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Revisiting roles of mast cells
and neural cells in keloid:
exploring their connection to
disease activity
Eunhye Yeo1,2†, Joonho Shim1†, Se Jin Oh1, YoungHwan Choi1,2,
Hyungrye Noh1, Heeyeon Kim1, Ji-Hye Park1, Kyeong-Tae Lee3,
Seok-Hyung Kim4, Dongyoun Lee1 and Jong Hee Lee1,2*
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Background: Mast cells (MCs) and neural cells (NCs) are important in a keloid

microenvironment. They might contribute to fibrosis and pain sensation within

the keloid. However, their involvement in pathological excessive scarring has not

been adequately explored.

Objectives: To elucidate roles of MCs and NCs in keloid pathogenesis and their

correlation with disease activity.

Methods: Keloid samples from chest and back regions were analyzed. Single-cell

RNA sequencing (scRNA-seq) was conducted for six active keloids (AK) samples,

four inactive keloids (IK) samples, and three mature scar (MS) samples from

patients with keloids.

Results: The scRNA-seq analysis demonstrated notable enrichment of MCs,

lymphocytes, and macrophages in AKs, which exhibited continuous growth at

the excision site when compared to IK and MS samples (P = 0.042). Expression

levels of marker genes associated with activated and degranulated MCs,

including FCER1G, BTK, and GATA2, were specifically elevated in keloid lesions.

Notably, MCs within AK lesions exhibited elevated expression of genes such as

NTRK1, S1PR1, and S1PR2 associated with neuropeptide receptors. Neural

progenitor cell and non-myelinating Schwann cell (nmSC) genes were highly

expressed in keloids, whereas myelinating Schwann cell (mSC) genes were

specific to MS samples.

Conclusions: scRNA-seq analyses of AK, IK, and MS samples unveiled substantial

microenvironmental heterogeneity. Such heterogeneity might be linked to
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Abbreviations: ECM, Extracellular matrix; ScRNA

sequencing; MC, Mast cell; NC, Neural cell; AK, Acti

keloid; MS, Mature scar; nmSC, non-myelinating

myelinating Schwann cells.

Yeo et al. 10.3389/fimmu.2024.1339336

Frontiers in Immunology
disease activity. These findings suggest the potential contribution of MCs and

NCs to keloid pathogenesis. Histopathological and molecular features observed

in AK and IK samples provide valuable insights into the mechanisms underlying

pain and pruritus in keloid lesions.
KEYWORDS

keloid, single-cell sequencing, mast cell, neural cell, microenvironment, cell-
cell interaction
Introduction

Keloids are fibrotic skin diseases that occur at areas with a

cutaneous injury. They typically extend beyond boundaries of the

original wound (1–8). They are characterized by excessive collagen

deposition and abnormal cellular proliferation (5–9). Keloids can be

pruritic near the site of injuries. They can also result in pain or

restrict movement due to excessive scarring. Currently, available

treatments for keloids encompass surgical excision, cryotherapy,

steroid injections, and radiation therapy (10–15). Nevertheless,

treatment of keloids remains challenging as they often exhibit a

tendency to recur even after undergoing interventions. This

highlights the existence of an unmet demand for more effective

approaches that directly address underlying mechanisms involved

in keloid development.

Environmental factors, including the incidence rates varying

after surgery or burn injury, emphasize the influence of external

triggers on keloid formation. Additionally, the differential

susceptibility of individuals from various ethnic backgrounds,

with dark-skinned populations exhibiting higher rates, indicates

the role of environmental factors in conjunction with genetic

predisposition (16–18). In recent years, there has been a

significant advance in understanding molecular mechanisms

underlying keloid pathogenesis (2, 19–23). While these advances

have shed light on the proliferation of mesenchymal fibroblasts

(FBs) driven by fibrogenic growth factors such as TGF-b signaling

and their association with the pathological accumulation of

extracellular matrix components, the broader landscape of keloid

development remains complex (3, 9, 24, 25). It is critical to

recognize the multifactorial nature of keloid pathogenesis, which

includes genetic predisposition, environmental influences, and

molecular mechanisms. The development of single-cell RNA-

sequencing (scRNA-seq) gives us an opportunity to characterize

transcriptional heterogeneity among keloid FBs. Previous studies

using scRNA-seq have suggested potential roles of many other cell

types including vascular endothelial cells and immune cells in
-seq, Single-cell RNA
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keloid pathogenesis (2, 22). However, the interaction between

mast cells (MCs) and neural cells (NCs) in keloids at the single-

cell level has not been reported yet. To date, numerous studies have

demonstrated that degranulation of activated MCs, which release

chemical mediators, can induce pain by sensitizing and stimulating

nociceptors and their central synaptic targets (26–28). Furthermore,

substantial evidence suggests that MCs should not be regarded as

mere bystanders in the process of fibrosis and wound healing (29).

Recent studies have shed light on the capability of MCs to activate

TGF-b1 through intragranular tryptase and chymase, thereby

directly or indirectly contributing to tissue fibrosis (3, 30, 31).

Consequently, MCs might also play a role in aberrant collagen

production that underlies the development of keloids.

The current study aimed to investigate the role of MCs and NCs

in keloid formation and to assess the therapeutic potential of

targeting these cells as a strategy for treating keloids. We

conducted scRNA-seq for human active keloids (AK), inactive

keloids (IK), and mature scar (MS) samples, with a focus on

identifying differences in expression levels of genes related to

MCs and NCs. The results of this study will help us better

understand molecular features of keloids based on their activity

and roles of MCs and NCs in abnormal fibrosis and the resulting

pain and itching.
Materials and methods

Patient samples

Samples from keloid patients were collected after obtaining

informed consent and Institutional Review Board (IRB) approval

(IRB number: SMC 2020-03-032). Patients confirmed to have

clinical evidence of keloids were analyzed in this study.

Keloid samples were classified as AK and IK based on a

comprehensive evaluation that included patient feedback such as

itching, pain intensity, and an assessment of persistent growth for at

least 6 months before and after tissue collection. AK was identified

in patients who showed persistent growth at the biopsy or excision

site when observed for more than 6 months, increased in size

compared to the original lesion, and reported moderate or greater

pain and pruritus intensity (6 or greater on a scale of 0-10). IK, on
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the other hand, includes patients who report no change in size at the

biopsy or excision site and mild to no pain (3 or less on a 0-10 scale)

when observed for at least 6 months. This classification system was

implemented to capture the dynamic nature of keloid development

and to distinguish between active and inactive phases. By

incorporating these clinical criteria, we aimed to provide a more

detailed understanding of the RNA expression patterns associated

with different stages of keloid development. We collected six AK

samples, four IK samples, and three MS samples from patients with

keloids. Keloid samples were obtained on multiple regions via 4 mm

punch biopsy or partial excision to minimize entire lesion damage.

In this study, we analyzed keloid samples from chest and back

regions only, excluding other areas. These samples were used to

investigate the cellular microenvironment of keloid.
Droplet-based single-cell RNA sequencing

Single-cell suspensions of keloid and scar samples were subjected

to scRNA-seq using Chromium Single Cell Controller and Single Cell

3′ Library & Gel Bead Kit (10X Genomics, Pleasanton, CA, USA) in

accordance with the manufacturer’s protocol.

In detail, single-cell suspensions were generated immediately after

resection as previously described (31, 32). Briefly, the keloid tissue was

washed in phosphate-buffered saline (PBS). Excised keloids were

immersed in physiological saline and immediately transferred to the

lab. After the sample was minced into small pieces with a scalpel in a

Petri dish, prepared dissociation solution (2 mg/ml Liberase TL in PBS,

Sigma Aldrich) was used to digest at 37°C for 60 min. The debris was

filtered out with a 70-mm cell strainer (#352340, Corning). The

remaining tissue was transferred into a dissociation solution

containing 0.25% Trypsin for the second round of dissociation.

Subsequently, the live cells were resuspended in PBS-0.04% bovine

serum albumin. Cells were pelleted by centrifuging at 500 x g for 5 min.

Live cells were counted and confirmed using the LUNA-FL dual

fluorescence cell counter (Logos Biosystems). To generate single-cell

gel bead emulsions, suspensions of skin cells were immediately injected

into the Chromium Controller (10x Genomics) targeting 9,000 cells,

respectively. Following the manufacturer’s protocols, the Chromium

Single Cell 3’ Reagent V3.1 Chemistry Kit (10x Genomics) was used to

construct single-cell libraries. Then, prepared libraries were sequenced

on the NovaSeq 6000 Sequencing System (Illumina, USA) targeting

50,000 raw reads per cell.

CellRanger pipeline (10x Genomics) was used to map the

sequencing reads to a human reference genome (GRCh38). The

raw gene expression matrix generated from the CellRanger pipeline

was processed for downstream analyses using the Seurat package

version 4.2.0 in R version 4.1.1 software (R Foundation for

Statistical Computing, Vienna, Austria). Downstream analysis was

performed after cell quality filtering. Cells were included if they

expressed greater than 500 unique molecular identifier (UMI)

counts, fewer than 6,500 genes, greater than 200 genes, and fewer

than 15% of mitochondrial gene expression in UMI counts. Doublet

identification was performed using the tool DoubletFinder (v2.0.3)

by creating artificial doublets and measuring the proportion of

artificial k nearest neighbors (pANN) for each cell using PC
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distance. The cells were then ranked according to the expected

number of doublets.

The 10x sequencing data were mapped to human reference

genome (GRCh38; official Cell Ranger reference) for generating the

raw gene expression matrix. The Seurat package version 4.2 was

used for preprocessing and normalizing gene expression data.

Genes that were expressed in fewer than 3 cells were excluded in

the expression matrix. After quality control filtering, cells from

multiple donors were merged using the standard integration

protocol described in Seurat v4. Following the Seurat tutorial, we

selected the 3000 most variably expressed genes to identify major

cell types in each sample. We used the single-cell data integration

method “Harmony” to correct for batch effects in scRNA-seq data

sets used in this study before performing downstream analysis.
Clustering and scRNA-seq analysis

Cells were clustered using dimensionality reduction and Uniform

Manifold Approximation and Projection (UMAP) with Seurat R

package. The DEGs for each cluster were calculated to ascribe an

initial annotation using the Seurat function “FindAllMarkers”

(Wilcoxon’s rank sum test) with default parameters. To build second

level clusters, cells belonging to subpopulations were reanalyzed

separately; all steps were performed using NormalizeData,

FindVariableFeature, ScaleData, RunPCA, FindNeighbours,

FindClusters, and RunUMAP, the methods implemented in the

Seurat package for each of the major cell types. Then, second-level

cluster-based doublet exclusion was performed. After doublet removal,

we repeated the above mentioned steps to identify subclusters.
Gene ontology and pathway
enrichment analyses

For the gene ontology (GO) analysis, we ranked the

differentially expressed genes (DEGs) for the SC-0 and SC-2

clusters. Candidate DEGs were further filtered at P-value <0.001

and average log (fold change) > 2. We used the Metascape web tool

(www.metascape.org) to conduct GO analysis. The annotation dB R

package org.Hs.eg.db was used to map gene identifier. Gene Set

Enrichment Analysis (GSEA) was performed using R package

clusterProfiler and gene sets from the Molecular Signature

Database (MSigDB, gsea-msigdb.org).

To identify shared marker genes for keloids, differential expression

was performed using the “FindMarkers” function implemented in

Seurat with default parameters. The marker gene set was filtered to

include genes with an adjusted p-value <0.05 and an average log fold

change higher than 1.6. We further excluded genes with the ribosome,

with mitochondria, and with detectable expression in >40% of normal

control clusters from these shared keloid marker genes.
Cell-cell communications analysis

The analysis was conducted using the interaction tool NicheNet

to explore cell-cell communication. The definition of expressed genes
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as described in Puram et al. was used to determine background

expressed genes in subpopulations. Briefly, NicheNet infers

intercellular communication based on the ligand activities and

expression of previously defined downstream targets regulated by

these prioritized ligands. The function “Predict_ligand_activities”

implemented in NicheNet was applied to infer ligand-target

potential scores. We also applied Cellchat to infer possible cell-cell

ligand-receptor interactions present within keloid cell type. Using the

same clusters included for NicheNet analysis, we confirmed which

ligands influence transcription during keloid development. A

significant interaction was determined when the mean receptor and

ligand expression of the subpopulations were significantly higher

than those of subpopulations of cells determined from

random permutations.
Mast cell histochemistry

Tissues were fixed with 4% paraformaldehyde and paraffin

sections were prepared. Sections were stained with hematoxylin

and eosin (H&E). Toluidine blue was used to stain all mature MCs

by binding to serglycin proteoglycans in secretory granules. MCs

were assessed by quantifying their densities within images of

toluidine blue-stained slides in ten random locations of a tissue

section (magnification 20×). MC density was expressed as

cells/mm2.
Immunohistochemistry

All specimens were fixed in formalin and embedded in paraffin

blocks; the blocks were then cut into 4-µm sections. All tissue

sections were immunohistochemical (IHC) stained for the MC

marker tryptase and the nerve fiber marker protein gene product

9.5 (PGP9.5). Tissue sections were incubated simultaneously with

two primary antibodies: mouse anti-human MC tryptase

monoclonal antibody (working dilution 1:100, Santa Cruz

Biotechnology) and mouse anti-human PGP9.5 monoclonal

antibody (working dilution 1:100, Bio-Rad). Sections were

incubated with anti-mouse multimer labeled with horseradish

peroxidase (blue staining) for Tryptase and with anti-mouse

multimer labeled with alkaline phosphatase substrate (pink

staining) for PGP9.5.
Statistical analysis

All statistical analyses were performed using R4.1.1 software (R

Foundation for Statistical Computing, Vienna, Austria). The Mann-

Whitney U test was employed for comparing differences in means

using the R program. Chi-square tests were used to compare

differences in categorical variables among the three groups. Cell

counts from AK, IK, and MS samples obtained via scRNAseq were

compared with one another with one-way Analysis Of Variance

(ANOVA) with post hoc Tukey’s honest significant difference tests.

Statistical significance was accepted at p<0.05 for all comparisons.
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Results

Cellular composition of keloids and
matured scars

Histopathological features of AK, IK, and MS tissues were

reviewed and evaluated by dermatologists and a pathologist.

Remarkably, H&E tissue sections of AK revealed notable increases

in cellular components, which were distributed amidst scattered

collagens bundles (Figure 1). In contrast, histological analysis of IK

samples showed a distinct presentation characterized by densely

packed and thick collagen bundles accompanied by sparse cellularity.

To gain a more comprehensive understanding and confirm

histopathological findings within the AK compared with IK, we

performed a scRNA-seq of fresh keloids derived from three AK

patients and two IK patients. Each keloid was divided into center

and peripheral areas for the analysis. MS obtained from three keloid

patients was also collected during surgery (n=3) (Supplementary

Tables S1). We collected two MS samples each from two patients

who had already been sampled for IKs.

After quality control and removal of doublets, we profiled a total of

87,051 single cells (71,617 cells from keloids and 11,161 cells fromMS).

All profiled cells were then clustered and visualized with Unsupervised

Uniform Manifold Approximation and Projection (UMAP)

(Figure 2A; Supplementary Figure S1). We then classified cells into

11 major cell types and annotated cell clusters using classic markers

and particular transcriptional signatures: FB (COL3A1), vascular

endothelial cells (EC; PECAM and VWF), lymphatic endothelial cells

(LEC; LYVE1), myofibroblasts (ACTA2 and TAGLN), lymphocytes

(LC; CD3D), mast cells (MC; CTSG+), macrophage (MAC; AIF),

keratinocytes (KC; KRT1), proliferating keratinocytes (proliferating

KC; COL17A1 and MKI67), melanocytes (MEL; PMEL), and neural

cells (NC; S100B) (Figures 2B, C; Supplementary File S1) (33, 34).

Recent studies have described FB heterogeneity within keloids and

suggested this molecular heterogeneity is important for understanding

underlying mechanisms of keloid pathophysiology (2, 21, 22). To

address changes occurring during the fibrotic process in keloids, we

conducted an unsupervised clustering analysis (n=23,151) of an FB

subpopulation. Results of the scRNA-seq analysis revealed that FBs were

divided into four subpopulations using specific markers from previous

studies: secretory-papillary, secretory-reticular, mesenchymal, and pro-

inflammatory FB (Supplementary File S2) (2, 22, 35). Next, we

compared differences between keloids and matured scars obtained

from keloid patients (Figures 2D, E). Consistent with previous

findings, the proportion of mesenchymal subpopulation was increased

in keloids when compared to MS. Upregulated genes identified in

mesenchymal FBs were primarily associated with ECM organization

and skeletal system development, suggesting their potential roles in

keloid pathogenesis.
Distinct profiles of mast cell populations
between active keloids, inactive keloids,
and mature scars

The scRNA-seq analysis showed that immune profiles differed

significantly between keloids and MSs, especially in the MC
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population. In line with previous studies, MCs specifically expressed

GATA2, MS4A2, and CPA3 (Figure 3A; Supplementary File S3) (22,

35). Interestingly, the proportion of MCs was significantly enriched

in keloid samples compared to MS samples. Building upon these

findings, our subsequent work focused on investigating the MC

population within keloids. Toluidine blue immunohistochemical

stain, a known marker for MCs, further supported the enrichment

pattern of MCs in keloids. This enriched pattern was particularly

dominant in active lesions of keloids (Figure 3B). These results were

also depicted in the box plot, which illustrated MC proportions as

determined by scRNA-seq analyses. Our comprehensive analyses

revealed a notable abundance of both LC and MAC within AK

samples. Collective enrichment of LC, MAC, and MC suggested

inflammatory response and immune system activation that could be

observed in AK tissues. On the other hand, FB was significantly

enriched in keloids, showing a higher abundance in IK samples (p-

value = 0.042, Cochran Armitage trend test; Figure 3C).

We examined the expression pattern of marker genes associated

with activated and degranulated MCs, specifically FCER1G, BTK,

and GATA2. We found that these marker genes were also

significantly elevated in the MCs population of the keloid group

compared to the MC population of the MS group, suggesting a

potential association between keloid pathogenesis and stressed state

of MCs (Figure 3D) (36–38). In addition to an increase in the

number of MCs, there was an upregulation of tryptase expression

and a downregulation of chymase expression within keloid tissues

(Figure 3E). The upregulation of serine protease tryptase is
Frontiers in Immunology 05
particularly intriguing as it has been implicated in various

functions, including induction of substance P release, activation

of neurokinin 1 receptor, and amplification of inflammation,

leading to thermal and mechanical hyperalgesia (39). Conversely,

downregulation of chymase in skin might contribute to prolonged

survival of inflammatory cytokines and neuropeptides, potentially

promoting inflammation and itching in keloids.

Our further analyses revealed that MCs derived from AK and

IK showed an upregulation of sphingosine 1-phosphate receptors,

specifically S1PR1 and S1PR2, along with an upregulation of

NTRK1, which encodes TrkA. These receptors are involved in

regulation of pain-related nerve growth factor signaling (39).

Comparatively, MCs derived from MSs did not exhibit the same

level of upregulation, whereas the highest level of expression was

observed in MCs from AK (Figure 3F). Collectively, our findings

suggest that MCs are implicated in both pain and pruritus through

expression of neuropeptide receptors (40–42).
Involvement of neural cells in keloid
formation and tissue repair

Next, we performed subgroup analysis focusing on the population

of NCs expressing S100B. Consistent with previous studies, keloids

showed a higher proportion of NCs than MSs (Figure 4A;

Supplementary File S4) (43). Further clustering analysis of the NC

population revealed the presence of four distinct subclusters.
FIGURE 1

Clinical and histopathological features of keloids. (A–C) Clinical pictures and histopathological staining of AK. (A) Preoperative view; (B) Three
months after operation. (C) In AK stained with H&E (20x), a heavy infiltrate of FBs and lymphocytes was found. (D–F) Clinical pictures and
histopathological staining of IK. (D) Preoperative view; (E) Three months after the operation. (F) In IK stained with H&E(20x), compact collagen
bundles and abundant FBs were found. (G, H) MS. (G) Clinical pictures of MS. (H) MS samples stained with H&E(20x). AK, active keloid; IK, inactive
keloid; MS, matured scar; H&E, hematoxylin and eosin.
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Interestingly, NC-0 and NC-2 were specifically observed in keloid

samples (Figure 4B). Differentially Expressed Genes (44) analysis

confirmed that neural progenitor cell markers such as NES were

highly expressed in these clusters (Figure 4C) (43). Gene Ontology

(GO) enrichment analyses revealed that clusters NC-0 and NC-2

exhibited upregulation of DEGs that were enriched in specific GO

terms, including NABA CORE MATRISOME, extracellular matrix

organization, and nervous system development (Supplementary

Figure S2). These results could be supported by previous findings

showing that NCs participate in signal transduction and act on

changes in ECM structure to promote keloid formation (43, 45).

Expression of nmSC (non-myelinating Schwann cell) genes such

as L1CAM and EMP1 was observed in all lesions, whereas expression

of mSC (myelinating Schwann cell) genes including MBP and MPZ

was specific to MS. Interestingly, the expression of genes related to
Frontiers in Immunology 06
neuronal precursor cell genes, which could directly contribute to

tissue regeneration and skin repair, was upregulated in the IK group

(Figure 4D) (46, 47). These results suggest that NCs might have

undergone damage during the formation of keloids and that neural

progenitor cells are in the process of proliferating to repair the

associated nerve damage concurrently. A more detailed analysis of

NCs revealed that AK specifically expressed pain sensation-related

genes such as TRPA1 (nociception-related sodium channels), NPPB

(itch-related neuropeptide), NPR1 (Nppb receptor), HRH1

(histamine receptor), and HRH4 (Figure 4E) (27, 48–51). These

data indicate that AK has higher expression levels of presumed

unmyelinated, peptidergic nociceptors known to have the potential

to induce pruritic responses in humans than IK.

To eliminate the possibility of bias, we analyzed only keloid

samples from the chest and back, excluding other sites, and also
A B

D E

C

FIGURE 2

Single-cell RNA sequencing reveals cellular landscape of keloids and scars. (A) Uniform manifold approximation and projection (UMAP) plot depicting
single-cell transcriptomes of keloids and MSs (n = 13). (B) A UMAP plot demonstrating 11 major cell lineages. (C) Cluster annotation. The violin plot
shows canonical marker expressions representative of each cluster. KC, keratinocyte; FB, fibroblast; MFB, myofibroblast; EC, endothelial cell; LEC,
lymphatic endothelial cell. (D) UMAP projection of FB subclusters. Keloid and scar FBs could be divided into four subpopulations: secretory-papillary,
secretory-reticular, mesenchymal, and pro-inflammatory (E) Relative proportions of each subcluster of FBs in AK, IK, MS, and each sample. AK, active
keloid; IK, inactive keloid; MS, matured scar.
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observed the expression of markers between chest and back keloids,

which revealed no site-specific differences. Gender-specific differences

were not observed either in the analysis (Supplementary Figure S3).
Analysis of ligand-receptor interaction
reveals a potential role of mast cells in the
formation of keloids

We investigated interactions of MCs and NCs with various cell

types through the R package “cellchat” (52). Comparing keloids and

MS, our data showed that cell-cell interactions between FBs and

other cell types were more enriched in keloids than in MS

(Supplementary Figure S2), consistent with previous studies (45).

The number of interactions among MCs, NCs, and FBs was

measured. Although the difference was not statistically significant,

there was a notable increase in the number of interactions between
Frontiers in Immunology 07
MCs and NCs in keloids compared to MS (Supplementary Figure

S2). These results suggest that MCs and NCs might play a role in the

maintenance of keloid activation.

In our analyses of IK lesions, FBs exhibited the highest level of

combined outgoing and incoming signals among all cell types

examined. However, in AK lesions, enhanced interactions were

observed across all cell types, highlighting the heterogeneous features

associated with keloid activation (Figure 5A). Through analysis of

cellchat, we observed significant signaling changes that could

potentially drive the onset of disease pathogenesis. Specifically, in

AK, ligand VEGFA and its receptor VEGFR2 exhibited high

activities, particularly in the signaling from MCs to ECs. On the

contrary, in IK, we discovered active interactions of TGFB1-

(TGFBR1+TGFBR2) from MCs to FBs (Figure 5B). We observed the

expression of TPSAB1, which encodes Tryptase, in MCs of both AK

and IK. Expression of F2RL1, which encodes PAR2, showed significant

upregulation in the mesenchymal subpopulation of FBs, particularly in
A B

D E F

C

FIGURE 3

Characteristics of mast cells in AK, IK, and MS. (A) UMAP plot and Dot plot depicting the expression of selected marker genes for Lymphocytes (LCs),
Macrophages (MACs), and Mast cells (MCs). (B) Toluidine blue stain showing MCs in AK, IK, and MS under high power (20x). (C) Box plot comparing
cell compositions of each cell subset in each colored annotated group. Cochran Armitage trend test. (D) Dot plot showing expression of selected
marker genes for MCs degranulation activation. (E) Feature plots, Violin plots showing expression of TPSAB1 and CMA1 marker genes in AK, IK, and
MS. (F) Dot plot showing expression of selected marker genes for neuropeptide receptor.
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IK (Figure 5C). To explore ligand-receptor interactions in more detail,

we used ligand-receptor interaction tool NicheNet (53). Using

NicheNet, we explored interactions between NC and MC that were

significantly enriched in AK (Figures 5D, E). The predicted ligands

exhibiting the highly expressed in NC from AK included IL33, CCL28,

and CXCL14. Through ligand activity analysis, we identified receptors

known to be targeted by these ligands in MC, such as NTRK1, IL1RL1,

and S1PR1. Furthermore, we mapped genes that were differentially

expressed in MC of AK, revealing predicted ligands with elevated

expression in MC of AK, including TNFSF14, IL13, CTSG, CXCL2,

PTGS2, and LIF. In parallel, we mapped the expression patterns of

receptors known to be targeted by these ligands in NC and confirmed

the expression of IL13RA1 and IL4R in NC. To support the potential

role of these cell interactions, we used PGP 9.5 as a marker for NCs and

tryptase for MCs. Through IHC staining with tryptase and PGP 9.5
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antibodies, we confirmed this cell-cell interaction, demonstrating the

close apposition of MCs and nerve terminals in AKs (Figure 5F).
Discussion

Here, we present a single-cell transcriptomic atlas of MC and

NC subpopulations in keloids according to the disease activity. By

unraveling the cellular heterogeneity within keloids through

scRNA-seq analyses of AK, IK, and MS samples, we identified the

potential role of MCs and NCs in the context offibrotic skin disease.

Most previous studies have proposed various therapeutic targets for

keloid treatment, they have not taken the impact of phenotypic

differences associated with disease activity status into consideration

(19–21). However, a few studies have defined keloid activity by
A

B

D E

C

FIGURE 4

Characteristics of neural cells in AK, IK, and MS. (A) Relative proportions of neural cells in AK, IK, and MS samples. (B) UMAP plot depicting single-cell
transcriptomes of keloids and MS. (C) Feature plots showing expression of NES. (D) Dot plots depicting the expression of mSC, nmSC, pre-mSC, and
NMC in AK, IK, and MS. mSC, myelinating Schwann cells; nmSC, non-myelinating Schwann cells; pre-mSC, pre-myelinating Schwann cells; NMC,
neural mesenchymal precursor cells; (E) Dot plot depicting the expression of selected marker genes (TRPA1, NPPB, NPR1, HRH1, and HRH4, S1PR1,
F2RL3) for pain.
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describing changes in keloid size. They have reported increased

micro vascularization in progressive keloids and decreased

microvascular development in relatively stable keloids, suggesting

a vascular-focused treatment for progressive keloids (54–57). These

studies are consistent with our observations of distinct
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histopathologic and molecular features in AK, marked by

increased immune cell infiltration and heterogeneity and in IK,

characterized by a predominant collagen feature. These findings

suggest the importance of personalized keloid treatment strategies

that consider the dynamic nature of keloid progression.
A
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FIGURE 5

Intercellular Communication in AK and IK. (A) Circus plots depict differential or strength of interactions between two datasets in the cell
communication network. Red (or blue) colored edges represent increased (or decreased) signaling in the IK compared to the AK. All significant
signaling pathways were ranked based on their differences of overall information flow within inferred networks between IK and AK. (B) Comparison
of significant ligand-receptor pairs between AK and IK contribute to signaling from MCs to another cell type. Dot color reflects communication
probabilities and dot size represents computed p-values. Empty space means communication probability is zero. p-values are computed from one-
sided permutation test. (C) A dot plot showing expression of ligand TPSAB1 in AK, IK, and MS of MC, expression of receptor F2RL1 in AK, IK, and MS
of FB, and expression of targets TGFB1, FN1, and COL1A1 in AK, IK, and MS of FB. (D, E) NicheNet analysis reveals ligands, receptors, and target
genes that contribute to transcriptional changes in MCs and NCs following keloid disease activity. (D) Circus plots showing the top ligand–receptor
pairs identified by NicheNet. Transparency of the connection represents the interaction strength. NC ligands are on the bottom, and MCs are on top.
(E) Summary of MCs ligand-NCs receptor interactions. (F) Immunohistochemical characterization of the MC and NC in the AK (20x). Distribution of
tryptase-positive MC (blue; black arrows) and PGP9.5-positive nerve fibers (pink; green arrows) and H&E staining (1x).
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In addition, our study compares keloids to MSs from keloid

patients rather than normal wounds or scars, which provides a

unique advantage. MSs from keloid patients serve as an internal

control group, allowing us to directly compare RNA expression

patterns in keloids and MSs within the same patient. This approach

minimizes potential confounding variables related to individual

genetic predisposition or other factors that may vary between

patient groups. Therefore, analysis of MS from keloid patients

strengthens the internal validity of our study and increases the

relevance of our findings.

Recent studies on MCs have illuminated their diverse roles,

including initiation of inflammation, facilitation of re-

epithelialization, stimulation of angiogenesis, and engagement in

pro-fibrotic functions (58). Indeed, among various cell populations,

MCs emerged as the predominant subpopulation within AK lesions

in the present study, underscoring their potential pivotal role in

driving disease activity. Notably, we observed that MCs within AK

lesions specifically expressed genes such as NTRK1, S1PR1, and

S1PR2, which are related to receptors for cytokines, chemokines,

and growth factors released by neurons. These findings agreed with

previous studies suggesting that enhanced interactions between MC

and neurons could contribute to neurogenic inflammation (39).

The above findings prompted to us speculate that interaction

between MC and NC could potentially trigger neurogenic

inflammation, possibly contributing to pain and pruritus observed

in AK. In addition, we found that activation and degranulation

marker genes were exclusively expressed in AK and IK. This

indicates that the activation and degranulation of MC are specific

to keloids rather than MS. To confirm the observed relationship

between MCs and NCs, we further analyzed scRNA-seq data from

NC subpopulations. We found that MC-derived mediators were

upregulated in AK samples. These collective results indicate that

transcriptomic profiles of NCs could provide further explanation

for neurogenic inflammation-induced pain in AKs (Figure 4E).

Recent studies have reported an association between MC and

skin fibrosis in patients with secondary lymphedema and patients
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with idiopathic pulmonary fibrosis, highlighting the possible direct

influence of MC on the progression of fibrotic conditions (59, 60).

Our findings emphasize the potential involvement of MCs in

fibrotic processes and provide valuable insights into the direct

role of MCs in fibrosis development. Serine protease tryptase, a

product of MC, has been identified as a particular point of interest

in fibrosis due to its fibrogenic effects in addition to its involvement

in inflammation (28, 30, 31, 61). It is predominantly manifested

through activation of protease-activated receptor 2 (PAR2). Taken

together, these findings suggest that roles of tryptase could be

different according to the activation of keloids (Figure 6). As

shown in Figure 5C, tryptase in MCs derived from IK might

contribute to the development and intensification of fibrotic

conditions of keloids, suggesting a potential association between

tryptase secreted by MCs in IK and fibrotic proliferation. Thus, we

propose that tryptase found in IK might act as a mitogen in the FB

lineage by inducing the expression of F2RL1 (PAR2) in

mesenchymal FB (62–65).

Analysis of the interaction between MCs and other cell types

shed light on distinct signaling pathways in AK and IK. MCs in AK

were implicated in vascular proliferation and immune responses

through VEGFA and CTSG signaling pathways, whereas MCs in IK

appeared to regulate ECM-related subpopulations via the TGFb1
pathway. Although further investigation of regulators underlying

MC diversity in keloids is needed, these findings highlight the need

for personalized treatment approaches based on keloid phenotypes.

In conclusion, our study revealed greater heterogeneity within

MCs and NCs in terms of molecular features and functions than

previously expected. Although our findings suggest that AK and IK

are distinct entities rather than mere similarities. Previous studies

have demonstrated elevated IL-4/IL-13 expression in keloid lesions

compared to normal skin, confirming the effectiveness of Th2-

targeted dupilumab treatment (66–69). However, the lack of

consideration for activity levels resulted in its limited efficacy

across all keloid patients in clinical settings. Our study highlights

the up-regulation of the IL-13 and IL-4 signaling pathways in the
FIGURE 6

Diagram depicting the involvement of mast cells in the development of fibrosis and pain in keloids.
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AK as compared to the IK. Therefore, drugs like dupilumab are

anticipated to have a positive impact on alleviating pain and

pruritus in patients with AK, while the use of dupilumab in IK is

unlikely to be beneficial for keloid treatment. These findings

contribute valuable insights into the mechanisms associated with

keloid formation, paving the way for the exploration of future

treatment strategies. Collectively, our results indicate that MCs

and NCs are potential contributors to physiological and

pathological processes in keloids. These findings could be used as

a base for understanding pain and pruritus in keloids. They could

also be used for identifying targets to develop effective management

strategies according to the pathogenesis of keloids.
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SUPPLEMENTARY FIGURE S1

Single-cell analysis of keloids revealed distinct cell populations. (A) Divided
UMAP depicting 11 conserved cell lineages in AK, IK and MS. AK, active keloid;

IK, inactive keloid; MS, matured scar; (B) Heatmap of differentially expressed
genes in each cell lineage. FB, fibroblast; MFB, myofibroblast; EC, endothelial

cell; KC, keratinocyte; LC, lymphocyte; MAC, macrophage; MC, mast cell;
LEC, lymphatic endothelial cell; MEL, melanocyte; NC, neural cell; UMAP,

Uniform Manifold Approximation and Projection. (C) Bar chart showing the

proportions of corresponding cell lineages.

SUPPLEMENTARY FIGURE S2

Metascape enrichment results and changes in communication between

individual pairs of cell types. (A) Bar plot of clusters NC-0 and NC-2 co-
expression gene enrichment term. (B) Change in communication between

individual pairs of cell types in K and MS. K, keloid; MS, matured scar; (C) The
number of interactions or interaction strength among mast cells, neural cells,
and FB. FB, fibroblast.

SUPPLEMENTARY FIGURE S3

Differences inmarker expression based on keloid location and gender. (A)Dot
plots show the expression of pain-related markers in nerve cells by keloid

location and gender. (B) Violin plots show the expression of activated mast

cell markers by keloid location and gender.
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