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Immune tolerance and the
prevention of autoimmune
diseases essentially depend on
thymic tissue homeostasis
Fatemeh Shirafkan , Luca Hensel and Kristin Rattay *

Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg,
Marburg, Germany
The intricate balance of immune reactions towards invading pathogens and

immune tolerance towards self is pivotal in preventing autoimmune diseases,

with the thymus playing a central role in establishing and maintaining this

equilibrium. The induction of central immune tolerance in the thymus involves

the elimination of self-reactive T cells, a mechanism essential for averting

autoimmunity. Disruption of the thymic T cell selection mechanisms can lead

to the development of autoimmune diseases. In the dynamic microenvironment

of the thymus, T cell migration and interactions with thymic stromal cells are

critical for the selection processes that ensure self-tolerance. Thymic epithelial

cells are particularly significant in this context, presenting self-antigens and

inducing the negative selection of autoreactive T cells. Further, the synergistic

roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation,

selection and the development of regulatory T cells are pivotal in maintaining

immune responses tightly regulated. This review article collates these insights,

offering a comprehensive examination of the multifaceted role of thymic tissue

homeostasis in the establishment of immune tolerance and its implications in the

prevention of autoimmune diseases. Additionally, the developmental pathways

of the thymus are explored, highlighting how genetic aberrations can disrupt

thymic architecture and function, leading to autoimmune conditions. The impact

of infections on immune tolerance is another critical area, with pathogens

potentially triggering autoimmunity by altering thymic homeostasis. Overall,

this review underscores the integral role of thymic tissue homeostasis in the

prevention of autoimmune diseases, discussing insights into potential

therapeutic strategies and examining putative avenues for future research on

develop ing thymic-based therap ies in t reat ing and prevent ing

autoimmune conditions.
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1 Introduction

The adaptive immune system relies on the capability to

recognize foreign peptides and fight intruding pathogens, thereby

providing protection against the infection by viruses, bacteria or

fungi. The broad range of foreign peptide recognition depends on

the high receptor diversity of the patrolling immune cells. This

receptor diversity is key in order to prevent infections, but this

mechanism is also increasing the risk of producing immune cell

receptors that react towards the host's own peptides and thereby

leading to autoimmune diseases. The selection mechanisms that

developing T-lymphocytes undergo in the thymus are indispensable

checkpoint mechanisms during T cell maturation, leading to the

removal of autoreactive T cells by deletion or fate-diversion into

regulatory T cells.

Lymphocyte pools are under a steady turnover and get

constantly replenished by newly developing cells. The progenitors

of T-lymphocytes originate from haematopoietic progenitor cells

(HPCs) in the bone marrow (BM) and traffic to the thymus where

they differentiate and undergo maturation and selection (i.e.

positive and negative selection). This requires the directed

migration of the precursor cells via the blood towards the thymus

as well as intravascular adhesion and egress from venules into the

thymic stroma. Proper thymus function essentially depends on the

continuous thymic homing of lymphoid progenitor cells. Even

though thymus-resident T cell progenitors have been reported to

be capable of maintaining T cell development for several months

when the bone marrow is deprived of T cell progenitors (1, 2), the

absence of intrathymic competition may lead to T-lineage acute

lymphoblastic leukemia (3). The seeding of the thymus during

embryonic development (E11.5 in mice and at the 8th week of

gestation in humans) is mediated by a vasculature-independent

pathway and later in embryonic development and postnatally via a

vasculature-dependent pathway (4).

Thymic tolerance induction is mediated by thymic antigen-

presenting cells (APCs) including thymic epithelial cells (i.e.,

cortical thymic epithelial cells (cTECs) and medullary thymic

epithelial cells (mTECs)), dendritic cells (DCs) and thymic B cells

(5–9). These thymic APCs present endogenously transcribed and

imported peripheral peptides by major histocompatibility complex

(MHC) class I and II molecules on their surfaces to thymocytes,

selecting non-self-reactive thymocytes. Autoimmune diseases

develop under circumstances where tolerance towards self-

antigens in impaired, either due to a loss of central tolerance

selection or impaired peripheral suppressive immune response

regulation (10–12). Peripheral tolerance is mediated by

CD4+CD25+FOXP3+ Treg (regulatory T cells) which can either

develop intrathymically, these Tregs are referred to as natural Tregs

(nTregs) or in the periphery after antigen contact which are referred

to as induced Tregs (iTregs) (13–15). The pathologies of several

autoimmune conditions, such as type 1 diabetes, rheumatoid

arthritis, multiple sclerosis, systemic lupus erythematosus and

myasthenia gravis (MG) are based on dysfunctional Tregs (16–

18). The vast variety of cell types involved in the regulation of

thymocyte development and selection, central tolerance induction
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and Treg development, ranging from B cells, natural killer (NK)

cells, Tuft cell, macrophages over endothelial cells and fibroblasts to

epithelial cells and dendritic cells keeps increasing as we unveil the

mechanisms of central tolerance. In this review we will focus on the

importance of thymic tissue homeostasis and the involved cell-cell

interactions during thymic immune tolerance induction providing

an integrated overview over recent findings and how thymocytes,

epithelial cells, dendritic cells, B cells, endothelial cells and

fibroblasts interact with each other to maintain self-tolerance.
2 Central immune tolerance

2.1 T cell migration and cell-
cell interaction

The progenitors of T-lymphocytes originate from

haematopoietic progenitor cells (HPCs) in the bone marrow and

traffic to the thymus where they differentiate and undergo

maturation and selection (i.e. positive and negative selection). T

cell progenitors are reported to preferentially immigrate at the

cortex-medulla-junction (CMJ) of the thymus at venules and then

migrate through the thymic cortex and medulla regions and

encounter the self-repertoire presented by epithelial and dendritic

cells (19–21).

Intercellular communication among APCs, endothelial cells

(ECs) and developing T cells is key to proper thymic tissue

homeostasis and central immune tolerance induction. The

lympho-stromal crosstalk between stromal cells and thymocytes is

known to be essential for T cell development and thymic epithelial

cell maintenance (22, 23) (Figure 1). The bilateral regulation of

migrating thymocytes and stromal cells is an intertwined

dependency of high clinical relevance in which the immune-

metabolic interactions in the thymus are changing in an age-

dependent manner (24). A better understanding of the involved

interactions and signaling pathways is a prerequisite to be able to

develop potential future treatments. Of particular interest are the

involved recruiting and guiding signals for thymocyte migration.

Homing of T cell progenitors to the thymus has been demonstrated

to rely on a multistep adhesion cascade involving selectin ligands,

chemokine receptors and integrins, which is similar to, but

molecularly distinct from the adhesion cascades that guide

leukocytes to lymph nodes or the bone marrow (25). Among the

chemokines, CCL21 and CCL25 and their respective receptors,

CCR7 and CCR9, were shown to be involved in fetal thymus

colonization (26–30). During adult thymus seeding several

lymphocyte-endothelial cell interactions such as P-selectin

glycoprotein ligand (PSGL-1)/P-selectin, a4b1/VCAM-1, LFA1/

ICAM-1 as well as lymphocyte-epithelial cell CCR9/CCL25

interactions were shown to be involved (25, 31). For instance, the

CCR9 ligand CCL25 (TECK), which plays a key role in the multi-

step adhesion cascades that guides leukocytes to the thymus, is

expressed by medullary and cortical epithelial cells (32, 33). Thymic

immigration and egress of T cell progenitors and mature T cells was

proposed to occur mainly in post-capillary venules at the cortex-
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medulla-junction based on electron microscopy studies and an ex

vivo study using CFSE-labeling of cells (19). These ex vivo studies

could demonstrate the localization of T cells in close proximity to

venules, however, it was not possible to determine whether the cells

were entering or exiting the thymus. In vivo intravascular staining

of CD4 SP T cells showed a preference for a transmigration at the

CMJ, labeling presumably egressing cells (34).

Thymocyte migration in the thymus is dependent on

sphingosine-1-phosphate (S1P) signaling which is essential for the

egress of mature thymocytes (34–36). The substrate for S1P
Frontiers in Immunology 03
synthesis is sphingosine, which is phosphorylated by sphingosine

kinase 1 (Sphk1) or sphingosine kinase 2 (Sphk2) to generate S1P.

Degradation on the opposite is mediated by S1P phosphatase (SPP),

S1P lyase 1 (Sgpl1), S1P lyase 2 (Sgpl2) or phospholipid

phosphatase 1, 2, or 3 (Plpp1, Plpp2, Plpp3). After negative

selection in the thymus medulla, mature T cells upregulate the

sphingosine-1-phosphate receptor 1 (S1PR1) making them

responsive to S1P gradients within the tissue guiding them to

egress from the thymic tissue. Premature S1PR1 expression in

thymocytes is associated with the development of autoimmunity,
FIGURE 1

T cell maturation and selection in the thymus. T cell progenitor cells originate from the bone marrow from HSCs and migrate into the thymus
through blood vessels at the cortex-medulla-junction (immigration). Depicted is one lobule of the thymus. The maturation from DN1-DN2-DN3-
DN4 into DP thymocytes takes place preferentially in the cortex region of the thymus, where cTECs mediate positive selection of DP thymocytes. SP
thymocytes migrate into the medulla where they encounter self-peptides presented by mTECs and DCs and undergo negative selection. High
reactivity towards self-antigens leads to apoptosis, intermediate reactivity towards self-antigens leads to the development into Tregs and low
reactivity towards self-antigens leads to the maturation of CD4+ and CD8+ mature naïve T cells which egress from the thymus through blood
vessels. T cell migration towards the blood vessels and egress is facilitated by S1P gradients. HSC, haematopoietic stem cell; TCP, T cell progenitor;
DN, double negative; DP, double positive; SP, single positive; cTEC, cortical thymic epithelial cell; mTEC, medullary thymic epithelial cell; TRA, tissue
restricted antigen; MHC, major histocompatibility complex; TCR, T cell receptor; Tregs, regulatory T cells; S1P, spingosine-1-phosphate.
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probably due to incomplete negative selection and the egress of self-

reactive T cells (34). Red blood cells are a major source of S1P in the

blood (37). Another source of S1P within the thymic tissue are

pericytes (34). Further, endothelial cells are implicated in the

regulation of S1P gradients, as lymphatic endothelial expression

of the S1P transporter Spns2 was shown to be crucial for peripheral

T cell migration and affects thymic T cell egress (38–41). Local S1P

secretion by endothelial cells is thought to be a crucial guiding cue

for T cell egress from the thymus (42).

Beyond playing a role in thymocyte immigration and egress,

EC-derived factors were shown to be involved in the developmental

progression during thymocyte maturation. The EC-derived factor

Kit ligand (KitL, also called stem cell factor (SCF)) is essential for

early thymocyte proliferation (43). Membrane-bound KitL (mKitL)

is expressed by cortical thymic epithelial cells and endothelial cells

in the cortex (44). Interestingly, thymocyte development at the DN1

stage was shown to depend on EC-derived mKitL, whereas the

consecutive stage of DN2 was shown to depend on cTEC-derived

mKitL. Additionally, EC-derived factors were demonstrated to play

a crucial role in thymic tissue regeneration in adult mice. The ability

of the thymus to undergo tissue regeneration after damage caused

by infection, chemotherapy or radiation is critical in order to

prevent T cell deficiency associated health conditions. Following

radiation-induced damage, thymic endothelial cells secrete bone

morphogenetic protein 4 (BMP4) which leads to the upregulation of

Foxn1 expression in thymic epithelial cells and increased expression

of Foxn1 target genes such as delta-like ligand 4 (DLL4) (45). Foxn1

target genes are involved in the regulation of TEC development,

maintenance and regeneration. Moreover, multi-organ dataset

analysis shown that neighboring cells can induce tissue-specific

behavior in endothelial cells, the other way around endothelial cells

can affect the gene expression programs of adjacent cells. Examples

for such cross-influence are described for cardiac endothelial cells

that were reported to express cardiac muscle-specific genes.

Another example are sinusoidal endothelial cells that were shown

to express genes usually expressed by hepatocytes (46, 47).
2.2 Thymic epithelial cells and
self-tolerance

The thymus consists of two lobes which are structured into two

different compartments, the outer cortex region and the inner

medulla region (Figure 2). Thymic epithelial cells are

morphologically distinct to epithelial cells of other tissues in the

body, where cuboidal, squamous or columnar morphologies that

are organized in polarized mono- or multilayers are the

predominant features (48). In contrast, thymic epithelial cells

build a 3D meshwork of epithelial cells permeated by endothelial

cells and populated by T cells, dendritic cells and thymic B cells (49–

52). Cortical thymic epithelial cells show a characteristic structure

of flattened ovoid cells forming long looping structures, engulfing

developing thymocytes. Whereas cTECs are described to show a

radially oriented alignment towards the capsule, mTECs are

positioned in the medulla seemingly without a clear orientation

or polarization. Moreover, the mTEC morphologies are highly
Frontiers in Immunology 04
diverse and no definitive pattern of the mTEC structure could be

detected in an elegant study using Confetti (Brainbow2.1) mice

label ing of individual cel ls and analysis by confocal

microscopy (53).

The endoderm-derived epithelial cells in the thymus are

differentiated into functionally distinct cortical thymic epithelial

cells (cTECs) in the cortex and medullary thymic epithelial cells

(mTECs) in the medulla, each having specific function during the

sequential T cell developmental steps. The different stages of T cell

development are well studied (54, 55) and are reviewed elsewhere in

detail (56–60). In brief, double-negative (CD4-CD8-) thymocytes

migrate through the cortex and undergo T cell receptor gene

recombination. The newly generated TCRs are subsequently

subjected to a selection process, called positive selection, in which

the newly generated pool of thymocytes is tested for TCRs that are

capable to bind and recognize MHC on antigen-presenting cells

such as cTECs, providing a survival signal to the developing

thymocyte (8, 61, 62). Positively selected thymocytes further

develop into single-positive CD4+- and CD8+-T cells which are

undergoing a second selection step, called negative selection, in

which T cells carrying TCRs with high reactivity towards self-

antigens are depleted from the T cell population. Intermediate

binding intensities at this selection step will lead to the

development into Foxp3-expressing CD4+ regulatory T cells

(Tregs) (Figure 1) (63). The presentation of self-peptides and

mediation of negative selection is accomplished mainly by

mTECs as well as by DCs and thymic B cells in the medulla

region of the thymus (5–9). The endogenous self-antigen

expression by mTECs is referred to as promiscuous gene

expression (pGE) or ectopic gene expression.

One of the main characteristics of promiscuous gene expression

is the so-called mosaic expression pattern of tissue restricted

antigens (TRAs). Each TRA is expressed in about 1-5% of the

mTECs at a certain point in time. This characteristic is conserved

between mouse, rat and human (64–69). Despite the high degree of

variance at the individual cell level, the mTEC population as a whole

manages to reflect the entire self-repertoire (70–74). Due to the high

heterogeneity of thymic self-peptide expression the cellular and

molecular regulations involved remain challenging to identify (75–

80). The promiscuously expressed genes in mTECs comprise a

diverse range of biological functions and tissue specificities and vary

greatly in their regulatory elements and promoter regions. Notably,

in the context of thymic self-antigen expression by mTECs, several

peripheral tissue-specific transcription factors were shown to be

dispensable for the respective thymic gene expression (69, 81, 82).

In the past, several studies focused on investigating the regulatory

mechanisms of the self-antigen mosaic expression patterns

evaluating to which degree this phenomenon arises based on

stochastic or regulated processes. Originally, studies performed on

bulk mTEC populations were unable to detect recurrent gene

expression patterns (66, 69). Likely, due to the high heterogeneity

in gene expression from cell-to-cell, the patterns of subpopulations

were not detectable on the population level at the time. However,

the development of single cell sequencing technology and methods

for selective enrichment of TRA-expressing mTEC subsets enabled

the detection of recurring gene expression patterns in mTECs in
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mouse and human, thus arguing for yet unidentified regulatory

mechanisms rather than a solely random process (67, 68, 70, 71, 73).

Early during embryonal development, the thymus is developing

through clonal expansion (83). Different developmental models of

how the co-expression patterns of promiscuous gene expression

evolve postnatally, such as a lineage diversification model and a

linear developmental program model have been proposed (67, 68).

Distinct conserved groups of self- antigens that are co-expressed in

mTECs might share regulatory features that establish sub-lineages

of mTECs. Alternatively, the co-expressed groups of self-antigens

might be the result of a developmental program over the lifespan of

a mTEC. This would lead to different sets of self-antigens being

expressed and presented over time and an agile representation of

the self-repertoire in the thymus. Interestingly, based on ex-vivo

culturing experiments the linear developmental model is more

likely to be accurate for the mature mTEC compartment (67). In

difference to the early and mature mTEC populations, late

developmental stages are more likely to develop based on lineage

diversification into sub-lineages. The late mTEC stages comprise of
Frontiers in Immunology 05
post-Aire cornified (Krt10+) mTECs (84, 85) as well as Tuft-mTECs

(Dclk1+) (72, 77, 86, 87), microfold mTECs (Gp2+), enterocyte/

hepatocyte mTECs (Hnf4+), keratinocyte-like mTECs (Grhl+),

neuroendocrine mTECs (Foxa+), cilitated mTECs (Foxj1+) and

other mimetic mTECs (88, 89). Previous reports on thymic cell

populations that represent characteristics of peripheral

differentiated cell types and expression of mimetic cell genes in

the thymus were initially difficult to distinguish from features of

promiscuous gene expression of peripheral antigens, however

single-cell technologies and high throughput assays enabled a

revised view on those findings, leading to the identification of

several distinct mimetic cell populations in the thymus with

characteristic gene expression profi les, lineage-specific

transcription factors, phenotypical characteristics and probably

specific functions in the thymus reviewed in other review articles

in more detail (90, 91). The mature mTEC population is subject to

high turnover with a half-life of 12-14 days (92, 93), thus leading to

a constant change in self-antigen co-expression groups over the

course of mTEC development and lifetime. The mTEC population
FIGURE 2

Contribution of DCs, TECs, B cells and fibroblasts to central tolerance induction. Hematoxylin and eosin staining of a mouse thymus. Depicted are
the two lobes of the thymus and the two compartments of outer cortex (red) and inner medulla regions (green). The respective expression of
chemokines, surface and intracellular markers that are characteristic for cDC1, cDC2, mTECs, cTECs, thymic B cells, capFbs and mFbs are shown.
The contribution to antigen presentation and the extracellular matrix in the thymus is indicated. The location of cDC1, cDC2, mTECs, cTECs, thymic
B cells, capFbs and mFbs in the cortex (red circle) and/or medulla (green circle) are shown. cDC, conventional dendritic cell; cTEC, cortical thymic
epithelial cell; mTEC, medullary thymic epithelial cell; capFbs, capsular fibroblasts; mFbs, medullary fibroblasts.
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is not synchronized in their development, thus at any given age of

the thymus different developmental stages of mTECs can be found.

Thereby the two variables of I.) different self-antigens being

expressed at different developmental timepoints and II.) the

spatial differences within the thymic tissue at which

developmental step the mTECs currently are leads to a highly

versatile and heterogeneous presentation of the self-repertoire to

developing T cells. The migration speed and distance of thymocytes

as well as the number of contacts with APCs are defining factors in

the efficiency of self-tolerance induction. Several studies assessed

the migration and selection characteristics of developing T cells in

the thymus using ex vivo culturing of tissue sections, reaggregation

of thymic tissue or thymic explants (94, 95). In vivo microscopy of

murine thymi is difficult first due to the opaqueness of the tissue

which limits the penetration and visibility in two-photon

microscopy and second due to its positioning on top of the

moving heart, which makes in vivo analysis difficult. The

interaction or contact time during positive selection between

thymocytes and stromal cells was analyzed in a three-dimensional

thymic organ culture and identified to be of either “dynamic” short

interactions of 13-36 minutes or “stable” longer interactions of 6-12

hours (96). The migration speed of thymocyte was analyzed using

ex vivo two-photon microscopy analysis of thick thymus sections

before and after antigen encounter (97). The interval speed before

antigen contact was about 11 µm/min and 9 µm/min after antigen

contact. SP thymocytes are estimated to reside in the medulla region

of the thymus for about 4-5 days as measured using BrdU-labelling,

intrathymic injection of a cellular tag or RAG2p-GFP reporter mice

(98). Elimination of self-reactive T cells upon self-antigen

encounter and strong affinity towards self is executed swiftly,

resulting in a rapid calcium influx and migratory arrest within a

few minutes followed by caspase 3 activation and thymocyte death

after a few hours (97). Imaging of ex vivo agarose-embedded

sections of thymic explants was used in another study of

transgenic reporter mice labelling thymocytes and DC

interactions during negative selection in the medulla region (99).

Accelerated migration rates of 10-20 µm/min were detected for

thymocytes migrating towards the medulla after positive selection

and within the medulla during negative selection in this setting.

Further, short dynamic contacts between DCs and thymocytes of 1-

2 minutes with multiple contacts per hour were described in this

setup. The migration range that thymocytes travel was shown to be

limited to 30-50 µm in total which was surprising due to the

previously expected scanning of T cells with multiple APC

contacts before egressing the thymus (100). It is important to

note, that different experimental setups with different

temperatures will result in differences in the observed migration

speed and distance of cells and hence has to be kept in mind when

analyzing ex vivo imaging analysis or imaging setups where the

thymus is exposed from the chest of mice.

The transcriptional and epigenetic regulation of self-antigen

expression in mTECs might in difference to the respective gene

regulation in peripheral tissues be dependent on different thymus-

specific regulatory mechanisms (69, 81, 82). Two factors regulating

mTEC development and affecting the expression of self-peptides in

mTECs are the transcriptional regulator Autoimmune regulator
Frontiers in Immunology 06
(Aire) and the transcription factor Forebrain Embryonic Zinc

Finger-like protein 2 (Fezf2) (76, 78). Aire is a transcriptional

regulator known to be essential for mTEC maturation and T cell

selection (85, 101–103). Aire-deficiency leads to impaired

thymocyte selection due to missing tissue restricted antigen

(TRA) expression by mTECs and results in the development of

autoimmune symptoms in Aire-deficient mice and patients with

mutations in the AIRE gene (76, 104, 105). The loss of AIRE is one

of the prominent examples for monogenic autoimmune disorders

in which the loss of central tolerance is causative for the

development of the autoimmune disorder autoimmune

polyendocrinopathy candidiasis ectodermal dystrophy (APECED)

(or Autoimmune polyendocrine syndrome type 1 (APS1)) leading

to multiorgan autoimmunity (106). The mode of action of the

transcriptional regulator Aire is at the epigenetic level, by acting on

transcriptional elongation and by acting on superenhancers (107,

108). Aire is interacting with a multitude of different factors

identified so far, including proteins involved in nuclear transport

(HDAC1, HDAC2) (109), chromatin-modifiers (H3K4me0) (110,

111), transcriptional regulators (RNA PolII, DNA-PK, P-TEFb,

HNRNPL, BRD4) (102, 112–116), and proteins involved in

mRNA processing (JMJD6) (117) which is reviewed in other

articles in more detail (91, 101, 118). The mode of action of the

transcription factor Fezf2 on the other hand, is through consensus

binding site recognition. The consensus sequence for the Fezf2

TFBM in mice was recently identified based on Fezf2 ChIP-seq

experiments and a Stamp-based comparison to the Fezf2 TFBM in

zebrafish (119). Fezf2-deficiency in mice was shown to lead to

disturbed TRA expression and negative selection leading to the

development of autoimmune symptoms (78). Recently, Fezf2 was

identified to regulate late mTEC development and thymic Tuft cell

development (119). Aire and Fezf2 are regulating distinct sets of

self-antigens in mTECs and might likely reflect regulatory

mechanisms at different timepoints during mature mTEC

development or of sublineages of mature mTECs. Noteworthy,

these two regulatory factors act relatively broadly on mTEC

development and maturation and regulate the gene expression of

several thousands of genes. Possibly, Aire and Fezf2 might be

involved in the regulation of a downstream regulatory network of

transcription factors that are regulating self-antigens leading to the

particular expression patterns of TRAs in a mosaic expression

pattern (119). Further factors involved in the regulation of those

recurring gene expression patterns in mTECs remain to be

identified. The question arises as to which degree Aire and Fezf2

are specific transcriptional regulators of self-antigen gene

expression or whether their impact on mTEC development and

maturation indirectly affects self-antigen expression. To this end, a

recent study analyzed promiscuous gene expression and Aire-

dependent gene expression over the course of aging using single-

cell RNA-sequencing analysis and lineage-tracing showing, that

AIRE-controlled genes were downregulated during mTEC

development despite the continued expression of Aire and Fezf2,

hence different mechanisms of transcription reliant on other

regulators might be involved (120). The regulation of Aire itself

and the mechanisms through which it regulates gene expression in

mTECs has been intensively studied. One of the interaction
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partners and regulators of Aire is Hipk2, which is involved in

regulating the activity of Aire. Hipk2-dependent phosphorylation

was shown to inhibit the co-transcriptional activator function of

Aire (121). Further, the protein deacetylase Sirtuin-1 (Sirt1) was

shown to be involved in Aire-dependent gene regulation and

induction of immunological self-tolerance by deacetylation of

Aire (122). Additionally, the acetyltransferase KAT7 was

identified to be important for Aire-dependent gene expression

and tolerance induction by increasing chromatin accessibility at

Aire-induced gene loci (123). Other posttranslational modifiers of

Aire such as CBP, FBXO3, PIAS1 (124–126) and factors which are

involved in the regulation of the Aire gene such as IRF4, IRF8,

TBX21, TCF7 and CTCF were identified (127).

Besides the regulatory role of Aire in the promotion of mTEC

maturation and promiscuous gene expression, Aire was also shown

to be involved in chemokine production, the positioning of DCs

within the thymus and extrathymic Aire functions early during

embryogenesis are described (128). Aire deficiency leads to the

reduced expression of the CCR4 and CCR7 ligands which are

expressed by mTECs and are involved in thymocyte migration

within the tissue, being CCL5, CCL17, and CCL22 for CCR4 and

CCL19 and CCL21 for CCR7 (129). The mTEC-DC interaction of

XCR1 on DCs and XCL1 on mTECs is important for the

positioning of thymic DCs in the medulla and Aire-deficiency

leads to a lack of XCL1 expression in mTECs, a lack of DCs in

the medulla region, defective generation of Tregs and the

development of autoimmune dacryoadenitis (130). Aire has also

been described to be expressed in other tissues such as lymph node

and spleen, in cells, termed extrathymic Aire-expressing cells

(eTACs), which are of hematopoietic origin, exhibit DC-like

features and express Aire-regulated genes that are distinct to

thymic TRAs (131–133).

Besides Aire and Fezf2 other transcription factors are important

for the regulation of mTEC gene expression and mTEC

development. Insulinoma-associated 1 (Insm1), a zinc finger

protein was shown to be expressed in Aire-expressing mTECs

and neuroendocrine mimetic cells (FoxA+ mimetic cells) and is

involved in the regulation of Aire expression, TRA expression and

tolerance induction (134). The zinc finger transcription factor

Ikaros (Ikzf1) regulates Aire+mTEC development, thymic mimetic

cell development, TRA expression and immune tolerance induction

(135). The absence of Ikzf1 led to an expansion of Dclk1+ tuft cells

and a reduction in Gp2+ microfold cells, hence altering the

composition of the mimetic cell populations in the thymus.

Additionally, the transcription factors Ehf, Klf4 and Elf3 were

shown to be involved in the regulation of gene expression in

mTECs (119). The complexity of the medullary thymic epithelial

cell population and the heterogeneity in gene expression in mTECs

have historically made it challenging to identify the regulatory

mechanisms. Notably, advancements such as single-cell

sequencing have enabled us to gain an increasingly better

understanding of these regulatory mechanisms.

Beyond the transcriptional regulation of promiscuous (or

ectopic) gene expression other factors are influencing the

efficiency of central tolerance induction. Among these, the

MHCII-TCR interaction between thymic APCs and thymocytes,
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referred to as thymic crosstalk, influences mature mTEC

development, TRA expression and immune tolerance induction,

leading to autoimmune phenotypes if abrogated (22, 23, 136).

Moreover, the butyrophilin surface receptor Btn2a2 expressed on

thymic epithelial cells is important for central T cell tolerance

induction (137, 138). Btn2a2-deficient mice showed enhanced

effector CD4+ and CD8+ T cell responses, impaired CD4+

regulatory T cell induction, potentiated antitumor responses, and

exacerbated experimental autoimmune encephalomyelitis (137).

While another study reported increased TCR signaling and CD5

levels for developing thymocytes in Btn2a2-deficient mice with

otherwise unchanged TEC compartments and thymic T cell

populations (138).

Notably, defects in the expression of specific self-antigens by

mTECs can predispose to the onset of organ-specific autoimmune

diseases. One example is the development of autoimmune diabetes

in cases where the thymic insulin (Ins2) expression is abrogated

(139–141). The development of type 1 diabetes is associated with a

causal polymorphism in the insulin gene that leads to reduced

thymic expression and the occurrence of autoreactivity (141). Other

examples are the development of uveitis when the expression of

interphotoreceptor retinoid-binding protein (IRBP) in thymic

epithelial cells was faulty (142) and the development of

autoimmune myocarditis in mice and human upon loss of a-
isoform of myosin heavy chain (a-MyHC) gene expression by

mTECs (143). Moreover, variants in the gene encoding the a-
subunit of the muscle acetylcholine receptor (Chrna1), which is the

main target of pathogenic auto-antibodies in autoimmune

myasthenia gravis, caused reduced thymic expression and is

associated with the development of the disease (144).
2.3 Thymic fibroblasts, B cells and
dendritic cells

Mesenchyme-derived thymic fibroblasts can be differentiated into

medullary (mFbs) and capsular (capFbs) fibroblasts based on their

location in the thymus and the expression of Dpp4, which is expressed

by capFbs but not by mFbs (145, 146). Due to the expression of the

matrix metalloprotease (Mmp9), different regulators involved in cell

migration (Ccl19, Enpp2, Cd300lg) and cytokine receptors (Csf2rb,

Csf2rb2) by mFbs a role in the regulation of cell migration in the

medulla was postulated. Interestingly, the development of mFbs is

dependent on SP thymocyte population of the thymus, but

independent of mTEC development. Conditional knock-out of LtßR

in fibroblasts led to autoimmune phenotypes in lung, pancreas, salivary

gland and liver, identifying thymic fibroblasts as one of the receptor-

bearing target cells for thymic lymphotoxin-dependent signaling and

their contribution to central tolerance induction (145). Fibroblasts play

an important role in the production of the extracellular matrix (ECM)

in diverse tissues and are implicated in tissue repair and healing

processes (147). Tissue damage induced secretion of IL-25 by thymic

tuft cells and IL-33 by fibroblasts leads to the activation of ILC2 (innate

lymphoid cell type 2) production of amphiregulin and Il-13 and tissue

regeneration in a dexamethasone-induced acute thymic involution

mouse model (148).
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Thymic B cells are one of the antigen-presenting cells in the

thymus that are involved in the mediation of negative selection (5).

Two types of thymic B cells are described, resident B cells, which

develop intrathymically from early fetal liver derived progenitor

cells (149–152), and circulatory B cells which immigrate from the

periphery and acquire a specific thymus-resident B cell phenotype,

including the expression of Aire (5, 153). Different localizations of

thymic B cells have been described with B cell progenitors being

preferentially localized in the thymic cortex, whereas mature B cells

are primarily found in the corticomedullar and medullary regions

(151) and B cells that are found in perivascular spaces (154, 155).

The age-associated increase in the frequency of thymic B cells was

attributed to an increase in peripheral-derived B cells in the thymus

with a preferred localization in perivascular spaces. Further, B cells

which are localized to the perivascular spaces express CD21, CD72,

CD37 and the chemokine receptor CXCR3 (154, 155). Despite the

increase in thymic B cell numbers upon aging, thymic B cells were

found to exhibit lower expression of MHCII, CD80, CD83, CD86,

Aire and Aire-dependent genes in adult and aged mice compared to

young mice (154, 156). These age-dependent changes during the

course of aging offer the possibility, that also the reduction of

thymic B cells as one type of thymic APCs, similarly to the age-

dependent alterations in mTEC physiology, can contribute to the

phenomena of thymic involution and impaired thymopoiesis in

aged thymi. Thymic hyperplasia is often observed in patients with

myasthenia gravis. The thymic architecture in patients with

myasthenia gravis and thymic hyperplasia is disturbed and B cell

follicles containing active germinal centers (GCs) are formed, which

give rise to plasma cells and are a source of autoantibodies.

Increased chemotactic signal through CXCL13 and a higher

release of the B cell activating factor (BAFF) by thymic epithelial

cells are thought to promote B cell recruitment to the thymus in

myasthenia gravis (153, 157, 158). In difference to myasthenia

gravis associated hyperplasia of the thymus, patients with

systemic lupus erythematosus show thymus atrophy with

disorganized medulla regions, diminished cortex regions and

enlarged perivascular spaces with lymphocytic follicles and

plasma cells (153, 159).

The significance of dendritic cells in initiating immunological

tolerance was demonstrated through mutant mouse models. In

these models, the lack of DCs led to compromised negative selection

of thymocytes (160, 161). Thymic dendritic cells consist of subsets

that are distinct both phenotypically and functionally, being

conventional DCs (cDC1 and cDC2), plasmacytoid DCs (pDCs),

and monocyte-derived DCs (moDCs) or activated DCs (sDCs) that

are either derived from intrathymic progenitors or are migrating

towards the thymus from peripheral tissues (162). Murine

conventional DCs are distinguished into cDC1 and cDC2

populations based on surface marker expression and their distinct

developmental regulators. Thus, cDC1s are identified by their

surface expression of XCR1, CD8a, CLEC9A, and DEC205, and

they are developmentally dependent on IRF8, Id2, and BATF3

(163). CD8a +CD11b– cDC1s comprises the majority of cDCs in

the murine thymus. Most cells in this DC subset are thought to

originate intrathymically from a common lymphoid progenitor

(CLP) (164–166). Similar to CD8a+ cDCs in the periphery,
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thymic CD8a+CD11b– cDC1s are very efficient at cross-

presenting mTEC-derived antigens on MHC class I, which was

shown using in vitro experiments (167–169). In vivo, thymic cross-

presentation of self-antigens by DCs contributes to the induction of

CD8+ T cell tolerance, however, the identity of the cross-presenting

DC subset or the contribution of different subsets is currently not

sufficiently addressed and necessitates further analysis (169, 170).

Instead, cDC2s are defined by their surface expression of CD11b

and CD172a (SIRPa), are developmentally dependent on IRF4,

IRF2 and RelB, and preferentially activate CD4+ helper T cell

responses (171, 172). Thymic cDC2s and pDCs are migrating

towards the thymus from the periphery, importing peripheral

antigens for central tolerance induction (173, 174). Moreover,

thymic epithelial cells and thymic dendritic cells contribute non-

redundant antigens to facilitate the process of negative selection

(175) by using different antigen processing machineries, leading to

the generation of distinct self-peptides. The self-antigen diversity

presented by mTECs is further enhanced due to mechanisms of

mis-initiation, alternative splicing and the expression of

endogenous retroelements which increase the self-peptidome

presented to developing T-lymphocytes (176). Thereby DCs and

mTECs represent the self-repertoire presented in the context of

thymic negative selection in an integrated manner.

Additionally, a specific group of dendritic cells in both murine

and human thymi, termed transendothelial dendritic cells (TE-

DCs), has been identified for their unique location within the

vascular walls of thymic microvessels (9). From these positions,

TE-DCs extend their cellular processes into the bloodstream to

gather circulating antigenic materials. The unique transendothelial

placement of these antigen-sampling TE-DCs has been found to

rely on the interaction between the chemokine receptor CX3CR1,

expressed on the DCs, and its ligand CX3CL1, which is abundantly

present in thymic capillaries. Furthermore, TE-DCs are capable of

capturing and cross-presenting blood-derived proteins, leading to

the specific deletion of developing antigen-specific T cells. Together,

the different thymic APC populations, achieve to present the self-

repertoire in an astonishingly comprehensive manner, ensuring the

successful selection of newly generated T cells to continuously

generate non-self-reactive naïve mature T cells to replenish the

peripheral T cell pool.
3 Thymus development, genetic
defects and autoimmune diseases

During the, 1960s, the functional role of the thymus was

revealed. Until then the thymus itself and the presence of

lymphocytes in the thymus was described, however, the thymus

was thought of as a terminal storage or graveyard for lymphocytes

and its actual role was unknown at that point (177). The

immunological role and the importance of the thymus for

survival and its tolerogenic role were described by J. F. A. P.

Miller (178, 179). The removal of the thymus (i.e. thymectomy)

in mice at the age of 3 weeks was shown to lead to the development

of autoimmunity (180). Positive selection was first described by M.

J. Bevan (181) and the process of intrathymic clonal elimination for
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1339714
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shirafkan et al. 10.3389/fimmu.2024.1339714
tolerance induction was described 10 years later (182, 183). The

importance of the thymic epithelium in tolerance induction was

identified using mouse chimeras (184) and finally, the identification

of promiscuous gene expression of self-peptides in mTECs was

described in, 2001 by J. Derbinski, A. Schulte, B. Kyewski and L.

Klein (185) after several individual reports on genes that were found

to be expressed by the thymic epithelium (141, 186–189). Since

then, research on the thymus and the immunological processes

taking place in the thymus has increased immensely. Several factors

were identified to be essential for thymus development and the

prevention of autoimmune reactions, most importantly the

transcription factor Foxn1 (forkhead box protein 1) which is

essential for thymic epithelial cell development and consecutive T

cell progenitor recruitment (190). Nude mice with a mutation in the

Foxn1 gene have congenital athymia and show severe

immunodeficiency besides their name giving deficiency in hair

growth (191). Athymic nude mice are used as a model system to

study thymus development and the development of autoimmune

reactions in thymic transplantation experiments. The Foxn1 gene

promoter is also widely used in conditional knock-out systems to

delete and study gene functions in thymic epithelial cells by crossing

Foxn1-cre lines to the “gene of interest”-flox mouse line. Other

transcription factors and signaling pathways involved in thymus

morphogenesis are reviewed elsewhere (192).

Several monogenic autoimmune diseases have been described

to date, in which proper thymic development of the thymic stromal

compartment or thymocytes is abrogated. The autoimmune

polyendocrinopathy syndrome type 1 (APS1), also known as

autoimmune polyendocrinopathy candidiasis ectodermal

dystrophy (APECED), is a monogenetic autoimmune disease

affecting multiple organs. It is characterized by a mutation in the

autoimmune regulator (AIRE) gene, leading to a disruption in

central immune tolerance (193). Similarly, autoimmune

lymphoproliferative syndrome (ALS) is another monogenic

autoimmune condition, distinguished by an accumulation of

polyclonal double-negative (DN) T cells. This accumulation

results from mutations in either Fas or Fas ligand, or in caspases

that are part of the Fas signaling pathway (194). Additionally, the

monogenic autoimmune disorder IPEX (immunodysregulation

polyendocrinopathy enteropathy X-linked syndrome) arises due

to a defect in the Foxp3 gene, leading to a loss of Tregs

(CD4+CD25+) and consequently, a breakdown in peripheral

tolerance (195). The identification and characterization of such

monogenic autoimmune diseases in mouse and human have been

crucial to identify the mechanisms involved in central

tolerance induction.

In the course of aging the thymus tissue is undergoing gradual

atrophy, a process called involution. Thymic involution occurs in

mice and humans and starts approximately at young adulthood or

during puberty at the age of about 8-10 weeks in mice and 15-20

years in humans (93, 196). In the context of thymic involution

different models are discussed as to whether the process is initiated

by a reduction of thymocyte-derived signals or reduced TEC-

derived signaling (120, 197–200). Initially a reduced production

of progenitor cells originating from the haematopoietic stem cells

(HSCs) in the bone marrow and reduced numbers of early T cell
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progenitors (ETPs) entering the thymus were proposed as initial

changes at the onset of involution (201). However, recruitment of

progenitor cells into the thymus does not appear to be the sole

initiating factor for age-dependent thymic involution, as the ability

of aged thymi to recruit intravenously injected lymphoid progenitor

cells was shown to be similar to that of young thymi (200).

Furthermore, fetal thymic transplants under the kidney capsule of

aged mice led to reestablished normal thymic lymphopoiesis and

thymocyte subpopulations, including ETPs, DN subsets, DP, and

CD4+ and CD8+ SP T cells. Thus, demonstrating that

haematopoietic progenitor cells of aged mice were sufficiently

capable to home and proliferate in the young thymic tissue.

Conversely, intrathymic injection of ETPs isolated from young

mice into old mice did not restore normal thymic lymphopoiesis

(200). Instead of a reduction in progenitor cells, changes in the

thymic microenvironment and tissue homeostasis came into focus

as causative factors for the age-dependent thymic involution. Aged

thymi show reduced numbers of cTECs and mTECs and an increase

in adipocytes and perivascular spaces (196, 199, 200). Further, a

shift in the composition of the TEC population from primarily

perinatal cTECs (1-week-old mice) over mature mTECs (4-week-

old mice) to mature cTECs and intertypical TECs (showing mTEC

and cTEC expression features) (from 16 weeks onwards) can be

observed in mice of different ages (120). Furthermore, changes in

the gene expression profiles of aged mTECs can be observed, with

genes involved in inflammatory signaling, apoptosis and KRAS

signaling being upregulated, whereas genes involved in cholesterol

homeostasis and oxidative phosphorylation get downregulated

(120). The expression of the transcription factor Foxn1, which is

essential for TEC development, is reduced in aged thymi, alongside

with a downregulation of Foxn1-target genes (202, 203).

Crucially, in aged mice with fully involuted thymi, the

upregulation of FOXN1 in thymic epithelial cells (TECs) triggered

thymic regeneration. This regeneration was marked by the

activation of genes essential for TEC development or for T cell

differentiation and repertoire selection. Key genes involved include

Delta-like 4 (Dll4), chemokine (C-C motif) ligand 25 (Ccl25), kit

ligand (Kitl), and chemokine (C-X-C motif) ligand 12 (Cxcl12).

This activation led to enhanced thymopoiesis and an increased

production of naïve T cells (202). Furthermore, in young mice, the

overexpression of Foxn1 resulted in a delay in thymic involution

(204). Conversely, reducing Foxn1 expression levels in young mice

induced premature thymic involution (205, 206). Further, it was

shown that Fgf7 (also known as keratinocyte growth factor (KGF))

signaling increases the rate of thymic epithelial cell proliferation

both at steady state and after thymic insult, such as infections or

chemotherapy in rhesus macaques and mice (207). Furthermore,

fetal thymic mesenchyme produces FGF7 and FGF10 that promote

TEC differentiation and proliferation (208, 209). Additionally, TEC-

derived FGF21 and the age-dependent downregulation thereof was

implicated in mediating thymic involution (210). Age-related

reduction of thymic tissue results in a decrease in the number of

peripheral T cells and a reduction in T cell diversity. Differentiated

abCD8+-T cells, CD4+CD28–T cells and memory T cells

subsequently accumulate (211, 212), which is a common

characteristic of patients with chronic inflammatory diseases such
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as SLE, rheumatoid arthritis, multiple sclerosis or Graves’ disease

(213, 214).

Abnormal thymus atrophy can be caused by infections, stress or

medical interventions and lead to reduced thymopoiesis and a

reduction in the generation of naïve mature T cells (215).

Pharmacological application of synthetic glucocorticoids can also

lead to thymic atrophy by engaging with intracellular glucocorticoid

receptors (GRs), which trigger the activation of the mitochondrial

apoptotic pathway in double-positive (DP) thymocytes (216, 217).

Thymus hyperplasia can be caused by two forms of thymic

enlargement, either due to thymic hyperplasia of normally

organized thymic tissue caused by chemotherapy, corticosteroid

use, irradiation or thermal burns or due to thymic lymphocytic

hyperplasia which is characterized by increased number of

lymphoid follicles with germinal centers in the thymus. Thymic

lymphocytic hyperplasia has been associated with the development

of autoimmune diseases such as myasthenia gravis and Graves’

disease (218). Another form of thymus enlargement can occur due

to thymoma, which are often benign epithelioid neoplasm, which

are also associated with the development of autoimmune conditions

such as myasthenia gravis and pure red cell aplasia (219–222).

Thymomas are classified based on morphological features and the

content of lymphocytes into type A, type B (B1-B3) and

micronodular thymoma with lymphoid stroma (MNT) which are

distinguished from thymic carcinoma (TC) (223). Epithelial cells of

thymomas show reduced expression levels of MHCII and Aire

(224), thereby leading to inefficient T cell selection and the

development of autoreactive lymphocytes (225). In a recent study,

116 thymomas from patients of which 34 developed myasthenia

gravis were analyzed for myasthenia gravis specific characteristics

using bulk- and single cell RNA-sequencing (226). A development

of atypical immune microenvironments in the thymus with

germinal center formation, B cell maturation, and ectopic

neuromuscular expression of GABRA5, MAP2, NEFL, NEFM,

SOX15 by neuromuscular mTECs (KRT6+ GABRA5+ nmTECs)

was described for MG-associated thymomas (226, 227). In this case

the authors suggest that the presentation of neuronal autoantigens

by mTECs in this scenario might lead to the development of

autoimmunity with GC formations and affecting thymic B cell

maturation in line with previous reports (227, 228), but in difference

to the general dogma of self-antigen expression in mTECs for

negative selection (i.e. deletion via apoptosis) of autoreactive T

cells. Further analysis of the implications of thymic antigen

expression in the formation of thymic GCs will be needed to

analyze possible connections.
4 Thymic infections and
autoimmune diseases

Among the environmental influences believed to potentially

initiate the onset of autoimmune diseases, infections with pathogens

in particular bacterial and viral infections are major suspects. The

connection between viral infections and the initiation of

autoimmune reactions through mechanisms such as molecular
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mimicry, bystander activation and epitope spreading have been

proposed and recently reviewed elsewhere (229). Further,

peripheral infections with pathogens such as gastrointestinal

microbiota can cause thymus atrophy. Similarly, thymic atrophy

is also known to occur after lipopolysaccharide injection which is

used as a model system to study the mechanisms in mice (230).

However, also thymic infections with viruses or bacteria are

reported to cause thymic atrophy due to impaired thymocyte

development and increased apoptosis of thymocytes (215). Even

though the event of a direct infection of the thymic tissue is

infrequent and a blood-thymus barrier similar to a blood-brain

barrier has been proposed in the past and the selectivity and

restrictiveness is controversially discussed (231–233), thymic

infections with viruses and bacteria such as Mycobacteria have

been described (234). Especially with regards to the recently

identified thymic Tuft cells, which in mucosal tissues, are

involved in pathogen clearance, a role of thymic tuft cells in the

immune response towards thymic infections requires

further investigations.

Thymic viral infections have been reported to disrupt T cell

maturation and selection, suggesting them as potential causes for

autoimmunity. Infection of the thymus with human and mouse

roseoloviruses, belonging to the herpesvirus family, results in a

temporary reduction of CD4+ SP and CD4+CD8+ DP thymocytes

(235, 236). Furthermore, neonatal infections with roseoloviruses in

mice have shown a connection to the development of autoimmune

gastritis. Twelve weeks post-infection, these mice exhibited

autoimmune characteristics, including stomach inflammation

characterized by the production of autoantibodies and

autoreactive CD4+ T cells (237). Notably, after such neonatal

roseolovirus infections in mice, there is a transient decrease in

numbers of medullary thymic epithelial cells (mTECs) and

dendritic cells (DCs), along with diminished expression of Aire

and tissue-restricted antigens (TRAs). The Coxsackievirus B (CVB),

particularly the enterovirus strain CVB4 E2 is one of the viral

environmental risk factors for the development of diabetes mellitus

type 1 (DMT1) by influencing the inflammatory milieu, inducing

bystander activation of CD8+ T cells and possibly through

mechanisms of molecular mimicry (229). Thymic infections with

CVB were investigated as a possible cause for the development of

DMT1 using in vitro TEC systems and in vivo orally-inoculated

mice (238–240).
5 Discussion

Therapeutic interventions targeting thymic tissue homeostasis and

restoring thymopoiesis is often discussed as one of the aims to

circumvent inflammaging and age-associated appearances of diseases

(241). Perturbations of thymopoiesis due to infections, stress or

interventions such as chemotherapy or irradiation are of high clinical

relevance and much effort has gone into research to develop strategies

which allow for a renormalization of thymic tissue homeostasis and

thymopoiesis. Then again, an interference with the physiological age-

related involution has to be carefully considered weighing the risk for
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the development of leukemic transformed T cells or autoimmunity

(197). In this context, the relation of haematopoietic progenitor cell

availability and the proportion of thymic epithelial compartments

providing the niches for thymopoiesis needs to be considered.

Different pre-clinical and clinical trial studies assessed thymic

epithelial cell regeneration as one possible angle for thymus

rejuvenation. One of the factors known to influence TEC

maintenance is KGF. Recombinant human KGF was shown to

enhance the regenerative capacity of the thymic epithelial

compartment and showed cytoprotective effects (242). In a clinical

trial study (NCT00071240), the regenerative effect of growth hormones

was analyzed. The human recombinant growth hormone somatropin

was administered in HIV-infected patients and was shown to increase

thymic cellularity, naïve CD4+ and CD8+ T cells and peripheral

immune responses (243). In a different clinical trial, known as the

TRIIM (Thymus Regeneration, Immunorestoration and Insulin

Mitigation) Study, healthy male participants were administered a

combination of recombinant human growth hormone (rhGH),

dehydroepiandrosterone (DHEA), and metformin. This regimen led

to enhanced thymic function, beneficial immunological alterations, and

improved risk profiles for several age-related diseases (244). Another

ongoing trial (NCT04375657, TRIIM X trial) is currently underway

and will analyze the potential therapeutic benefit of recombinant

growth hormones in men and women. Other clinical trials analyzed

the therapeutic potential of recombinant human IL-7 administration or

sex steroid ablation to increase thymopoiesis (215). Further, ex vivo

approaches and in vitro methods to enhance thymus function and

generate transplantable thymic organoids are explored for their

putative therapeutic potential (245, 246). During T cell development

many thymocytes die in the course of positive and negative selection.

At steady-state the presence of apoptotic thymocytes was shown to

suppress the production of the regenerative factors IL-23 and BMP4

through TAM receptor signaling and activation of Rho-GTPase Rac1

and NOD2-mediated suppression (247). Upon thymocyte depletion

the suppression is lacking and the production of IL-23 and BMP4 is

increased. Interestingly pharmacological inhibition of Rac1 led to an

enhancement in thymic function after acute damage offering possible

treatment strategies for patients with compromised thymic

function (247).
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