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T cell senescence is an indication of T cell dysfunction. The ability of senescent T

cells to respond to cognate antigens is reduced and they are in the late stage of

differentiation and proliferation; therefore, they cannot recognize and eliminate

tumor cells in a timely and effective manner, leading to the formation of the

suppressive tumor microenvironment. Establishing methods to reverse T cell

senescence is particularly important for immunotherapy. Aging exacerbates

profound changes in the immune system, leading to increased susceptibility to

chronic, infectious, and autoimmune diseases. Patients with malignant lung

tumors have impaired immune function with a high risk of recurrence,

metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and

other immune checkpoints is promising for treating lungmalignancies. However,

T cell senescence can lead to low efficacy or unsuccessful treatment results in

some immunotherapies. Efficiently blocking and reversing T cell senescence is a

key goal of the enhancement of tumor immunotherapy. This study discusses the

characteristics, mechanism, and expression of T cell senescence in malignant

lung tumors and the treatment strategies.
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1 Introduction

Maintaining a healthy intra- and intercellular environment in the

human body requires the timely initiation of immune responses to

recognize and eliminate pathogens and mutated malignant tumor

cells. Aging causes dysregulation of the immune system, primarily in

the form of immune senescence. T cell senescence is the main

characteristic of immune senescence that includes the progressive

loss and dysfunction of the immune system; the reduced ability of

immune surveillance to inflammation, injury, and infection; the

reduced ability to remove harmful elements (such as pathogenic

microorganisms); and the failure of the immune system to promptly

clear malignant tumor cells to prevent the survival and progression of

tumor cells. The immune function of patients with malignant lung

tumors is impaired, and there is a high risk of recurrence, metastasis,

and mortality. Immune checkpoint inhibitor and Chimeric Antigen

Receptor T-Cell (CAR-T) immunotherapy is promising for treating

solid tumors and some hematological malignancies. Meanwhile,

combination vaccine and CAR-T therapies can effectively stimulate

endogenous systems to avoid evasion of antigen-negative tumors. T

cells are a core component of the immune system in the human body

(1). However, the presence of senescent T cells leads to the ineffective

clearance of tumor cells and immunosuppression in the tumor

microenvironment (TME), which negatively affects the efficacy of

immunotherapy to some extent (2).

Chronic systemic inflammation increases with age; therefore, older

adults express more inflammation-related genes (3). In a series of

reactions, the pathophysiological characteristics of a lung can trigger

the upregulation of pro-inflammatory and repelling factors, causing

chronic lung inflammation and promoting the development of lung

cancer, which induces premature aging, also known as inflammaging (4).

Lung cancer treatment has undergone a significant transformation

over the past decade, and our understanding of lung cancer biology in

the macro- and microenvironment has led to more opportunities for

developing immunotherapy applications (5). T cell senescence exists in

malignant tumors and is an important indication of T cell dysfunction,

which affects the occurrence and development of malignant tumors. T-

cell functional status is a key determinant of effective anti-tumor

immunity and immunotherapy, and T-cell senescence is a common

feature of cancer progression, with T-cell senescence leading to a

reduced ability to kill cancer cells. If a patient’s T-cell functional

status is abnormal or senescent, then the cancer will continue to

develop. Therefore, it is important to study the association role of T cell

senescence in lung cancer to improve the efficacy of immunotherapy

and the prognosis of lung cancer. This review discusses the

characteristics and mechanism of T cell senescence, its expression in

malignant lung tumors, and therapeutic strategies.
2 T cell senescence

2.1 T cell senescence characteristics

Senescent T cells exhibit the same characteristics as senescent

cells. First morphologically senescent T cells are flatter and larger.

Senescent T cells have shown high expression of age-related b-
Frontiers in Immunology 02
galactosidase (SA-b-gal), telomere shortening, loss of telomerase

activity and genomic instability, and constant DNA damage in cells

by external environmental factors and internal biological processes

(6). The widespread functional inactivation of p53 and RB results in

G1/S checkpoint defects of the cell cycle and continuous

accumulation of DNA damage (7), causing cell cycle arrest,

resulting in decreased cell proliferation. In addition, exhausted T

cells were characterized by high expression of CD45RA and C-C

chemokine receptor type 7 (CCR7), and naive cells turn into effector

memory T cells (8) CD27/CD28 costimulatory molecules on the

surface of T cells are consistently low in expression. CD27 is an

important molecule for T cells to maintain immunity, CD28 is an

important second signal in T cell activation, and loss of CD27 and

CD28 will lead to reduced immune capacity (9). Furthermore,

senescent T cells highly express molecular markers, such as killer

cell lectin-like receptor subfamily G member 1 (KLRG1) and CD57.

KLRG1 is associated with signal transduction, and CD57 is

associated with T-cell proliferation damage (10). Senescent T cells

exhibit senescence-related secretory phenotypes; even if they cannot

proliferate, they can still produce and secrete many pro-

inflammatory factors after stimulation and activation (11).

Interleukin (IL) 2, IL-6, IL-8, interferon-g (IFN-g), and

transforming growth factors (TGF), such as IL-10 (12), are

inflammatory mediators that further promote the formation of

TME. It is still controversial as to whether senescent T cells

express exhaustion markers such as PD-1 as well as LAG-3 (13).

Table 1 shows the molecular features and markers of T

cell senescence.
2.2 T cell senescence and T cell exhaustion

T-cell exhaustion indicates a state of cellular dysfunction in the

immune system. For tumor cells, the immune cells that play a major

role are CD8+ T cells, and due to the continuous stimulation of

chronic inflammation, the killing function of T cells will gradually

decline and show a state of exhaustion. Exhausted and senescent T

cells have a functional deficiency in developing tumor immunity

(21) but exhibit different molecular phenotypes and functions (22),

which progress the tumor and prohibit any anti-tumor function.

IFNa-treated cells (the factor that drives T-cell differentiation to

end effectors) also result in p38 activation, which may explain the

low proliferative capacity of the end effector cell population, as well

as the similarity to the phenotype and function of senescent T cells.

Thus, although exhaustion and senescence are two distinct

processes, they are often confused. Assessment of T cell function

(proliferation, cytokine secretion, and cytotoxicity) by evaluating T

cells is important to distinguish whether T cells are exhausted or

senescent. T-cell exhaustion is a protective mechanism against

excessive immune damage to normal tissues in the tumor

microenvironment and is a pathological state caused by the

autoimmune system repairing long-term viral or bacterial

infections or chronic tissue damage. In these cases, perhaps

(partial) T-cell exhaustion strikes a balance between maintaining

limited infection control and modulating immunopathology (23).

Senescent T cells have a senescence-related secretion phenotype
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(SASP), which can produce and secrete many pro-inflammatory

factors after stimulation and activation, even if they cannot

proliferate (11). In exhausted T cells, IL-2 production, tumor

necrosis factor, and proliferative capacity are decreased, and in

the final stage, T cell effector function is completely lost. This again

shows that senescent and exhausted T cells are in two different

states (24, 25). Concurrently, T cell exhaustion is accompanied by

the expression of inhibitory surface receptors, including PD1,

CD160, 2B4, lag3, and CTLA-4. Thus, poor effector function and

high expression of inhibitory receptors are key features of T cell

exhaustion (23). Current clinical trials using the immune

checkpoint CTLA-4 and/or PD-1/programmed cell death ligand 1

(PD-L1) have shown promising efficacy in patients with malignant

tumors (26). However, the benefit is still limited, suggesting that T

cell exhaustion is not entirely responsible for the impaired anti-

tumor function. T-cell senescence and T-cell exhaustion can be

assessed in terms of proliferation, cytokine secretion, and

cytotoxicity, at the same time, when the body is subjected to

chronic infections or produces tumors, the constant antigenic

stimulation leads the T-cells towards exhaustion/senescence. T-

cell responses to infection and tumors depend on epigenetic

remodeling induced by metabolic reprogramming and synergistic

interactions between immune cells. In particular, T cell effects and

memory differentiation, exhaustion, and senescence are closely

regulated by the metabolic-epigenetic axis (27) (Figure 1).
2.3 T cell senescence mechanism

Physiological and pathological mechanisms cause T cell aging.

T lymphocytes age during the physiological process of immune

aging along with the gradual degeneration of the thymus gland (28).

Additionally, the activation of age-related pathways, telomere

shortening, mitochondrial dysfunction, inflammatory stimulation,

and genomic instability contribute to pathological aging (29).
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2.3.1 Activation of age-related pathways
Mitogen-activated protein kinase (MAPK), a class of serine/

threonine protein kinases, plays an important role in cell

proliferation, differentiation, transformation, and apoptosis.

Moreover, the MAPK signaling pathway is a key signaling

pathway for T cell aging. Cyclic adenosine monophosphate

(cAMP) and other cyclic DNA damage can activate the MAPK

signaling pathway. Furthermore, cell cycle regulatory molecules,

such as P53, P21, and P16, are activated by P38MAPK to cause cell

cycle arrest, thus preventing DNA replication (30). Converting

growth factor b-activated kinase-binding protein 1 to a complex

with AMP-activated protein kinase (AMPK) also activates

p38MAPK, which initiates endogenous DNA damage response,

leading to T cell senescence through recruitment of ataxia

telangiectasia mutated (ATM) (1). In senescent CD4+ T cells,

sestrin protein (SESN1/2/3) promotes senescence by inhibiting

mTOR through the sMAC complex and activating AMPK to

upregulate P38, Erk, and JNK (31). The p38MAPK and ERK1/2

signaling pathways in T cells induce T cell senescence through the

activation of Tregs, and Treg cells cooperate with MAPK, STAT1,

and STAT3 signals to control T cell senescence. Therefore,

inhibition of the T cell MAPK signaling pathway can prevent the

Treg cell-mediated T cell aging process (32).

2.3.2 Telomere shortening
Studies have shown that when the telomeres in immune cells are

shortened, a variety of immune cells, including T lymphocytes, will

exhibit senescent and apoptosis phenotypes, affecting cell function

and activity and further affecting the stability of the body’s immune

system (33). Shi et al. found that T cell senescence is related to

telomeres, and the defective expression of the shelterin protein

complex will affect the formation of the telomere T-loops in cells.

This results in the loss of a “cap structure” at the end of

chromosomes, destabilizing the genome at the end of

chromosomes and increasing cell apoptosis or aging. Partial

subunit expression defects of the shelterin complex of CD4+T

cells in patients with BD suggest abnormal telomere status, loss of

the original telomere protection of chromosomes, vulnerability to

DNA damage and other attacks, and acceleration of cell aging and

apoptosis (34). NF-kB signaling and exposure to inflammatory

molecules, such as IL-6 or TNF, can regulate telomere length and

activity (35). Studies have shown that telomere shortening and
FIGURE 1

Differences between T-cell senescence and T-cell exhaustion.
TABLE 1 Markers of T cell senescence.

Category Markers Refs

SASP IL-2、IL-6、IL-8, TNF-a、TNF-g、
Granzyme ↑

(14–17)

SA-b-gal Senescent cell biomarkers (18)

Cell cycle arrest P53, p21, p16↑ (11, 19)

DNA damage ATM (1)

Metabolic
changes

ROS↑ (20)

phenotypic
markers

CD28,CD27↓
CCR7,CD45RO↓
CD45RA↑
CD57,CD95↑

(8, 9)

KLRG-1↑
"↑" for high expression, "↓" for low expression.
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abnormal telomerase activity are closely related to autoimmune

diseases like rheumatoid arthritis and systemic lupus erythematosus

(36–39). T cell subpopulations exhibit age-related reductions in

telomere length, especially in chronic infectious diseases, such as

cytomegalovirus (CMV). One of the most common changes in

human short telomere syndrome is idiopathic pulmonary fibrosis

(IPF), in which patients who have undergone lung transplantation

have impaired immunity to CMV, demonstrating that T cell

function is subsequently reduced after telomere shortening.

Although different studies have yielded inconsistent results,

telomere shortening generally suggests a worse prognosis for lung

cancer patients (40). Shortened peripheral blood telomere length

was found to be associated with an increased risk of death in cancer

patients (41). Weischer (42) found that in a Danish population,

reduced telomere length detected before a lung cancer diagnosis was

associated with increased mortality in patients with lung cancer.

Kim (43) found that excessive telomere length measured in patients

with early non-small cell lung cancer (NSCLC) was associated with

an increased risk of recurrence after radical lung cancer resection.

To clarify the impact of telomere shortening on the survival of

patients with early NSCLC, Jeon (44) used quantitative polymerase

chain reaction to measure the relative telomere length in tumor

tissues of 164 patients with surgically removed NSCLC and the

association between telomere length and overall survival (OS) and

disease-free survival (DFS) were analyzed. Compared with older

patients, the healthy older adult population had longer telomeres,

higher telomerase activity, and stronger cell proliferation ability.

Telomere length is shortened in most tumors, including in older

patients with lung cancer. Changes in telomere length are associated

with the risk of lung cancer and may be used as a prognostic

indicator of lung cancer, especially in NSCLC (45).

2.3.3 Mitochondrial dysfunction
Mitochondrial dysfunction is another mechanism of T cell

senescence that occurs in most tissues and cell types, including T

cells (46). In the tumor microenvironment, cytotoxic T cells are

activated by tumor antigens through T cell receptor (TCR) signaling,

resulting in a durable and effective anti-tumor immune response. T

cells differentiate from initial state T cells to effector T cells upon

receiving antigen activation, at which point the expression levels of

specific genes involved in aerobic glycolysis and regulation of effector

functions will increase. After successful clearance of antigen by the

body, memory T cells utilize fatty acid oxidation (FAO) and oxidative

phosphorylation (OXPHOS) to satisfy energy requirements and long-

term survival properties (27). During abnormal cell metabolism,

mitochondrial function is impaired; biosynthesis capacity,

T cell activation, and functional persistence are reduced

immunosuppressive cells, such as Treg cells, compete with T cells

for glucose, triggering ATM-related DNA damage and T cell

senescence (47). Mitochondria are the main sources of intracellular

reactive oxygen species (ROS), which are important in regulating

cellular life activities, such as oxidative stress, apoptosis, and gene

expression (48). Mouse bone marrow mesenchymal stem cells were

cultured in vitro by Li et al., who found that C1q/TNF-associated

protein 9 activates the peroxisome proliferator-activated receptor-g
coactivator 1a (PGC-1a)/AMPK signaling pathway, enhancing the
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antioxidant capacity of cells. However, silencing of the PGC-1a or

AMPK gene can increase the intracellular ROS level, resulting in the

decrease of mitochondrial respiration ability and ATP production

and then cell senescence (20). Ye (49) found that tumor-derived

endogenous cAMP caused T cell DNA damage and induced T cell

senescence. Activation of Toll-like receptor 8 (TLR8) in tumor cells

can down-regulate the level of tumor-derived cAMP, block and

reverse the aging process, and restore the anti-tumor ability of T

cells. Therefore, understanding the molecular mechanism of T-cell

senescence can provide a new vision for immunotherapy to

some extent.

2.3.4 Inflammatory stimulation
Immune senescence and inflammation interact and persist

throughout life. If the body is constantly exposed to repeated

stimulation of tumor antigens, it will cause DNA damage, telomere

wear, and the aging of immune cells. However, the aging of the

immune system will cause changes in the structure and function of

immune cells. Numerous inflammatory cytokines are continuously

secreted during the aging of immune cells, resulting in long-term

sustained inflammatory damage to the body. During infection,

toxicity, and irritation conditions, there are high concentrations of

inflammatory factors in serum, such as IL-6, IL-8, TNF, C-reactive

protein (CRP), soluble glycoprotein 130 (SGP130, involved in IL-6

signal transduction, sCD30, and MCP-1). Senescent T cells secrete

the SASP phenotype, and SASP factors affect neighboring cells or

promote angiogenesis, progressing tumor cell growth, invasion, and

metastasis. Senescent T cells secrete the SASP phenotype, and SASP

factors affect neighboring cells or promote angiogenesis, progressing

tumor cell growth, invasion, and metastasis. The senescence-

associated secretory phenotype (SASP) is an effector arm of

senescence, leading to senescent cell clearance or chronic

inflammation, tumor suppression, and tumor promotion, among

others. Tumor-promoting SASP effects are associated with pro-

inflammatory SASP factors (e.g., IL-6 and IL-8), which promote

epithelial-to-mesenchymal transition, recruitment of tumor-

promoting macrophages, and suppression of cytotoxic T cell

function (50). However, inflammatory responses may also

contribute to inflammatory aging by accelerating telomere length

shortening. Meanwhile, DNA damage, DNA double-strand breaks,

DNA damage repair (DDR) defects, telomere shortening, and

reduced telomerase activity are common in aging T cells. In this

process, DNA-dependent protein kinase breakdown subunits (DNA-

PKCs) are activated by long-term DNA damage (51). DNA-PKCs

activate NF-KB via intracellular signaling pathways, promoting the

production of IL-1, IL-6, tumor necrosis factor, and other

inflammatory factors, leading to further damage. Aging involves

the degeneration of the thymus in the interactive process of

immune and inflammatory senescence. Thymus degeneration

exhibits tissue structure destruction and decreased thymus mass

and cell number, leading to decreased initial T cell output and

peripheral TCR pathogen detection. This results in the continued

accumulation of senile cells, inflammatory senescence in the body,

and increased SASP secretion. However, in the process of thymus

degeneration, the decline of thymus function leads to the impairment

of the negative selection function of T cells, reducing the acquisition
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of the T cell central immune tolerance mechanism. The T cell bank

entering the peripheral lymphatic organs contains T cells which

target their organs and tissues, causing autoinflammation and

immune response; this is also an important factor in inflammatory

aging (52).
3 The role of senescent T cells in the
genesis and development of
malignant tumors

Increasing evidence shows that aging T cells are important

amplifiers and key immunosuppression agents in the inhibitory

TME (49, 53, 54). Understanding the role of senescent T cells in

tumor immunity opens the way for new immunotherapies. In

addition to regulating the tumor microenvironment through

SASPs, senescent T cells also act as a unique regulatory T cell

subpopulation that can directly inhibit proliferative and activating

functions and reduce pro-inflammatory cytokine secretion while

inducing apoptosis of activated T cells in vitro. At the same time,

senescent T cells with a suppressive role in the tumor

microenvironment are able to promote the production of pro-

inflammatory factors (TNF, IL-1b, and IL-6) and angiogenic factor,

vascular endothelial growth factor A (VEGF-A) by monocytes/

macrophages, which leads to renal tubulogenesis and tumor cell

survival (2). The above evidence suggests that senescent T cells

promote immune escape from tumors to some extent.

Pretreatment levels of senescent T cells in peripheral blood

correlate with tumor progression and prognosis, as well as with the

prognosis of patients treated with chemotherapy. In advanced

NSCLC, higher levels of senescent T cells independently predicted

unfavorable OS and post-diagnostic progression-free survival (PFS),

and patients with higher levels of senescent T cells in the peripheral

blood had lower levels of IFN-g and higher levels of IL-6, which may

partly explain why senescent T cells predicted poor chemotherapy

efficacy (55, 56) Senescent cells produce a complex mixture of SASPs.

In addition to this, inflammatory and immunomodulatory factors as

well as repellency factors are significantly upregulated in senescent T

cells (57). Meanwhile SASP factors, such as IL-6 and TNF-a promote

T cell senescence in autocrine or paracrine forms, such as the CCL5/

CCR5 axis that promotes tumor growth and migration, facilitates

neovascularization, and induces immunosuppressive polarization of

monocytes and myeloid-like cells, leading to the generation of M2-

type tumor-associated macrophages and myeloid-derived suppressor

cells (MDSCs) (58). However, whether senescent T cells play a

positive or negative role in different tumors and at different stages

of tumor development still needs to be further investigated

(Figure 2, Table 2).
3.1 T cell senescence and lung malignancy

In vivo, anti-tumor immunity, cellular immunity is the main

way of anti-tumor immunity, and T lymphocytes play a key role in

this process. The immune function of the elderly population also

gradually decreases with age, which is what we call the key problem
Frontiers in Immunology 05
of T lymphocyte senescence, that is, immune senescence. From the

perspective of immunology, the occurrence and development of

tumors are closely related to the body’s immune state, which is

mainly caused by the immune escape mechanism and the anti-

tumor function of the immune surveillance system (63). Studies

have shown that T-cell senescence is found in hematological

malignancies (64–66).

Lung cancer is based on the aging of the body during its onset

when complex immune remodeling occurs in the immune system

(63, 67). The function of T cells has undergone important changes,

namely, T lymphocyte senescence: the imbalance of T lymphocyte

subsets in older patients and decreased ability to activate apoptosis

and proliferative response to antigen and mitogen stimulation. In

addition, it is noteworthy that T cells originating from healthy older

individuals also exhibit this dysfunction (68). Additionally, the

function of T cells depends on the combined action of various

helper molecules on the membrane surface (69). Studies have

shown that the expression of CD28 in the peripheral blood of

patients with malignant lung tumors is significantly decreased (70),

which indicates that the abnormal costimulatory pathway leads to

the decrease of immune function in the body and is closely related

to the occurrence and development of tumors. Activated efficient T

lymphocytes were cleared by the Fas/FasL-mediated apoptosis

pathway (71), and the expression level of the Fas (CD95) antigen

on peripheral blood T cells of patients with lung malignant tumors

was significantly higher than that of healthy individuals (72).

Therefore, the abnormal regulation of Fas-mediated apoptosis of

T cells may be related to the occurrence and development of

malignant tumors. The Fas/FasL pathway can be a basis for

exploring the intrinsic relationship and possible mechanism

between T cell senescence and lung cancer, and provide the

experimental basis and scientific strategy for immunotherapy of

lung cancer in the elderly.
3.2 Regulation of T cells and their
CD28/CD95molecules in the aging
process of the body

Currently, lung cancer and digestive system tumors are the main

types of cancer among the elderly in China. Aging is an inevitable

stage of the body’s metabolic process, and the function of the immune

system declines with the aging of the body, which is manifested in the

gradual decline of the immune system’s response to antigens, thus

leading to an increased susceptibility of the body to infectious

diseases, tumors and autoimmune diseases.CD28 is a member of

the immunoglobulin superfamily (IGSF), which is a homologous

dimer glycoprotein with a relative molecular weight of 44KDa and is

expressed on 95% of resting CD4+ and nearly 50% of resting CD8+ in

human peripheral blood. As a costimulatory molecule expressed on

the surface of T lymphocytes, CD28 binds to the B7 molecule on

antigen-presenting cells (APC), thereby mediating the activation of T

cells, promoting T cell proliferation and secretion of various

cytokines, and providing survival signals for preventing T cells

aging and apoptosis (73–75). Additionally, CD28 mediates the

adhesion of T and B cells and prevents the clone from being
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unresponsive. CD28 costimulatory molecules on the naïve T cells

provide a costimulatory signal to T cells that receive simultaneous

TCR stimulation, inducing the expression of the IL-2R (interleukin-

2) receptor and transcription of IL-2 genes on the T cell surface (76).

The combination of the B7 molecule and CD28-activated Th1 and

Th2 cells induced the proliferation and activation of Th1 cells,

promoted the recovery of immune function, and activated anti-

tumor immune response by Th1 cytokines (77). The aging

immunity study centered on T lymphocytes found that CD28 in

the peripheral blood of healthy individuals was downregulated with

aging, and the activation and proliferation ability of T cells decreased

correspondingly, suggesting that the decrease of immune function

caused by an abnormal costimulatory signaling pathway was related

to the occurrence and development of malignant tumors, and became

one of the important characteristics of T cell senescence (78). CD95

(Fas/Apo-1) is mainly distributed on the surface of human-activated

T and B lymphocytes and is an important apoptosis molecule, also

known as the “death receptor,” belonging to the tumor growth and

nerve growth factor receptor superfamily members. Its ligand FasL

(CD178) is a member of the TNF ligand superfamily and transmits
Frontiers in Immunology 06
apoptotic signals to cells and induces apoptosis. The interaction of

Fas and FasL can cause numerous antigen-activated T cells to initiate

a caspase cascade, thereby inducing apoptosis, also known as

activation-induced apoptosis (AICD) (79). However, cytotoxic T

lymphocytes (CTL) and natural killer cells (NK) express TNF-a
and FasL (80) to activate cell death programs, leading to apoptosis of

target cells. Immunosenescence studies have found that the

expression level of CD95 in human peripheral blood T cells

increases with aging, which leads to senescent T cells, especially

CD8+T cells, becoming more sensitive to TNF-a-mediated apoptosis

signals (81), and the survival rate of T cells after activation decreases.

Experimental results (82) also showed that the expression rate of the

CD28 and CD95 antigen proteins in T cell subsets decreased and

increased with aging, respectively.
3.3 The regulatory role of T cells
and their CD28/CD95 molecules in
anti-tumor immunity

It is well known that CD8+ cytotoxic T cells can only be

activated into antigen-specific effector T cells with the stimulation

of the APC surface antigen polypeptide—MHC-I molecular

complex—therefore, specifically target cells to kill. Effective

activation of T cells is a key step in the active immune process of

the body against tumor cells (83). CD28, a T-cell-specific

costimulatory molecule, is essential for TCR-mediated antigen

recognition and signaling output. CD8+T cells can be divided into

CD8+CD28+ T cells and CD8+CD28- T cells (84) based on the

costimulatory molecule CD28 is expressed or not, respectively.

CD8+CD28+ specific killer cells differentiate into effector killer

cells by cytokines secreted by CD4+Th cells. Cytotoxic substances,

such as perforin and granzyme (85), are released to dissolve target

cells or release cytokines to induce apoptosis of target cells to kill
FIGURE 2

Role of senescent T cells in tumorigenesis and development: (i) Senescent T cells have impaired anti-tumor activity. Moreover, down-regulation of
the costimulatory molecules CD27 and CD28, as well as the effector molecules perforin and granzyme, reduces proliferation, promotes cell cycle
arrest and inhibits the expression of proliferative molecules. (ii) senescent T cells directly affect immune cells and induce adaptive Tregs, but inhibit
DC and effector T cells (iii) senescent T cells exhibit an aging-associated secretory phenotype, which produces abundant pro-inflammatory factors,
such as interleukin (IL)-2, IL-6, IL-8, and interferon-g, which interfere with normal cell differentiation, although they are leukin cells that are
leukocyte leukin, which promotes the occurrence of malignant tumors; (iv) T cell senescence directly inhibits T cell proliferation and function;
(v) T cell senescence directly promotes tumor growth, invasion, metastasis, and epithelial-mesenchymal transformation.
TABLE 2 T cell dysfunction in tumor.

T cell dysfunction in tumor Ref

Inhibitory
receptors

PD-1、CTLA-4、Tim-3、LAG-3 (59, 60)

Transcriptional
regulation

T-bet、Eomes、Foxo1、Blimp-1、
NFAT、TOX

(59)

Inhibitory cells Treg cells、TAMs、cancer-associated
fibroblasts and adipocytes endothelial cells

(59, 61)

Suppressive
soluble

mediators

IL-10、VEGF-A、TGF-b、IL-35 (59, 62)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1338680
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1338680
tumor cells specifically. Since CD4+T cells belong to MHC-II

restricted T cells and cannot directly recognize tumor cells, they

activate CTL by secreting IFN-g and IL-2 when stimulated by APC

antigen presentation; therefore, the two types of cells cooperate to

kill tumors (86). Zou (87) showed that serum CD3+, CD4+, CD8+,

and CD28+ T cells in older patients with lung cancer were

significantly decreased compared with healthy older patients, and

the CD28 mRNA content in peripheral blood of older patients with

primary NSCLC was significantly lower than that in the healthy and

non-cancer older groups. The abnormal decrease of CD28 mRNA

content suggests that the body lacks an effective second signal to

activate CD8+CTL cells, which allows the tumor to evade the host

immune surveillance and tumor immune escape.

Fas/FasL pathways evade the human immune system from

killing tumors. FasL expression in tumor cells promotes increased

apoptosis of T cells activated by Fas high expression (88), resulting

in immune escape. However, tumor cells could overexpress the anti-

apoptotic gene product (bcl-2) (89) or not express Fas and Fas-

related signal transduction molecules to resist the apoptosis

mediated by the Fas/FasL pathway and avoid the killing action of

activated CTL. The abnormal regulation of the Fas/FasL pathway

leads to the inhibition of apoptosis and allows tumor cells to evade

immune surveillance (90). Hoser (91) the expression level of Fas

antigen on peripheral blood T cells of lung cancer patients was

significantly higher than that of healthy people, I ndicating that

abnormal Fas-mediated apoptosis of T cells may be related to the

occurrence and development of malignant tumors. The experiment

showed that CD95 was mainly increased in peripheral blood T cell

subsets of older patients with NSCLC, and the CD95 mRNA

content was significantly higher than that of the healthy and non-

cancer group older patient groups. The Fas/FasL apoptosis pathway

induces excessive apoptosis of T cells and their subsets, thus

weakening the immune surveillance and attack ability towards

tumor cells, leading to further proliferation and invasion of lung

cancer cells (92).
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4 Therapeutic strategies of T cells in
lung malignancies

According to preclinical experiments, inhibitors targeting p38,

ERK, JNK, and STAT signaling pathways prevented T cell

senescence (93); and rapamycin, a mammalian rapamycin

complex 1 (mTORC1) inhibitor, metformin, and BIRB 796, a p38

inhibitor, increase mitochondrial biogenesis and viability, and work

by regulating metabolism to reverse T cell senescence (93–95).

Another study demonstrated that a hypoxic environment caused by

the accumulation of adenosine and cAMP induces T-cell senescence

(49) can be treated with hyperbaric oxygen therapy to increase the

chromosome length of peripheral blood cells and thereby reduce the

number of senescent T cells (96). In addition to this, numerous

studies have shown that NK cells, as the central participant in the

immune surveillance of senescent cells, are able to rapidly capture

abnormalities such as senescence. T-cell senescence was

significantly ameliorated by infusing back NK cells, with a

significant reduction in peripheral senescent and failing T cells in

the infused subjects, and the T cells exhibited enhanced cytotoxicity

(97). All evidence suggests that T cell senescence weakens anti-

tumor capabilities as a strategy to evade immune surveillance.

Therefore, developing strategies to reverse T cell aging and

combat tumor immunity is important (Figure 3).
4.1 Blocking T cell aging signaling pathway

The key signaling pathway controlling the induction of T cell

senescence is an important target to enhance anti-tumor immunity

effectively. Fibroblasts can reverse growth arrest by blocking key cell

cycles in early senescence (19, 84), which also provides key ideas for

reversing T cell senescence. p38MAPK is the core target to reverse T

cell senescence. Inhibition of p38MAPK in T cells reverses the
frontiersin.o
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process of DNA damage-related T cell senescence. The safety of the

p38MAPK inhibitor has been confirmed in myelodysplastic

syndrome and MM (98–100). Meanwhile, studies have shown

that inhibition of the MAPK signaling pathway (101) can restore

the cell cycle activity and proliferation ability of T cells. MAPK

inhibitors have been widely used to treat patients with melanoma,

and have been shown to enhance T-cell recognition of melanoma

without affecting lymphocyte function (102, 103). Another method

is by activating the TLR8 signaling pathway in Treg and tumor cells.

cAMP inhibitors also inhibit tumor-induced T-cell senescence by

reactivating TLR8 signaling (2). TLR8 agonists reduce cAMP

production in tumor cells and inhibit glycolysis of tumor-derived

Tregs without interfering with effector T cell metabolism (49),

thereby preventing T cell senescence.
4.2 Enhance mitochondrial function

Decreased metabolic function and mitochondrial dysfunction are

apparent in T cell senescence. Iron is an essential nutrient involved in

cell metabolism, and its deficiency can lead to impaired cell function,

anemia, nervous system damage, cancer, and loss of cell function.

Jovian et al. incubated cells with different concentrations of FeSO4 in

the medium and performed growth analysis at different time points

(16, 24, and 48 h). Approximately 24 h after incubation with FeSO4

concentration, cell growth reached saturation, and the chronological

lifespan (CLS) of cells incubated with different concentrations of

FeSO4 was measured. The results showed that adding different

concentrations of FeSO4 in the medium could prolong the CLS of

yeast. The researchers also tested using different concentrations of

FeCl3 and found results similar to FeSO4. These results confirm that

iron supplementation can delay aging and prolong life by enhancing

mitochondrial function (104). Mitochondria serve as the cellular

centers for iron utilization and metabolism, and iron is a cofactor for

several mitochondrial proteins, including iron-sulfur clusters and

heme-containing proteins. Studies have shown that iron

supplementation can significantly induce the expression of

mitochondrial tricarboxylic acid (TCA) cycling genes. The TCA

cycle metabolites alpha-ketoglutaric acid and oxaloacetic acid

produce glutamic and aspartic acid through catalytic reactions in

mitochondria, respectively. These results suggest that iron

supplementation promotes TCA circulation by placing cells in a

metabolic state conducive to regeneration. Moreover, mitochondria

produce energy, participate in aerobic respiration, provide energy for

cells, and are involved in cell differentiation, information

transmission, and apoptosis. Nicotinamide adenine dinucleotide

(NAD+), a key molecule in the process of mitochondrial energy

production, decreases with the increase of age. Recently, experiments

have demonstrated a new method to promote the synthesis of NAD+

by inhibiting 2-amino-3-carboxylic muconic acid 6-hemaldehyde

decarboxylase (ACMSD). Increased levels of NAD+ enhanced

mitochondrial function in Cryptothritis worms and mice (105). In

a study conducted by Tineke van de Weijer et al., 21 patients with

type 2 diabetes aged 57.7 ± 1.1 years were treated with a placebo or

acipimox (250 mg/d oral, three times daily) for 2 weeks and found a

substantial increase in ATP levels in muscle biopsies of patients
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treated with acipimox. Subsequently, it was confirmed that the

improvement by acipimox on muscle-mitochondrial function was

mainly caused by the increase of NAD+ level (106), which further

indicated that NAD+ is also an important participant in myocardial

and skeletal muscle aging remodeling.

Based on the important role of mitochondrial function in

cellular senescence, the development of mitochondria-targeted

approaches to ameliorate cellular senescence is gradually gaining

attention. A recent study found that when mitochondria with

normal function in the liver of young mice were injected into

aged mice via the tail vein, these mitochondria could enter and

stably exist in the brain, skeletal muscle, liver, kidney, heart, and

lung tissues of aged mice, and improve the learning, memory, and

motor functions of aged mice (107).
4.3 Maintain telomere length

Many age-related pathologies and progeria syndromes are

characterized by faster-than-normal telomere shortening,

suggesting that telomere shortening is the cause of body aging

(108). Telomerase can maintain telomere length to a certain extent,

but the telomere will undergo damage during each cell division and

eventually be exposed at the stained ends, resulting in lasting DNA

damage. When telomere length reaches the threshold, cells escape

the cell cycle and activate senescence or apoptosis (109). Therefore,

maintaining telomere length is an important strategy to combat

aging and prolong life. Studies have found that the shortening of

telomere length is associated with low selenoprotein levels (110).

Additionally, the expression of telomerase activity was low in

healthy cells, and the telomeres were significantly prolonged after

the administration of sodium nitrite, and the growth state of cells

significantly changed (111). In addition to the telomerase-mediated

telomere maintenance mechanism, there is an alternative

lengthening of telomere (ALT) mechanism (112). To regulate

telomere length, telomerase uses RNA templates to add telomere

repeats to the 3’-end of chromosomes. Except for stem cells, germ

line cells, and most tumor cells, most human cells no longer show

telomerase activity, mainly due to inhibition of the TERT gene

expression (113). Moreover, 15% of telomere length is maintained

by ALT mechanisms based on homologous recombination (HR)

dependent exchange and/or HR-dependent telomere DNA

synthesis (114). Targeted telomere maintenance is, therefore, an

opportunity to treat most cancers. Inhibition of tumor cell

proliferation by targeting telomerase is an effective way to treat

cancer. However, the cytotoxic effect was not shown until the

telomere length was shortened to a critical value in the late

inhibition of telomerase activity (115). Therefore, effectively

targeting telomerase to maintain telomere stability is very

important in anti-cell aging and anti-tumorigenesis. Telomere

synthesis can be blocked by oligonucleotides that inhibit human

telomerase RNA (hTR) function by targeting the template region of

hTR. When combined, the oligonucleotides can effectively inhibit

the catalytic effect of telomere repeated addition (116). Nucleoside

analogs are covalently bound to telomere ends by telomerase and

prevent further nucleotide addition due to the lack of the 3’-OH
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functional groups. Analogs previously used to inhibit human

immunodeficiency virus (HIV) reverse transcriptase have also

been found to inhibit telomerase reverse transcriptase (hTERT)

catalytic sites. Nucleoside analogs studied in telomerase-positive

cancers include azidothymidine (AZT), 6-thio-dG, and 5-MeCITP

(117). Additionally, hTERT small molecule inhibitors, hTERT-

specific immunotherapy, the G4 stable ligand, and therapeutic

strategies targeting ALT mechanisms have all been discussed in

relevant reviews (118).

Studies have initiated an in vitro immune response of T

lymphocytes to microorganisms (foreign infections) and found

that they observed a telomere transfer response between two

types of leukocytes in extracellular vesicles (small particles that

facilitate cell-to-cell communication), with T cell telomeres

lengthening by 3 kb. After telomere transfer, the recipient T cells

became longer-lived and possessed long-term immune memory and

stem cell attributes, allowing the T cells to provide long-term

protection to the host against lethal infections. This mechanism

of telomere recombination fuses telomeres to the ends of T-cell

chromosomes, lengthening them by an average of approximately

3,000 base pairs, which is more than 30 times the length of

telomerase lengthening. Transferring telomeres protects recipient

T cells from replicative senescence and has long-term immune

memory and stem cell properties, enabling T cells to provide long-

term protection against lethal infections. The telomere transfer

reaction between immune cells suggests that cells are capable of

exchanging telomeres as a way of regulating chromosome length

before the onset of telomerase action. Suggesting that we can slow or

cure aging simply by transferring telomeres (119).
4.4 Anti-inflammatory therapy

The immune system and inflammation interact during various

disease development. An adapted immune system plays an

important role in preventing and monitoring the occurrence and

progression of tumors, while inflammation promotes the

occurrence of tumors and the progression of malignant tumors.

Acute inflammation is a stress response to danger signals, cell tissue

destruction, and infection in the body. Stopping the occurrence and

development of acute inflammation can promote the recovery of

body tissues to a certain extent, but when acute inflammation is not

controlled effectively and timely, it develops into chronic

inflammation and increases cancer risk (120). Some of these

drugs have been shown to reduce the risk of developing tumors

(121–124). Cytokines, chemokines, and growth factors produced in

the TME promote the proliferation, evolution, and growth of cancer

cells, while tumor vascularization and immune dysregulation

persist, leading to tumor progression, invasion, metastasis, and

therapeutic resistance. Therefore, anti-inflammatory drugs alone

or combined with immunosuppressive agents can be used as an

effective way to inhibit tumor development. The suppression of

glycolysis in immune cells by immune checkpoints leads to the

suppression of T cell function; therefore, immune checkpoint

blockers are used to regain glucose uptake by T cells (125).

However, due to the existence of pro-inflammatory and
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immunosuppressive TME, immunosuppressive drugs are resistant

to some extent. Therefore, anti-inflammatory drugs targeting

immunosuppressive cells and cytokines can cause immune-

mediated rejection of cancer, which has led to the development of

an emerging anti-inflammatory, immune therapy to prevent the

development of tumors. In addition to this, the powerful role of

neutrophils in combating microorganisms can cause tissue damage,

and neutrophil-driven inflammation is a unifying mechanism in

many diseases, and neutrophils are known to promote angiogenesis

and distant tumor metastasis. Targeted granu1ocyte colony-

stimulating factors (G-CSF) can inhibit the recruitment of

neutrophils and enhance the efficacy of antiangiogenic agents

(126). Some viral infections are known to promote tumor

occurrence and metastasis; hepatitis B virus (HBV) or hepatitis C

virus (HCV) plays a major role in the occurrence of hepatocellular

carcinoma (HCC). Meanwhile, HBV and HCV can also lead to

cancer-promoting inflammation (127). Some immunosuppressive

factors, such as IL-10, is considered immunosuppressive cytokine

that promotes tumor cell proliferation and metastasis and can

promote tumor progression by recognizing IL-10R on the surface

of CD8+T cells and inhibiting T cell function (128). A study of

routine IL-10 exposure to acute otitis media (AOM) found that

tumor diversity was strongly associated with colitis. The intestinal

tissue of IL-10 mice treated with aseptic AOMwas normal without a

tumor. In other words, bacteria-induced inflammation promotes

the progression of adenoma to aggressive cancer (129), thus

modulating the intestinal flora to target immunosuppressor

factors to improve the immune microenvironment. Eradication of

Helicobacter pylori (HP) in gastric cancer with broad-spectrum

antibiotics can prevent gastric cancer in patients with an

asymptomatic infection or without precancerous lesions and

reduce the development rate of heterotropic gastric cancer in

patients with early gastric cancer or high-grade adenoma (130).

In addition to antibacterial and antiviral therapy, targeted anti-

inflammatory drugs, inhibition of TGFb signal, cytokines targeting

mediated TAMs and MDSCs, and natural anti-inflammatory

supplements were all discussed in the relevant review (131).
5 Conclusions

Currently, immunotherapies, such as checkpoint blocking and

CAR-T cell infusion, have been preferred by an increasing number of

patients with cancer and have received satisfactory results. However,

the overall immune benefit rate was still limited and varied among

tumor types (132). Studies have shown that T cell senescence is an

important indicator of cell dysfunction and a common feature in

TME. Therefore, preventing and reversing T cell senescence and

restoring the effector T cell state is promising for tumor

immunotherapy. Currently, MAPK and STAT3 signaling pathways

are key targets for controlling T cell senescence (54). Additionally,

TLR8 signaling can reverse the inhibition of Tregs and tumor cells

and prevent T cell senescence. Therefore, inhibiting the activation of

MAPK and TLR8 signal can effectively control T cell senescence and

improve the efficacy of immunotherapy. Recently, increasing

evidence shows that the immune system plays a double-edged role
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in tumor occurrence, immune surveillance (133),, or promotion of

tumor development (134). The changes in T cell functional states and

subpopulations during tumorigenesis are dynamic, and more

evidence is needed to demonstrate the changes and plasticity of

different T cell states during immunoediting, including senescence

and/or exhausted T cells, which are essential for the development of

new therapeutic approaches (133). In addition to the mechanism of

targeting CD8+ T cells in T cell reversal therapy, the targeted therapy

of CD4+ T cells still needs further research. CD8+T cells are prone to

senescence, and CD4+T cells cannot avoid the fate of senescence.

However, there is still a lack of definition, epidemiology, and

mechanisms of CD4+ T cell senescence, and immune dysfunction

associated with CD4+ T cell disease states, including cancer remain

poorly understood. Targeting related helper cells can aid in

understanding the depth of immunotherapy and provide new

therapeutic ideas for improving anti-tumor immunity.

NK cells play an important role in considerably improving T

cell senescence (135). NK cells, characterized by the expression of

CD16 and CD56, are the first line of defense against viral infection

and cancer cells (136). Experiments have shown that the population

of aging T cells, PD-1+, and TIM-3+ T cells are also notably reduced

after the infusion of amplified NK cells into a healthy body. SASP-

related factors, IL-6, IL-8, IL-1a, IL-17, MIP-1a, MIP-1b, and
MMP1, decreased considerably, while T cells showed increased

cytotoxicity (136). However, until now, the mechanism of NK cells

that affect T cell aging and failure remains unclear. Therefore,

further studies of these aging and failing T cell populations, their

origin, and their function in immunopathological conditions

will significantly promote the clinical application of NK

immunotherapy. A comprehensive score has been developed to

quantify senescent cell load, which helps to indicate the senescent

cell load in cancer and its vicinity to facilitate clinical trials of

interventions to eradicate TIS/dormant cancer cells and prevent

recurrence and metastasis (137).

Further studies are required on the mechanism of T cell aging,

and there are still many limitations in experimental transformation.

Bioinformatics and single-cell sequencing are becoming important

in cancer research. In the era of precision therapy, it is necessary to

use relevant analytical techniques for accurate subgroup and marker

analysis of T cell senescence. Major clinical challenges include

evaluation criteria for the degree of T cell senescence in

malignant tumors, application indicators of immunotherapy, and
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the risk of over-immunization. It is necessary to establish relevant

markers and more accurate targets to improve the efficacy of clinical

immunotherapy and reduce the damage caused by over-immunity.
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Role of senescence in tumorigenesis and anticancer therapy. J Oncol (2022)
2022:5969536. doi: 10.1155/2022/5969536

133. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating
immunity's roles in cancer suppression and promotion. Science (2011) 331
(6024):1565–70. doi: 10.1126/science.1203486

134. Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and
inflammation: independent or interdependent processes? Curr Opin Immunol (2007)
19(2):203–8. doi: 10.1016/j.coi.2007.02.001

135. Aktas ̧ON, Öztürk AB, Erman B, Erus S, Tanju S, Dilege Ş. Role of natural killer
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