on

the motility of unmodified CTL (12), where the same principal

workflow was carried out without gene editing. To exclude an effect

of the nucleofection itself on the cell motility, we used a control

group that received CD8+ T cells which were nucleofected with an

unspecific gRNA/Cas9 RNP. We found improved CTL motility

upon KO of PD-1 at 14 days post FV infection in comparison to

non-edited and control nucleofected CTLs. This was reflected by an

increase in the mean CTL track speed, which in control

nucleofected cells was at 6.8 µm/min while the median of PD-1-

KO cells was significantly increased to 7.7 µm/min (Figure 2A).

Moreover, also the track speed variation (track standard deviation

divided by track speed mean) increased slightly in PD-1-KO CTL

(Figure 2B), which mirrors an improvement in the dynamic

motility response of CTLs enabling them to speed up and slow

down throughout their track. When analyzing CTL track

straightness (direct track distance divided by track length), we

found comparable levels in PD-1 KO CTLs compared to control

nucleofected CTLs. In both groups, the track straightness

was reduced compared to unnucleofected CTLs, indicating,

that nucleofected CTLs had more random movement with

more frequent directional changes, possibly towards target

cells (Figure 2C).

For the evaluation of effector functions we stained CTL for

several activation and cytotoxicity markers after isolating cells at 14

days post FV infection (and 14 days post adoptive transfer) using

flow cytometry as read out and compared transferred PD-1-KO

CTLs with control nucleofected and non-edited transferred CTLs.

Exemplary pseudocolour dot plots can be found in Supplementary

Figure 3. These datasets revealed enhanced expression of the

activation markers CD43 and CD44 on PD-1-KO CTLs

compared to control nucleofected and unnucleofected transferred

cells, indicating that in vivo T cell activation was strong in PD-1-KO

cells. While no differences were detected concerning the numbers of

Granzyme (Gzm) A positive PD-1 KO CTLs to unnucleofected

CTLs were found, a slight increase of the number of GzmA+ PD-1

KO CTLs compared to control nucleofected CTLs was observed.

Furthermore, we found increased numbers of GzmB positive PD-1-

KO CTL and control nucleofected CTLs compared to non-edited
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transferred cells. Of note, the difference in the amount of GzmA and

GzmB expressing CTLs was based on very low overall numbers.

Moreover, we found an increased number of Interferon-g (IFN-g)
expressing CTLs when PD-1 was removed compared to control

nucleofected and unnucleofected cells (Figure 2D), indicating that

PD-1 KO resulted in augmented CTL functional properties. Overall,

the KO of PD-1 improved CTL motility and activation as well as

effector molecule expression in vivo. To evaluate, whether the

improved cytotoxic molecule expression takes an impact on the

anti-viral response we evaluated virus titers in mice, which received

PD-1 KO, control-nucleofected or unnucleofected CTLs. Virus
Frontiers in Immunology 05
titers were similar between the different groups, indicating that,

not surprisingly, the transferred amount of 1,000 edited CTLs is not

sufficient to dampen the viral load (Supplementary Figure 4).
Discussion

In this study we adapted a previously published CRISPR/Cas9

based approach to edit naïve primary CTLs (23). We used a

combination of up to three different gRNA/Cas9-RNPs for the

KO of the same gene (24). We chose this approach over the systemic
A

B C

FIGURE 1

Genetic editing of primary CTLs for the evaluation of CTL motility and function. (A) Schematic overview of the workflow. Gene edited CTLs were
generated from naïve CD8+ T cells obtained from the blood of TCR-Lck-tdTom mice using the Lonza 4D nucleofector system. C57BL/6 and DEREG
recipient mice were infected with FV and subsequently received 1,000 CTLs, which were treated with gRNA/Cas9 RNPs targeting PDCD1 or
unspecific gRNA/Cas9 RNPs (control) or unnucleofected primary naïve CTLs. Intravital two-photon bone marrow microscopy and flow cytometry
were performed at 14 dpi. Schematic overview was created with BioRender.com. (B) Frequencies of PD-1 expressing PDCD1-targeted, control and
unnucleofected CD8+ T cells of the in-vitro KO validation (median ± IQR). Data was obtained for each single nucleofected sample in 3 independent
experiments. (C) Frequencies of PD-1 expressing transferred or endogenous activated CTLs of FV infected mice transferred with PDCD1-targeted,
control and unnucleofected CTLs at 14 dpi (median ± IQR). Data were obtained in 1-4 independent experiments with 1-4 mice. P-values were
obtained by Kruskal-Wallis test followed by a corrected Dunn’s multiple comparison test. *p ≤ 0.05.
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therapy with anti-PD-1 or anti-PD-L1 blocking antibodies.

Systemic therapy changes the overall immune response of the

host, as it interacts with all cell types expressing PD-1 or PD-L1,

which can result in severe bystander effects on CTL motility and

function. Targeting CTL attributes the observed effect directly to the

cell type of interest. This approach is also very interesting for cell

therapy approaches, like Chimeric Antigen Receptor (CAR)-T-cell

therapy (31). We have previously shown that FV-specific CTL

(naïve TCR transgenic FV-specific CD8+ T cells) become

activated in chronically FV-infected mice, because they recognize

their cognate antigen. However, they become very rapidly

functionally exhausted because of the overall suppressive

environment during chronic infection (32, 33). The editing with

CRISPR/Cas9 technology of primary T cells might provide a tool to
Frontiers in Immunology 06
genetically modify T cells and prevent the development of

exhaustion during therapy.

In this study we showed that expression of PD-1 on CTLs

decreases their motility in vivo and that KO of PD-1 can be used to

improve CTL motility and other functional properties. In studies

using the persistent CL13 LCMV strain, systemic therapy with anti-

PD-1 blocking antibodies also improved CTL motility. The authors

described that the PD-1-PD-L1 axis promotes stable immunological

synapse formation rather than the formation of instable kinapses in

a lipid bilayer model. Moreover, the block of the PD-1-PD-L1

interaction on CTLs improves their cell signaling and their motility

(14). Changes in CTL motility were more prominent during LCMV

infection upon systemic blockage of the PD-1-PD-L1 axis (14)

compared to our findings with PD-1-KO CTLs during FV infection.
A B

DC

FIGURE 2

Changes of CTL motility upon PD-1 KO. Intravital two-photon microscopy in the bone marrow: CTLs were tracked in FV infected mice that received
PD-1-KO CTLs, CTLs nucleofected with unspecific gRNA/Cas9 RNP (control) or unnucleofected CTLs at 14 dpi. (A) Mean CTL track speed [µm/min],
(B) track speed variation of single CTLs (C) and CTL track straightness were analyzed from single CTL tracks. Unnnucleofected data from 3 mice was
reanalyzed from previously published datasets in JCI Insight 2023 (12). Data points represent the values of single CTLs of 4 mice per group (median
± IQR) for PD-1 KO CTLs and 7 mice for control CTLs. Each mouse was imaged individually. P-values were obtained by Kruskal-Wallis test followed
by a corrected Dunn’s multiple comparison test. *p ≤ 0.05. (D) Expression of activation- and cytotoxicity-associated molecules on transferred PD-1-
KO, control or unnucleofected CTLs shown in a logarithmic scale. Flow cytometry was used to evaluate the extracellular expression of CD43 and
CD44 and intracellular expression of GzmA, GzmB and IFN-g on transferred CTLs per million cells. The mean value was calculated from one
experiment with 4 mice for unnucleofected cells and 3-4 experiments with 1-2 mice for PD-1-KO CTLs and control CTLs. ns, not significant.
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On the one hand these results validate each other, but also suggest

that additional bystander effects are active after systemic antibody

blocking therapy and the effect may vary upon different infection

models. Together they identify PD-1 as an important target for

improving CTL motility in virus infections (14). Of note, in our

studies CTL motility was not completely restored upon PD-1 KO to

levels of the peak CTL response, where CTLs move with a median

speed of ~8 µm/min (12). Furthermore, when comparing CTL

motility of PD-1-KO CTLs to motility in DEREG mice, which were

treated with diphtheria toxin for depletion of Tregs, PD-1-KO CTLs

did also not reach this level of motility (12). This indicates that both,

the inhibitory receptor PD-1 as well as Tregs, inhibit CTL motility

in vivo and that these mechanisms seem to synergize. Previous

studies of our group showed, that PD-L1 together with Tim-3

blocking antibody therapy was more effective in reactivating

exhausted CTLs in chronic FV infection compared to depletion of

Tregs, but the combination of both was superior compared to any

single therapy (16). This is in line with our conclusion that both

pathways negatively influence CTL motility and functional

properties of CTL and significantly contribute to CTL exhaustion.

Of note, the combination therapy of immune checkpoint blocking

antibodies and depletion of Tregs led to lethal immunopathology in

acute FV infection, highlighting the delicate balance of pro-

inflammatory and counter-regulatory immune responses in

infectious diseases (34). Thus, adoptive transfer of gene-targeted

cells is a more precise approach compared to a broad systemic

therapy and might also be useful in novel immunotherapies

against viruses.

To conclude, our adapted gene editing protocol enables the

targeting of genes in primary naïve CTLs and is suitable for adoptive

cell transfer experiments and a subsequent visualization of CTL

motility through intravital two-photon microscopy multiple days

after virus infection and cell transfer. Targeting PDCD1 led to

improved CTL motility, which now can be directly attributed to

ligand interaction with PD-1 on CTLs. This gene-editing protocol is

not limited to the KO of PD-1 but can also be used to target any

other gene that is important for CTL motility and function. Hence,

this approach might be relevant to improve therapeutic potential of

T cells for example in CAR-T cell therapy.
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SUPPLEMENTARY FIGURE 1

PD-1 expression of transferred CTLs in FV infection. Percentage of PD-1

expressing transferred tdTomato+ FV-specific CTLs was determined in FV
infected C57BL/6 mice at 10 and 14 dpi using flow cytometry (median ± IQR).

Data was obtained from one experiment with 4 mice for each group.
Statistical significance was tested using the Mann-Whitney test.

SUPPLEMENTARY FIGURE 2

Validation of PD-1 knockout. Expression of PD-1 was determined in vitro and

in vivo using flow cytometry. (A) PD-1 expression in vitro was determined 1-
day post activation on CD8+ T cells nucleofected with PDCD1 targeting

gRNA/Cas9 RNP, unspecific gRNA/Cas9 RNP (control) or left unnucleofected.
(B) In vivo PD-1 expression was determined on endogenous, control

nucleofected and PD-1 KO CTLs in mice 14 dpi. Data is shown as

representative contour plots. Data from all nucleofections and experimental
groups can be seen in Figures 1B, C.

SUPPLEMENTARY FIGURE 3

Activation- and cytotoxicity-associated markers in transferred CTLs. C57BL/6
mice and DEREG mice were infected with FV and received CTLs which were

treated with PDCD1 targeted or unspecific gRNA/Cas9 RNP complex

(control) or left unnucleofected. The number of CD43, CD44, GzmA, GzmB
Frontiers in Immunology 08
and IFN-g expressing transferred CTLs per million cells was determined at 14
dpi using flow cytometry and the calculated data is displayed in Figure 2D.

Representative pseudocolour dot plots for each marker are displayed for

unnucleofected, control-nucleofected and PD-1 KO CTLs together with the
percentage of positive cells per transferred cells. Gates were set first for

endogenous control cells based on unstained controls, naïve controls and
control stainings lacking CD43, CD44, GzmA, GzmB and IFN-g staining or

lacking GzmA, GzmB and IFN-g staining. From there gates were taken over for
transferred cells. Gating was performed for every experiment individually to

overcome technical variations between days.

SUPPLEMENTARY FIGURE 4

Virus titers in recipient mice. Virus titers were evaluated in FV infected C57BL/
6 and DEREG mice which received PD-1 KO CTLs, control CTLs or

unnucleofected CTLs at 14 dpi using an infectious center assay (median ±
IQR). Virus titers were evaluated in 2-4 independent experiments with 1-4

mice each. Statistic differences were determined using Kruskal-Wallis test

followed by a corrected Dunn’s multiple comparison test.

SUPPLEMENTARY TABLE 1

Antibodies used for extracellular and intracellular flow cytometry.

SUPPLEMENTARY MOVIE 1

Evaluation of PD-1-KO CTL motility. Intravital two-photon microscopy in the

tibial bone marrow: representative video of tracking FV-specific tdTom+ PD-
1-KO CTLs in FV infected mice at 14 dpi. Cyan: PDCD1 targeted CTLs, yellow

tracks: PD-1-KO CTL tracks. Cells were automatically tracked using the
IMARIS spot function and spots are indicated through yellow surrounding.

CTL tracks are indicated using dragon tails for a continuous time span
of 5 min.
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