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When inflammatory stressors
dramatically change, disease
phenotypes may transform
between autoimmune
hematopoietic failure and
myeloid neoplasms
Xi-Chen Zhao 1, Bo Ju 1, Nuan-Nuan Xiu 1,
Xiao-Yun Sun 1 and Fan-Jun Meng 2*

1Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao,
Shandong, China, 2Department of Hematology, The Affiliated Hospital of Qingdao University,
Qingdao, Shandong, China
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of

autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute

myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also

known to be a clonal hematological disease. Genetic aberrations typically observed

in MNs are detected in approximately one-third of AA patients. In AA patients

harboring MN-related genetic aberrations, a poor response to immunosuppressive

therapy (IST) and an increased risk of transformation to MNs occurring either

naturally or after IST are predicted. Approximately 10%–15% of patients with

severe AA transform the disease phenotype to MNs following IST, and in some

patients, leukemic transformation emerges during or shortly after IST. Phenotypic

transformations between AHF and MNs can occur reciprocally. A fraction of

advanced MN patients experience an aplastic crisis during which leukemic blasts

are repressed. The switch that shapes the disease phenotype is a change in the

strength of extramedullary inflammation. Both AHF andMNs have an immune-active

bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be

evoked by infiltrated immune cells targeting neoplastic molecules, which

contributes to the BM-specific autoimmune impairment. Autoimmune responses

in AHF may represent an antileukemic mechanism, and inflammatory stressors

strengthen antileukemic immunity, at least in a significant proportion of patients

who have MN-related genetic aberrations. During active inflammatory episodes,

normal and leukemic hematopoieses are suppressed, which leads to the occurrence

of aplastic cytopenia and leukemic cell regression. The successful treatment of

underlying infections mitigates inflammatory stress-related antileukemic activities

and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar
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to that of treating underlying infections. Investigating inflammatory stress-powered

antileukemic immunity is highly important in theoretical studies and clinical practice,

especially given the wide application of immune-activating agents and immune

checkpoint inhibitors in the treatment of hematological neoplasms.
KEYWORDS
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General overview of aplastic anemia
and myeloid neoplasms

Aplastic anemia (AA) is an acquired form of autoimmune

hematopoietic failure (AHF). Traditionally, AA has been

considered a benign hematological disease. AA pathogenesis

results from the destruction of hematopoietic progenitor cells

(HPCs) by deranged autoimmune responses that occur mainly in

the bone marrow (BM) environment (BME). After an initial insult

by pathogenic environmental challenges, such as genotoxic

exposure or microbial infection, the activated immune responses

perpetuate and result in immune-mediated impairment of blood

cell production and subsequent clinical presentations of BM

hypoplasia/aplasia and peripheral cytopenia in one or more cell

lineages (1, 2). Currently, the diagnosis of AA is largely based on

markedly decreased BM cellularity and hematopoietic volume with

fatty replacement and the absence of overt dysplastic hematopoiesis

in HPCs (3, 4). AA is a highly heterogeneous disease entity that

converges on a pathophysiological process of persistently deranged

autoimmune responses and heavily exhausted HPCs. Patients with

AA exhibit varying clinical presentations regarding disease

phenotype, disease severity, disease course, treatment response to

immune suppressants, and the likelihood of transformation to

myeloid neoplasms (MNs). This high heterogeneity is driven by

the diversity of the constitutional genetic background, the

competence of innate immune cells, the appropriateness of

adaptive immune responses to environmental challenges, basic

functions of other organ systems, events that guide immune

responses, and perhaps most importantly, conditions that sustain

deranged autoimmune reactions (1–4).

Myelodysplastic syndrome (MDS), myeloproliferative

neoplasm (MPN), and acute myeloid leukemia (AML) are

unequivocal MNs. MNs result from the acquisition and

accumulation of somatic mutations in HPCs. Genetic damage is

generated from the exposure of HPCs to various oncogenic agents,

and the emergence of leukemic clones arises from the selective

advantage of transformed HPCs in the context of chronic

inflammatory BME. Oncogenic mutations in transformed HPCs

lead to altered proliferation, self-renewal, and antiapoptotic
02
capacity. The dysregulated growth of leukemic cells results in the

overgrowth of their normal counterparts and the suppression of

normal blood cell production, clonal hematopoiesis, and

corresponding hematological presentations (5–8). The presence of

dysplastic features indicates a diagnosis of MNs, and an increased

percentage of myeloblasts is the most significant biomarker

representing leukemic hematopoiesis and entry into advanced

stages (9, 10). Immunological, cytogenetic, and biological

molecular analyses can provide valuable information for

diagnosis, classification, and risk stratification. MDS, MPN, and

AML are also highly heterogeneous with somatic mutations

involving hundreds of genes in association with their

pathogenesis. Each somatic mutation plays a distinctive role in

malignant transformation or affects clinical complications,

hematological presentations, cellular components, immunological

signatures, disease progression, and treatment response (5–8).

Accumulating evidence supports that there is an intrinsic

re lat ionship between AHF and MNs regarding their

clonal hematopoiesis, immunological profile, and disease

phenotypic transformations.
Reciprocal transformations between
AA and MNs

By definition, AA is distinct from MDS, MPN, and AML with

differences in fundamental pathogenesis, biological behaviors,

laboratory features, treatment strategies, and prognostic

significance. However, disease phenotypes can transform between

AHF and MNs. The natural transformation of AA to MNs has been

widely investigated (11–14) and is generally ascribed to the

acquisition and accumulation of oncogenic mutations due to

selective pressure and immune exhaustion in the setting of a

chronic inflammatory milieu (15–18). It is well known that

antithymocyte globulin (ATG) plus cyclosporine-based

immunosuppressive therapy (IST) promotes leukemic

transformation. Approximately 10%–15% of patients with severe

aplastic anemia (SAA) experience leukemic transformation

following IST, and in some patients, this transformation emerges
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during or shortly after IST (19–23). Such a short interval that spans

the transformation process indicates that leukemic clones preexist

in the SAA stage (24–27) and rapidly expand due to depletion of

cytotoxic T lymphocytes (CTLs) or the induction of immune

tolerance (28–32) rather than due to the acquisition of novel

molecular events. In patients with genetic aberrations typically

observed in MNs, there is a greater frequency of transformation

to MNs. Moreover, 20%–30% of SAA patients fail to respond to IST,

and these patients have a significantly greater frequency of MN-

related genetic aberrations compared to patients who achieve a

good treatment response. Even in patients who achieve a

hematological response, the presence of MN-related genetic

aberrations is associated with a reduced sensitivity to IST, a low

rate of deep remission, a high frequency of disease relapse, and a

significantly increased risk of leukemic transformation (19–23).

Leukemic transformation in SAA patients can also occur after

successful treatment of underlying infections and is frequently

separated by a short duration of hematological remission. A rapid

increase in leukemic blasts is the representative presentation of

leukemic hematopoiesis (33–35). Moreover, patients with

definitively diagnosed MNs can develop an aplastic crisis during

infectious episodes. During aplastic crisis, the cytological and

immunological features resemble those of SAA with a regression

of leukemic blasts (35, 36). It remains unclear why patients with a

similar genetic landscape or even an identical genetic background

exhibit variable disease phenotypes. Furthermore, the significance
Frontiers in Immunology 03
of disease phenotypic transformations has not been fully elucidated

through basic research and clinical practice. It is possible that

environmental factors, most likely changes in inflammation

strength or depletion of effector immune cells, affect the disease

phenotype and contribute to phenotypic transformations (as

schematized in Figure 1).
Clonal hematopoiesis in AA

With the wide application of next-generation sequencing (NGS)

in the diagnosis, mutational analysis, and risk stratification of

hematological diseases (37, 38), it has been shown that more than

one-third of patients definitively diagnosed with AA carry genetic

aberrations that are well-known driver mutations in MNs (19–27).

Although the number and clone size of mutant genes in AA are much

smaller than those in MDS and AML, the number and clone size

of these mutant genes can increase in patients who respond to IST

(20–22). Currently, AA is also known to be a clonal hematological

disease. Clonal HPCs gain a selective proliferative and survival

advantage over their normal counterparts in a chronic

inflammatory setting and become the dominant hematopoietic

components (24–27). Moreover, some patients with MDS or AML

can present heavily reduced BM cellularity at initial diagnosis or

during disease progression, and patients with low-risk MDS have an

immunological landscape similar to that of SAA (39–43).
Immune dysregulation and an
inflamed BME in AHF

AA and hypoplastic MDS (hMDS) are typical forms of

immune-mediated AHF, and they share similar cytological and

immunological landscapes (39, 40). In AHF, autoimmune CTLs

(43–45) and natural killer (NK)/NKT cells (46–48) become

activated and expanded. Trained CTLs [effector memory CTLs

(emCTLs)] and NK/NKT cells (effector memory NK/NKT cells)

exhibit elevated killing activities (43–48), increased secretory

capacities (49–51), and enhanced sensitivities to antigen

stimulation (52, 53). The oligoclonal feature of expanded emCTL

infiltrating the BM suggests the presence of chronic stimulation that

is driven by an antigen from the BME (43, 50). The excessive

production of hematopoietic inhibitory mediators (54–57) due to T

helper type 1 (Th1) immune responses (58–60) plays a central role

in AHF pathogenesis. Additionally, upregulated expression of

proapoptotic molecules (61–63) and decreased telomerase activity

(64, 65) accelerate the death of HPCs. Upregulated expression of

Toll-like receptors (TLRs) and costimulatory molecules in response

to chronic inflammation enhances sensitivity to antigen

stimulation, propagates inflammatory responses, induces the

production of reactive oxygen species, augments apoptotic signals,

amplifies pyroptoptic cell death, and favors a selective survival

advantage, which forms a positive feedback loop to cause ineffective

hematopoiesis and sustain clonal proliferation (66–69). Moreover,
FIGURE 1

Disease phenotypic transformations between AHF and MNs. When
Th1 responses are dramatically activated (red arrows) by immune-
activating agents and/or immune checkpoint inhibitors, normal and
leukemic hematopoieses are suppressed. In this setting, patients
present with AA-like syndrome or hMDS. After removal of immune-
activating agents or depletion of effector memory cytotoxic
lymphocytes, mitigated Th1 responses lead to the reduction of
inflammatory stress-powered antileukemic activities (green arrows),
and symptomatic myeloid neoplasms may emerge. AA, aplastic
anemia-like syndrome; aMDS, advanced myelodysplastic syndrome;
AML, acute myeloid leukemia; ARCH, age-related clonal
hematopoiesis; CCUS, clonal cytopenia of undetermined
significance; CHIP, clonal hematopoiesis of indeterminate potential;
hMDS, hypoplastic myelodysplastic syndrome; h/nMDS, hyper/
normoplastic myelodysplastic syndrome; ICUS, idiopathic cytopenia
of undetermined significance; AHF, autoimmune hematopoietic
failure; MNs, myeloid neoplasms.
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the number and function of regulatory T cells (Tregs) and

regulatory B cells (Bregs) are dramatically decreased (70–73), as is

the downregulation of anti-inflammatory mediators (74–76).

Defects in HPCs and dysregulation of immune responses are also

present in complete remission following IST (77, 78).

Autoimmunity targeting HPCs by autoantigen-specific

lymphocytes (50, 59) attracts a variety of immune cells (79–81).

Immune cell infiltration and activation create an immune-active

BME (79–83), which forms an inflammatory background and may

determine a BM-predominant autoimmune impairment (39–42).

The BM-predominant autoimmunity is amplified by an additional

antigenic stimulation (84–87). Th1 immune responses suppress the

production of erythrocytes, granulocytes, platelets, and B

lymphocytes (49, 55–57, 87), which results in clinical and

laboratory features of AA and hMDS (3, 4, 9, 10).

The development of an immune-active BME can be achieved

in several ways. 1) Pattern recognition receptors (PRRs) sense

pathogen-associated molecular patterns (PAMPs), or antigen-

specific CTLs target pathogenic antigens of microbes that can

survive and smolder in BM cells (84–87). 2) Cellular components

that cross-react with microbial epitopes are targeted by

autoimmune lymphocytes trained in active infectious diseases

(88), particularly inflammatory conditions involving the

gastrointestinal tract (89, 90), which can continuously supply

intestine-derived antigens from pathogenic or commensal

microbes in the context of increased epithelial permeability (90–

92). 3) Somatic mutations in epigenetic modulators or

transcription factors lead to the excessive production of

inflammatory cytokines (93, 94). 4) PRRs sense damage-

assoc ia ted molecular pat terns (DAMPs) (95–98) , or

autoimmune CTLs target neoplastic antigens of genetic or

epigenetic products (40, 59, 99–101) in transformed HPCs. If

autoimmune responses target DAMPs or neoplastic antigens on

leukemic HPCs, the role of autoimmune responses in AHF may be

antileukemic (95, 97, 102).
Contribution of inflammatory
stressors to autoimmune diseases

Chronic intracellular infections in
AID pathogenesis

Chronic infectious diseases, especially intracellular infections,

are closely associated with the development, persistence, and

acceleration of autoimmune-related impairments in various organ

systems (103–110). Autoimmune diseases (AIDs), which usually

manifest as organ-specific impairments, are frequently localized at

sites away from infectious niduses. The severity of AIDs commonly

parallels the severity of chronic infectious conditions (111, 112),

which provides persuasive evidence that chronic infections

contribute to the perpetuation and acceleration of autoimmune

responses. Low-affinity autoimmune lymphocytes can escape the

process of clonal selection and clonal deletion (113–116), and the
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development of AIDs critically requires the engagement of

environmental factors to disturb immune homeostasis and

generate high-affinity autoimmune lymphocytes by somatic

mutations in the antigen-binding region (affinity mutation)

(117–119).
Mechanisms by which infectious diseases
induce AID pathogenesis

Several hypotheses have been proposed to explain the relationship

between the occurrence of infectious diseases and the generation of

autoimmune responses. 1) When infected by microbes or inoculated

with vaccines, hosts generate high-affinity antibodies or emCTLs

through class switching and affinity maturation in the fight against

invading pathogens. High-affinity antibodies or emCTLs cross-react

with epitopes of autoantigens in certain tissues (molecular mimicry)

(120–123). After being trained in response to microbial infections,

these autoreactive lymphocytes migrate to remote organs, exert an

immunological attack, and induce tissue damage when recognizing

cognate autoantigens (117–119). 2) When tissue is infected by

pathogenic microbes, autoreactive lymphocytes in the inflamed niche

can be activated and trained by antigen-presenting cells and

autoantigens, which form high-affinity autoimmune B and T cells

and exert an immunological attack on corresponding tissues (bystander

activation) (124–126). 3) In the inflamed niche, cryptic epitopes can be

exposed, recognized, and presented to immune cells as exotic antigens

to elicit immunological reactions. This immunological attack on cryptic

epitopes sustains inflammatory impairment in affected tissues (epitope

spreading) (127, 128). 4) During chronic infections, antigens or

antibodies can be modified, frequently by glycosylation, which results

in altered antigenicity of tissue components or an altered affinity of

autoantibodies (posttranslational modifications) (129–132). 5) Certain

components of infecting microbes can activate polyclonal lymphocytes

and result in the generation of self-reactive antibodies and autoimmune

CTLs that can bind to tissue components. These microbial components

are called superantigens. Superantigen-induced self-reactive antibodies

or autoimmune CTLs initiate an immunological attack (superantigen

stimulation) (133–135). The same microbes can trigger AIDs in

different organ systems through different mechanisms, and AIDs in

certain organs can be induced by different microbial infections through

different mechanisms.

After pathogenic antigens have been cleared, the host immune

system rapidly returns to a homeostatic state by complex immune

regulatory mechanisms to limit inflammatory damage (136–138).

However, effector memory lymphocytes have the ability to respond

promptly and play a major role when the host encounters the same

or cognate epitopes (139–141). Chronic infectious diseases can

continuously supply pathogenic antigens or create an

inflammatory milieu in which host immune cells persistently

produce inflammatory cytokines (84–92) and thereby

synergistically sustain the activated form of host autoimmune

cells in cognate antigen-dependent or antigen-independent

pathways (139–141) to attack antigen-specific cells and innocent

bystander tissues (142, 143).
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Gut inflammatory conditions in
AID pathogenesis

In addition to chronic intracellular infections, the

gastrointestinal tract is another common chronic inflammatory

nidus. As an important organoid in the human body (144, 145),

the gut microbiota plays an essential role in the stimulation,

education, and maturation of the host immune system and is the

most important element that dynamically affects host immune

homeostasis throughout life (146–148). Indeed, host peripheral

lymphatic tissues develop poorly in the absence of the gut

microbiome (149–151). The associations of AIDs with gut

dysbiosis and gut inflammatory conditions have been investigated

extensively (90, 92, 147, 152, 153). Patients with inflammatory

bowel disease (IBD) have a high frequency of extraintestinal

autoimmune manifestations including systemic connective tissue

diseases, seronegative spondyloarthropathy, systemic vasculitis, and

organ-specific autoimmunity in different organ systems (154, 155).

The critical requirement of the gut microbiome for inducing

and sustaining autoimmunity in genetically susceptible animal

models has been verified in multiple AIDs and provides

affirmative evidence for the contribution of gut dysbiosis and gut

inflammatory disorders to the development of autoimmune

pathogenesis. These animal models spontaneously develop AIDs

under conventionally reared conditions, but autoimmune

impairment does not occur in germ-free or specific pathogen-free

conditions (155–161). In animal models of AIDs, the clearance of

the gut microbiome can effectively alleviate disease severity (157).

Even in conventionally reared animals, administration of probiotic

antibiotic agents can significantly delay disease penetration (162).

This is not surprising because the gastrointestinal tract harbors the

most abundant lymphoid tissues and microbial community (163,

164). The microbial community and gut homeostasis are constantly

subject to various environmental challenges (165, 166), including

pathogen intruders (167–170), chemical damage (171, 172), drug

exposure (173–175), and nutrient delivery (176–178). Harmful

challenges can compromise the integrity of the intestinal

epithelium, induce dysfunction, cause dysbiosis, and trigger gut

inflammatory disorders; these can occur not only by injuring

diseased segments but also by affecting other segments through

disruption of microbial ecology (179–181). Gut dysbiosis can

initiate immune responses and cause inflammatory lesions in the

gastrointestinal tract (181–184). In the setting of a compromised

intestinal structure, impaired barrier functions allow host immune

cells to come into intimate contact with intestine-derived antigens

(89–92). This occurs not only from pathogenic agents but also from

commensal microbes and undigested food (185–187) and thereby

activates host immune cells, disturbs immune homeostasis,

overrides immune tolerance, and triggers deranged immune

responses (188–192).

The gastrointestinal tract can continuously supply a large

amount of intestine-derived antigens and persistently activate a

substantial number of immune cells. The structural and functional

features of the gastrointestinal tract render the organoid vulnerable

to be an active inflammatory nidus in which host immune
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homeostasis is disturbed and inflammatory stresses are sustained

with sufficient inflammation strength to perpetuate autoimmune

responses in remote organ systems (163, 164). In this process,

probiotic commensal microbe-derived metabolites play important

roles in maintaining epithelial integrity, regulating host immune

responses, and modulating autoimmunity (177, 178, 193–196).

An inadequate dietary supply can induce gut dysbiosis and

immune dysregulation and affect epithelial repair function (197–

200). Chronic gut inflammatory disorders likely work as amplifiers

linking systemic immune dysregulation with environmental factors

to augment the intensity of extraintestinal autoimmune responses

and thereby power autoimmune impairment (201–203). Gut

microbiota also plays an indispensable role in combating

intracellular infections (204–206) and in eliciting anti-infection

responses through vaccine inoculation (207, 208), which

reinforces the role of gut microbiota in amplifying systemic

immune activities.
Non-specific antigen stimulation in
AID pathogenesis

Autoimmune impairments in genetically predisposed animals

can also be initiated by adjuvant agents, PAMPs, recombinant

inflammatory cytokines, and immune checkpoint inhibitors

(ICIs). The Bacillus Calmette–Guerin (BCG) vaccine has long

been recognized in the induction of AIDs (209, 210), and

Freund’s adjuvant has been widely used in experimental models

to trigger autoimmunity (211, 212). Autoimmune responses are

common complications that occur following not only BCG but also

other inoculations. This leads to the creation of the specific term

“autoimmune syndrome induced by adjuvant (ASIA)” (213–216).

Polyriboinosinic acid:polyribocytidylic acid (polyI:C) (217, 218),

endotoxins (219–221), and fungal peptidoglycans (222–224)

activate different PRRs. These PAMPs can trigger and sustain

immune derangement by disrupting immune homeostasis (225,

226). ICIs (227, 228) and even hematopoietic growth factors (229,

230) can promote the penetration of AIDs. The initiation of AIDs

by non-specific antigen stimulation suggests that systemic

inflammatory stressors, rather than specific antigen stimulation,

can synergize with a primary immune-active background to trigger

deranged organ-specific autoimmune processes (125, 126, 139).
Potential antileukemic mechanism
in AHF

In 2009, Nissen (231) proposed that autoimmune responses

occurring in acquired AA may function as an antileukemic

mechanism against malignant proliferation. In the SAA stage, the

decreased number and function of Tregs and Bregs, the decreased

production of inhibitory cytokines, the reduced expression of

coinhibitory molecules, the increased Th1 responses, the

increased number and function of CTLs and NK/NKT cells, the
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increased antigen-presenting activities, and the excessive expression

of proapoptotic and costimulatory molecules on HPCs may

represent an adaptive process in response to ongoing antigen

stimulation. Along with disease progression, the immunological

signature in the BME is transformed from a Th1-predominant

response to an immune exhaustion state in which the function of

infiltrated autoimmune lymphocytes is inhibited and immune

surveillance is gradually dampened in adaptation to the chronic

inflammatory milieu. The immune exhaustion state favors leukemic

cell survival and facilitates the penetration of symptomatic MNs

(15–18). The extrapolation was mainly drawn from tumor

regression and concomitant autoimmune phenomena in diseased

organs during the treatment of non-hematological malignancies

with immunological therapy. The author also described examples of

hematological neoplasms in which leukemic cell regression was

observed along with the appearance of prolonged aplastic cytopenia

and autoimmune reactions (AA-like syndrome) after intensive

chemotherapy or other treatment modalities. The author coined

the phrase “pancytopenia of unknown significance” to describe this

clinical phenomenon. Severe BM hypoplasia, systemic

inflammatory symptoms, increased autoreactive CTLs, and

decreased Tregs were observed in this AA-like syndrome. These

cytological and immunological features indicate that antileukemic

immunity has been reinvigorated.
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Indeed, AHF can occur in response to neoplastic antigens or

DAMPs (95, 96, 102, 232). The acquisition of autoantibodies against

the neoplastic antigen carbonic anhydrase I induces AA-like

syndrome and leukemic cell regression (102). Constitutive

activation of the RAS-MAPK pathway can induce HPC

senescence (96), and the absence of PRRs that sense neoplastic

molecules results in accelerated leukemia cell proliferation (97).

Similar to solid tumors (233–235), immune responses to neoplastic

antigens (99–102) and stress in response to HPC damage (95–97)

establish a chronic inflamed BME (93, 94, 236, 237). The inflamed

BME enhances sensitivity to exogenous antigen stimulation (52, 66,

67) and accelerates apoptotic death in leukemic (95, 96, 238, 239)

and normal (95, 96, 142, 143) HPCs, which are the common clinical

and laboratory features of AA and low-risk MDS (39, 40, 49, 240)

(as schematized in Figure 2).

Antileukemic immunity-induced Th1 responses preferentially

repress leukemic cells and their normal counterparts, which can

lead to pronounced neutropenia (42, 102, 232). Autoimmune

neutropenia can persist for many years prior to the emergence of

symptomatic MNs. In this stage, the BM is hypocellular, and

cytological and immunological features exhibit immune-mediated

hematopoietic impairments in the absence of morphologically

identifiable leukemic blasts (241, 242). A significant proportion of

MDS patients with overt dysplasia present with hypocellular BM
FIGURE 2

Potential antileukemic mechanism in AA-like syndrome. AA-like syndrome is characteristic of reduced HPCs and relatively increased lymphocytes
without overt dysplasia. Early hematopoietic progenitors are rare. AA-like syndrome is caused by host immune surveillance against transformed
HPCs. Immune responses to neoplastic molecules on leukemic HPCs activate innate and adaptive immune cells. Activated lymphocytes secrete
proinflammatory cytokines and create an inflammatory background in the BME. Normal HPCs are suppressed by hematopoietic inhibitory mediators
as innocent bystander victims in the process of host immune cells attacking leukemic HPCs. Because of the preferential suppressive effects on
transformed HPCs, myeloblasts are hardly observed. The small number of nucleated hematopoietic cells and more intensive responses to
transformed HPCs make it difficult to identify overt aplasia, which results in a diagnosis of AA in most circumstances. AA, aplastic anemia; HPCs,
hematopoietic progenitor cells; BME, bone marrow environment.
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and peripheral pancytopenia at initial diagnosis or during disease

progression and these patients frequently have longer survival (21,

23, 42, 240). Prolonged neutropenia after intensive chemotherapy

has been associated with deep remission, longer remission duration,

reduced frequency of relapse, and restoration of Th1 immune

responses (243, 244). Substantial evidence supports an

antileukemic role of autoimmune responses in AHF (42, 95, 102,

232), at least in a large number of AHF patients who have MN-

related genetic aberrations (19–26). However, factors underlying

the exaggerated autoimmune responses that influence antileukemic

activities and disease phenotypes were not discussed in Nissen’s

manuscript (231).
Inflammatory stressors power
antileukemic immunity

The transformation between AHF and clinically overt MNs

(MDS with excessive blasts or AML in which an increased

percentage of myeloblasts is the most representative parameter in

determining leukemic hematopoiesis) can reciprocally occur. The

switch that shapes the disease phenotype is a change in the strength

of extramedul lary inflammatory condit ions (33–36) .

Extramedullary infectious diseases have a conspicuous impact on
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phenotypic presentations. During active inflammatory episodes,

normal and leukemic hematopoieses are simultaneously

suppressed with regression of leukemic blasts on cytological

examination and Th1-predominant responses on immunological

analysis. Aplastic cytopenia, the disappearance of leukemic blasts,

Th1-predominant responses, and a small number of nucleated

blood cells for identification of dysplasia result in cytological and

immunological features that meet the criteria for the diagnosis of

AA (33–36). Following successful control of the inflammatory

episodes and a short duration of hematological remission, quickly

expanded leukemic clones lead to the appearance of substantial

leukemic blasts and symptomatic MNs (33–35). Patients with

clinically overt MNs can develop an aplastic crisis during active

inflammatory episodes in which systemic inflammatory stress is

dramatically aggravated (35, 36). Within this period, the BM

becomes aplastic/hypoplastic, and leukemic blasts disappear with

the infiltration of autoimmune lymphocytes. These phenomena

indicate that autoimmune responses in AHF are an inflammatory

stress-powered antileukemic mechanism. Immune surveillance

against leukemic blasts contributes to BM-specific autoimmune

impairments, while inflammatory stressors strengthen

autoimmune responses (as schematized in Figure 3).

This process simulates spontaneous remission in AML patients

after an infectious episode and aplastic crisis (245–252). The
FIGURE 3

Inflammatory stressors power antileukemic activities. As described in Figure 2, immune surveillance in response to neoplastic molecules releases
proinflammatory cytokines (endogenous inflammatory cytokines as shown in pink dots) and creates an inflammatory background. However, the
baseline antileukemic immunity may not be sufficient to effectively suppress leukemic HPCs. Immune responses to invading microbes produce
additional activated immune cells and proinflammatory cytokines (exogenous inflammatory cytokines as shown in red dots). These pathogen-
activated immune cells and the proinflammatory cytokines migrate to the inflamed BME through blood circulation, power the primary inflammatory
milieu, and enable the antileukemic immunity to achieve an intensity that is sufficient to effectively suppress leukemic HPCs. The primary inflamed
BME and extramedullary inflammatory stressors synergistically trigger and sustain AA-like syndrome. HPCs, hematopoietic progenitor cells; BME,
bone marrow environment; AA, aplastic anemia.
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mechanism is presumed to be due to reversion of the immune

exhaustion state and restoration of antileukemic immunity through

activation of immune cells and their secretion of proinflammatory

cytokines in response to invading pathogens (250–253). Another

frequent situation that induces spontaneous remission is that

patients with hypoplastic AML (hAML) are treated with

hematopoietic growth factors. To date, spontaneous remission has

been reported in more than 200 AML patients. The remission

duration usually lasts for 2–6 months, which indicates that leukemic

clones cannot be eradicated even under inflammatory stress-

powered antileukemic immunity (245, 254). This may be due to

the low expression of neoplastic antigens on dormant leukemic cells

(255–258). However, repeated spontaneous remissions occur in a

paucity of patients (245, 247), which suggests that patients do not

completely lose the hematopoietic regulatory mechanisms and the

inflammatory stress-powered antileukemic immunity. Another

interesting phenomenon also suggests the existence of

inflammatory stress-powered antileukemic activities (243, 244).

Prolonged neutropenia due to hematopoietic suppression in AML

patients after intensive chemotherapy is usually complicated by

durable or repeated infectious episodes, which frequently result in

death. If patients survive prolonged neutropenia, they may achieve

deep remission, longer remission duration, and a reduced frequency

of relapse. Recombinant type I inflammatory cytokines (259–262),

interferon inducers (263–265), and BCG inoculation (266–268)

have been used to treat hematological and non-hematological

neoplasms and have shown efficacy in the control of tumor

growth or even the clearance of malignant clones. Other vaccine

inoculations that can stimulate Th1 responses have also been shown
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to have antitumor effects (269–271). These non-specific

immunological therapies and their treatment effects indicate that

inflammatory stressors, rather than antigen-specific responses to

invading pathogens, augment antitumor activities (139).
Reversion of the immune-exhausted
state by Th1 responses and
ICI treatment

Immune exhaustion in adaptation to persistent inflammatory

stimulation is a common mechanism underlying the escape of

leukemic clones from immune survei l lance (17, 18).

Hyporesponsiveness is characterized by a high infiltration of

negative immune cells, excessive secretion of anti-inflammatory

cytokines by immune regulatory cells, and high expression of

immune checkpoint molecules on tumor cells in the tumor

microenvironment, which work to limit the magnitude of

inflammatory responses, avoid excessive tissue damage, and

maintain a dynamic immune balance in the context of chronic

inflammatory stressors (272, 273). In an immune exhaustion state,

dampened antileukemic immunity favors leukemic cell escape from

immunological attack and facilitates the penetration of

symptomatic MNs. ICIs block coinhibitory molecules and

reinvigorate antitumor immunity. ICIs have been successfully

used to treat MNs (273–275), and a high-grade inflammatory

profile in the BME is a predictor of a good therapeutic response

to ICI treatment (276, 277) and suggests that antileukemic

immunity is closely related to an inflamed BME. The relationship

between an inflamed microenvironment and ICI treatment

response has been more thoroughly studied in solid tumors (234,

278–280).

It is widely accepted that dysbiotic gut microbiota plays an

important role in promoting tumor cell escape from immune attack

in solid tumors (281–283), and the response to ICI treatment is

strongly influenced by the abundance and diversity of the gut

microbiome (284, 285). This also indicates that antitumor

immunity necessitates the engagement of additional antigenic

stimulation for immune surveillance against neoplastic antigens.

A reduced gut microbial abundance and diversity due to antibiotic

treatment can dramatically dampen ICI treatment responses (286).

Modulation of the gut microbiota can reverse the dampened

responses (287–290). Some pathogenic (291–295) and commensal

(296, 297) microbes can stimulate Th1 immune responses and

thereby power antitumor immunity (298–300) and enhance ICI

treatment responses (301–303). One of the major adverse effects of

ICI treatment is hematological toxicity (304–306), especially when

treating hematological malignancies and when combined with other

antileukemic agents (306). This reinforces the role of Th1 responses

in AHF pathogenesis and inflammatory stress-related

antileukemic immunity.

Blood cells are immune cells, and their production is regulated

largely in response to microbial invasion. Therefore, hematopoietic

cells are more sensitive to inflammatory mediators. When
FIGURE 4

Th1 responses and ICI treatments break the dynamic balance in
immune exhaustion state. In the immune exhaustion state, a novel
dynamic balance has been established by the high expression of
negative immune regulators in adaption to an inflamed BME.
Activated Th1 responses propel positive antileukemic immunity,
while ICI treatments block coinhibitory molecules. Both can break
the vulnerable immune balance and induce positive antileukemic
immunity. ICIs in combination with immune-activating agents may
synergistically upregulate positive antileukemic immunity with an
intensity that is able to override the threshold of effective
antileukemic activities. ICI, immune checkpoint inhibitor; BME, bone
marrow environment.
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confronting an acute and limited infection, HPCs sense microbial

antigens and inflammatory cytokines. With the pathogenic

stimulation, host hematopoiesis proliferates and polarizes the

differentiation toward the production of effector immune cells to

fight invading microbes and replenish the consumed innate

immune cells (307–310). However, chronic inflammatory stress in

response to persistent intracellular infections can induce Th1-

predominant immune responses and exhaust host hematopoietic

functions. These responses predominantly exhaust granulopoiesis,

erythropoiesis, megakaryocytopoiesis, and B lymphopoiesis (311–

316) and result in the morphological and immunological signatures

shown in AHF (3, 4, 10, 240). The upregulated expression of HLA-

DR, TLRs, and the Nlrp3 inflammasome due to the primary

immune-active BME increases sensitivity to antigen stimulation

(50, 52, 66, 67) and apoptotic death of HPCs (50, 62, 63). In

combination with extramedullary inflammatory stressors, the

immune-active BME leads to BM-specific and inflammatory

stress-powered autoimmune responses. In the absence of an

inflamed BME, some infectious diseases, although able to induce

Th1 immune responses, may not seriously injure hematopoietic

function. Evidence for this is that patients with systemic rheumatic

diseases are seldom complicated by AHF. Along with the

persistence and exacerbation of inflammatory stressors, the host

immune system can be impaired, which changes the immunological

landscape from the proinflammatory phenotype of AHF to the

immune exhaustion phenotype of advanced MN (317–320).

Exhausted immune responses and DNA damage occurring under

chronic inflammatory conditions are considered major contributors

to the immune escape of leukemic cells (15, 16, 321, 322). The role

of immune exhaustion in advanced MN may cause an increased

threshold for effective antileukemic immunity (323). Enforcing an

additional antigen stimulation or administrating ICIs can reverse

the immune exhaustion state and thereby overcome the raised

threshold and restore missed antileukemic immunity (35, 95, 250,

253, 323). Combination of immune-stimulating agents and ICI

treatments may further potentiate antitumor activities (as

schematized in Figure 4).

From this point of view, AHF and MNs have complex intrinsic

relationships, and some patients with definitively diagnosed AA

may be hMDS (39, 40, 324, 325) or hAML (102, 232). The absence

of overt leukemic hematopoiesis in AHF likely results from the

small number of nucleated cells available for identification of aplasia

and leukemic blasts due to severe BM hypoplasia and a preferential

attack on transformed HPCs by autoimmune CTLs and their

secretion of hematopoietic inhibitory mediators (238, 239, 259–

262). Indeed, neutropenia is a common preleukemic presentation in

MNs, and in a significant proportion of MDS patients, neutropenia

can be a solitary hematological abnormality that persists for many

years (241, 242). Furthermore, a poor response to hematopoietic

growth factors predicts a high frequency of disease progression

(242). A decreased white blood cell count and concealed leukemic

clones make it difficult to distinguish this AA-like syndrome from

genuine AA (39, 40, 324, 325), which leads to a diagnosis of AA in

most circumstances (3, 4), especially before the wide application of

NGS in the diagnosis and stratification of hematological diseases.
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Decreased inflammatory strength
facilitates leukemic transformation

AHF is an organ-specific AID. Autoimmune responses occur

predominantly in the BM and result in the exhaustion of HPCs and

impairment of mature blood cell production (1, 2, 39, 240). AA and

hMDS are clonal hematological diseases (5, 25, 27, 240). Genetic

aberrations in clonal hematopoiesis affect cell proliferation, self-

renewal, and apoptosis (5–8). While hMDS is an unequivocal MN,

AA has a high frequency of transformation to MNs. The natural

evolution from AA to MNs is usually a long-term process (11–14)

and is frequently attributed to genetic damage or immune

exhaustion due to an inflamed BME (15–18). However, leukemic

transformation can occur during or shortly after IST (19–23).

Effective treatment of underlying infections can also induce

leukemic transformation (33–35). Prior to the emergence of

symptomatic MNs, patients usually experience a short duration of

hematological remission. Leukemic transformation shortly after IST

or treatment of underlying infections may better reflect the intrinsic

relationship between AHF and MNs with regard to the influence of

the host immunological state on the disease phenotype. This is

because IST and treatment of underlying infections can rapidly

change the host immune state without inducing novel genetic

damage. An aplastic crisis with leukemic cell regression in

definitively diagnosed MNs during inflammatory episodes

provides a more persuasive argument for the influence of the host

immune state on the disease phenotype (35, 36).
How should we interpret BM-predominant
autoimmune impairment in AHF when
considering the very high prevalence of
chronic inflammatory disorders in the
gastrointestinal tract and other
organ systems?

A reasonable explanat ion is that , s imi lar to the

microenvironment in solid tumors (233, 234, 272, 279), primary

autoimmune pathogenesis targets specific antigens or DAMPs on

HPCs or other blood cells in the BM, regardless of whether the

targeted antigens are infectious (84–87) or neoplastic (95–102).

Interactions between autoimmune CTLs and targeted antigens (50,

59, 100, 232) or between innate immune cells and DAMPs (95–98)

evoke an inflammatory background in the BME (27, 93, 94, 236),

which determines the BM-predominant autoimmunity. Defects in

HPCs (77) and derangement of immune responses (78) are present

not only in active SAA but also in hematological remission

following IST, which suggests that intrinsic abnormalities in

HPCs are responsible for the primary autoimmune response. Like

patients with AA (326–331), patients with MDS and AML have also

been shown to have a high frequency of autoantibodies that can

bind erythrocytes, erythroblasts, and platelets (42, 99–102, 258),

and autoantibodies against hematopoietic progenitors can directly

induce Th1 immune responses (100, 102, 332, 333). Patients with

these autoantibodies frequently present with hypoplasia and
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absence of dysplasia, which resembles a clinical phenotype observed

in patients with AA (21, 42, 102).
How should we interpret leukemic cell
regression in the SAA stage and their
dysregulated proliferation after the
successful control of underlying
inflammatory stressors?

A reasonable explanation is that targeted molecules are present in

leukemic blasts (50, 59, 88, 100, 102). Neoplastic epitopes from

genetic or epigenetic products of transformed HPCs (42, 93, 95, 97,

100, 232) are likely the targeting molecules responsible for the

primary inflammatory BME. However, effective repression of

leukemic blasts also requires the engagement of additional

inflammatory stressors that are strong Th1 responses for the

sustenance of antileukemic immunity (95, 161, 245, 246, 250). This

is perhaps due to the low immunogenicity of neoplastic antigens on

leukemic cells (255–258). Additional inflammatory stressors may

play a role in sustaining a systemic inflammatory state (201–203),

which together with the primary inflammatory BME creates an

inflammatory niche with an intensity sufficient to repress normal

and leukemic hematopoieses and synergistically forms the

characteristic immunological signature in AHF. Th1 responses

repress granulopoiesis, erythropoiesis, megakaryocytopoiesis, and B

lymphopoiesis (311–317) in accordance with the cytological signature

in AHF (3, 4, 10, 240). Th1 responses from extramedullary infectious

diseases may preferentially strengthen antileukemic immunity in

these lineages. ICIs for the treatment of hematological and non-

hematological malignancies may also benefit from inflammatory

stress-powered antitumor immunity. The administration of ICIs

reverses the immune exhaustion state, promotes the infiltration of

proinflammatory immune cells into the tumor microenvironment,

and reduces the threshold for inducing effective antileukemic

immunity (272–275). Inflammatory strength in the tumor

microenvironment predicts the treatment response to ICIs (276–

280). However, effective antitumor immunity requires additional

antigen stimulation especially from the gastrointestinal tract (281–

285), and the dynamic microbial ecosystem is the most important

environmental factor for maintaining host immune homeostasis

(146–148). Some pathogenic (291–295) and commensal (296, 297)

microbes can stimulate Th1 responses, enhance ICI treatment-

induced antitumor immunity (301–303), and even directly

overcome the immune exhaustion state (298–300). This

mechanism may play a more important role in MNs because blood

cells are immune cells and their production is regulated largely in

response to pathogen invasion (307–310). During active

inflammatory episodes, TH1 immunity in response to invading

pathogens powers antileukemic effects, which results in the

regression of leukemic clones (33–36). After successful control of

inflammatory diseases, suppressive effects on leukemic clones are

mitigated and result in the penetration of morphologically

identifiable leukemic hematopoiesis (35).
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How should we interpret the very short
interval spanning the leukemic
transformation process when considering
that the development of symptomatic MNs
through the acquisition and accumulation
of novel oncogenic mutations is unlikely
within such a short interval?

A reasonable explanation is that leukemic clones preexist but

are repressed in AHF stages (19–27) and rapidly expand after the

resolution of inflammatory stressors (95, 245, 250, 254). The

persistence of autoantibodies (42, 99, 100, 258, 330) and

autoimmune responses (59, 78, 93, 273, 321) in AA, MDS, and

AML suggests that autoantigens are persistent and their

immunogenicity is less intensive. Leukemic clones cannot be

eradicated even in inflammatory stress-powered antileukemic

immunity, which is perhaps due to the low expression of

neoplastic antigens and immune molecules in dormant leukemic

cells (35, 245, 250, 254). During an inflammatory episode against

invading pathogens that can stimulate strong Th1 responses, a

patient’s immune system is mobilized, and the vulnerable immune

balance in adaptation to chronic inflammation is disrupted, which

results in the recall of antileukemic immunity and concealment of

leukemic blasts. This process is similar to that observed in

spontaneous remission in AML patients after an infectious

episode (35, 245, 250). During infectious episodes, patients

demonstrate positive immune responses and frequently

experience an aplastic crisis. After successful treatment of

underlying infections, dampened inflammatory stress-powered

antileukemic immunity leads to the expansion of previously

suppressed leukemic clones and facilitates the appearance of

symptomatic MNs, which is distinct from the naturally occurring

clonal evolution in AA (11–14) due to the acquisition of novel

somatic mutations and immune exhaustion in the chronic

inflammatory milieu (16, 17, 321, 323).
How should we interpret the short
duration of hematological remission before
the emergence of symptomatic MNs?

Prior to the emergence of symptomatic MNs, whether following

IST (19–23) or effective treatment of underlying infectious diseases

(33–35), patients experience a short duration of hematopoietic

remission. A reasonable explanation for this short remission

duration is that inflammatory stress-powered antileukemic

activities can simultaneously repress normal (54–57) and

malignant (245–254) hematopoiesis, which results in BM

hypoplasia/aplasia with the infiltration of autoimmune

lymphocytes and an increase in inflammatory intensity (34, 35).

The absence of leukemic blasts may be due to the preferential

repression of malignant proliferation (238, 239, 259, 260) and the

small number of nucleated blood cells available for the

identification of dysplastic features (232, 240, 324, 325). Following
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the effective treatment of underlying infections, inflammatory

stress-mediated antileukemic activities are mitigated, which leads

to the simultaneous proliferation of normal and leukemic

hematopoieses and transient clinical remission (33–35) due to the

prolonged proliferative cycle of damaged HPCs (334–336). Along

with an increase in leukemic cell burden due to dysregulated

proliferative capacity (5–8), leukemic cells compromise the

hematopoietic pool and outcompete their normal counterparts.

Normal hematopoiesis is subsequently suppressed (337–340),

which leads to the emergence of symptomatic MNs. The

panorama of inflammatory stress-powered antileukemic

immunity is better displayed in our reported patient with

definitively diagnosed MDS with excessive blasts-1 who developed

an aplastic crisis during an inflammatory episode (35). During the

aplastic crisis, leukemic blasts regressed with atypical lymphocyte

infiltration in the BM. Tentative antituberculosis treatment resulted

in not only the disappearance of the atypical lymphocytes but also

an increase in leukemic blasts.
How should we interpret leukemic
transformation during or shortly after
ATG-based IST?

Approximately 70%–80% of SAA patients respond to ATG-based

IST (19–23). However, dysregulation of the immune system and

defects in HPCs persist even in remission patients (77, 78), and

relapse eventually occurs in 30%–40% of responding patients (19–

23), which indicates that the primary pathogenic factor is not

removed by IST. In approximately 10%–15% of SAA patients, the

disease phenotype transforms to MNs. In some cases, leukemic

transformation occurs during or shortly after IST (19–23). Some

MN-related somatic mutations in the SAA stage predict a lower

frequency of deep hematologic response and a higher rate of disease

relapse and leukemic transformation. Non-responding patients carry

a higher frequency of these unfavorable mutations compared to

responding patients (21–24). The presence of MN-related genetic

aberrations influences treatment responses, which indicates that

genetic damage in HPCs plays an important role in eliciting

autoimmune pathogenesis. The pharmacologic role of ATG-based

IST in AHF treatment is to deplete effector CTLs and induce immune

tolerance; thus, IST functions as an immune suppressant to relieve

autoimmune impairment in HPCs (28–32). At the same time,

inflammatory stress-mediated antileukemic immunity can be

compromised. After IST, the number and size of somatic

mutations are massively increased (20, 42) due to the mitigation of

inflammatory stress-powered antileukemic immunity. From this

point of view, IST promotes the penetration of symptomatic MNs

by interfering with the process of immunological attack, which is

distinct from the removal of antigen stimulation by treating

underlying infections. However, their effects are similar. Both IST

and treatment of underlying infections can mitigate the intensity of

the inflamed BME and promote the penetration of symptomatic

MNs. Intriguingly, approximately one-third of patients who respond

to IST do not relapse or progress to MNs, which supports the

heterogeneous nature of the etiology and pathology that initiates
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and sustains autoimmune-mediated hematopoietic injuries. More

interestingly, transient genetic aberrations occasionally occur in a

paucity of patients after IST (19, 20). It is possible that some genetic

aberrations are not correlated with or not sufficient for leukemic

transformation (24, 25, 27).
Particular attention should be given to
gut inflammatory disorders and
disseminated tuberculosis in
AHF patients

Although patients with MNs may benefit from inflammatory

stress-powered antileukemic immunity, an excessive inflammatory

cascade and severe cytopenia can be harmful or even fatal. Like in

other AIDs (156–161), AHF pathogenesis necessitates an active

chronic inflammatory condition in addition to the inflamed BME

to sustain BM-predominant autoimmune impairment (90, 95, 161,

313, 315). When AHF patients present with active inflammatory

symptoms and their cytopenia is dramatically exacerbated,

identifying and disposing of inflammatory niduses are urgent tasks

that are needed to save patients’ lives. In this situation, particular

attention should be given to inflammatory diseases in the

gastrointestinal tract and disseminated tuberculosis. Tuberculosis

reactivation may be the result of an immune exhausted state and/

or the administration of immune suppressants. Disseminated

tuberculosis can worsen hematopoietic function and become a

major health problem in AHF patients.
Association of gut inflammation with
AHF pathogenesis

An association between AHF and gut inflammatory conditions

has long been proposed (89, 90, 341). Patients with AA have a

dysbiotic gut microbiota (342), and the immunological signature of

AA is the same as that of IBD (343), which suggests that AA and IBD

may share similar initiating factors and common pathogenic agents

(1, 2, 344, 345). A gluten-free diet for coeliac disease-associated

aplastic cytopenia (346) or resection of diseased colonic segments in

patients with neutropenic enterocolitis (347) can effectively relieve

hematopoietic suppression. In our previous report (348), two cycles

of intermittent hematopoietic recovery and disease relapse occurred

in a patient with refractory SAA following intermittent treatment

with a gut-cleansing preparation, which reinforces the definitive role

of gut inflammatory conditions in AHF pathogenesis. The

contribution of the gut microbiome to sustaining the pathogenesis

of graft-versus-host disease after allogeneic hematopoietic stem cell

transplantation, a pathogenic mechanism similar to that of AA and

frequently used to study AHF pathogenesis in animal models, was

reported several decades ago (161). In our retrospective study, all

patients with SAA had imaging abnormalities that reflected the

existence of chronic inflammatory lesions and acutely aggravated

inflammatory damage in the gastrointestinal tract during

inflammatory episodes and exacerbated cytopenia (349). Similar to
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non-hematological AIDs (156–160), growing evidence demonstrates

that the gastrointestinal tract is the most common inflammatory

nidus that sustains AHF pathogenesis in patients with a background

of an inflamed BME (89, 90). Aggravated gut inflammatory disorders

can strengthen the immune-active BME and suppress normal and

leukemic hematopoieses, which leads to AHF and regression of

leukemic clones (33–36). The effective treatment of gut

inflammatory conditions can ameliorate AHF (348) and promote

leukemic transformation (33).
Hematopoietic suppression by Th1
responses to tuberculosis

The Th1 immune response is the major mechanism involved in

defense against Mycobacterium tuberculosis, with IFN-g production

playing a pivotal role in combatingM. tuberculosis infection (291, 350,

351). IFN-g is the most important mediator of AHF development (55,

56, 240) and links AHF pathogenesis with chronic infectious diseases

that provoke Th1-predominant immune responses. Tuberculosis is one

of the most common chronic intracellular infections (106, 209, 315).

Over 90% of the world’s population has been infected by M.

tuberculosis. Despite great therapeutic advances, nearly a quarter of

individuals remain latently infected after the initial infection (352–354).

Latent tuberculosis can be reactivated under certain circumstances such

as with aging, undernourishment, prolonged psychological stress, long-

term administration of immune suppressants, or coinfections with

HIV or other pathogenic microbes (355–357). In this situation,

antituberculosis immunity by trained Th1 cells (291, 358), CTLs

(359, 360), NK/NKT cells (361, 362), unconventional lymphocytes

(363, 364), and even CD5+ B cells (365) can be recalled. These memory

immune cells rapidly expand and produce a substantial amount of

IFN-g, TNF-a, and other proinflammatory cytokines in response to

increased M. tuberculosis antigen load. Excessive proinflammatory

cytokines strengthen the primary immune-active BME and repress

normal and leukemic hematopoieses (34, 35, 106, 315). Antigens ofM.

tuberculosismay also cross-react with autoantigens on HPCs. With the

cross-reaction, reactivated effector immune cells induce an

immunological attack on HPCs and strengthen the inflamed BME

(88). Even in latent tuberculosis, chronic antigen stimulation may

persist due to the high heterogeneity of this chronic infection (356,

365–367) and fluctuations in host performance status, which leads to

fluctuating chronic inflammation.
The more important role of gut
involvement in tuberculosis infection

Disseminated tuberculosis (368–371) or even disseminated

BCG vaccination (372) can induce BM hypoplasia and peripheral

cytopenia. The fact that tuberculosis-induced AHF occurs only in

disseminated tuberculosis instead of in isolated pulmonary

tuberculosis suggests that tuberculosis can infect hematopoietic

tissues (373) or the gastrointestinal tract (34, 35, 181, 349). Gut

involvement and subsequent dysbiosis (181) likely play more

important roles in inducing systemic inflammatory disorders
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(374, 375). In our retrospective study investigating infectious

niduses during flared inflammatory episodes and accelerated

cytopenia, five of 17 recruited SAA patients had imaging

abnormalities suggestive of tuberculosis reactivation, all of which

involved inflammatory diseases in the gastrointestinal tract (349).

The incidence of tuberculosis reactivation may be even greater in

advanced MN patients (376–378). It is not surprising that there is a

high incidence of chronicM. tuberculosis infection in AHF patients

because patients with HLA-DR15 have weaker responses to M.

tuberculosis (379, 380), and AHF patients have a high frequency of

HLA-DR15 phenotype (52, 53). Gastrointestinal and even isolated

pulmonary tuberculosis can induce pathological processes in the

gastrointestinal tract, not only alone but also in combination with

gut dysbiosis, which results in diffuse gut inflammatory lesions (181,

381, 382). In this setting, both pathogenic and commensal (185,

186) microbes, in addition to M. tuberculosis infection (315, 316),

become exogenous antigens to sustain deranged immune responses.
Summary and perspective

Autoimmune responses in AHF may represent an inflammatory

stress-powered antileukemic mechanism, at least in a significant

proportion of patients whose pathogenesis is associated with MN-

related genetic aberrations. With age, the incidence of clonal

hematopoiesis increases, which is known as mutation-specific

adaptation to environmental stressors and is consistent with a high

incidence of AHF and inflammatory disorders in old age. However,

age-related clonal hematopoiesis also increases the risk of malignant

evolution (383–385). A dynamic balance between antileukemic

activities and negative immune regulators may play a more

important role in the suppression of transformed HPCs and the

maintenance of effective hematopoiesis in old age. In this process,

immune surveillance against neoplastic antigens or DAMPs initiates a

primary inflammatory background in the BME and may contribute to

the BM-specific autoimmune impairment. Extramedullary

inflammatory stressors generated from exogenous antigen

stimulation, especially from the gastrointestinal tract and chronic

intracellular infections, play a critical role in the sustenance of

autoimmune responses and the apoptosis of HPCs and promote the

development of AA-like syndrome.

Although AA and MNs are generally considered distinctive

disease entities, the phenotype of aplastic cytopenia can transform

into MNs and vice versa. The switch that shapes the disease

phenotype is a change in inflammation strength. During active

infectious episodes, leukemic blasts can regress due to the reversion

of the immune exhaustion state and the restoration of antileukemic

activities. At this time, patients manifest aplastic cytopenia. After

successful treatment of underlying infections, leukemic clones

rapidly expand, and patients manifest symptomatic MNs, which

commonly follow a short duration of hematological remission.

Miscellaneous microbes or even endotoxins can induce antitumor

immunity. This indicates that not antigen-specific stimulation but

rather inflammatory stressors in response to microbial invasion are

responsible for sustaining antitumor activities. Although they occur

through different mechanisms, the effect of ATG-based IST is
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similar to that of treating underlying infections. Spontaneous

remission in AML patients and non-specific immunological

therapies in treating hematological malignancies may share an

inflammatory stress-powered antileukemic mechanism.

An in-depth investigation of inflammatory stress-powered

antileukemic immunity is highly important for theoretical

research and clinical practice. Understanding the mechanisms of

immune surveillance against malignant proliferation and the

rational administration of immune-activating agents and ICIs in

the treatment of hematological malignancies will be helpful,

especially when aplastic cytopenia appears to be the major

adverse effect. Some pathogenic microbes can stimulate Th1

responses. Inoculation of vaccines from these microbes has direct

antileukemic effects and enhances ICI treatment efficacy. The

inflammatory stress-powered antileukemic mechanism raises

many questions.
Fron
1) Despite powering antileukemic immunity, chronic antigen

stimulation may further exhaust the host immune system

and upregulate the responsive threshold. These effects may

lead to a requirement for more intensive antigen

stimulation to achieve effective antileukemic strength,

which forms a vicious cycle and attenuates antileukemic

activities. This raises the question of how to take advantage

of non-specific inoculation for the treatment of MNs

without inducing immune exhaustion; intermittent

inoculation in combination with ICI treatment is likely a

superior option (348, 386, 387).

2) ICI treatments lower the response threshold, while

inoculations enforce the response strength. ICI treatments

in combination with inoculation may synergistically

reinvigorate missed antileukemic activities and further

enhance treatment efficacy. This combination therapy

may produce an overwhelming inflammatory cascade and

heavy hematopoietic suppression. This fatal side effect

raises the question of how to tip the balance between

benefits and severe toxicity and how to combine

immunological therapies.

3) While some commensal microbes can stimulate Th1

responses and exhibit antileukemic activities, some

microbes can suppress Th1 responses and favor the

maintenance of an immune exhaustion state. However,

the abundance and diversity of the gut microbiota are

cr i t ica l for the integr i ty and funct ion of the

gastrointestinal tract. Gut dysbiosis and excessive Th1

responses disrupt the intestinal integrity and barrier

function and induce gut inflammatory conditions (147,

183, 197, 345). Furthermore, chronic gut inflammatory

conditions can induce systemic immune dysregulation

and immune exhaustion. This raises the question of how

to exploit immune responses to “beneficial microbes” and

avoid severe gut inflammatory damage.

4) Both AHF and MNs are fatal diseases. The resolution of

inflammatory stressors by either IST or treatment of

under l y ing d i s ea s e s may l ead to phenotyp i c
tiers in Immunology 13
transformation from AHF to clinically overt MNs, which

complicates the patients’ disease course. This raises the

question of how to assess the benefits and risks of leukemic

transformation prior to IST. Additionally, underlying

inflammatory conditions should also be properly managed.

5) Different lineages of immune cells are regulated by different

cytokines in response to different antigen stimulation (307–

310). Blood cells are immune cells, and MNs can be derived

from different cell lineages (10). Some cytokines inhibit

certain lineages of leukemic clones but may promote the

proliferation of others (388). This raises the question of

what leukemic cells of origin can benefit from and which

ones may be promoted by the treatment with immune-

activating agents.

6) It is unclear what antigens are neoplastic, what neoplastic

antigens are immunogenic, and what intensity of

immunogenic antigens can provoke antileukemic

immunity. Although antileukemic immunity is powered

by non-specific antigenic stimulation and immunogenic

antigens responsible for antileukemic immunity may be

miscellaneous in different neoplasms, is there any

advantage in selecting an inoculation microbe with

epitopes that cross-react with neoplastic antigens if the

neoplastic antigens are identified?
Collectively, inflammatory stress-powered antileukemic

immunity warrants extensive investigation. This may explore a

new way of MN treatment. With in-depth investigations, many

questions will emerge, and better strategies for improving treatment

responses and managing adverse complications will be found.
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220. Kasperkiewicz K, Świerzko AS, Przybyła M, Szemraj J, Barski J, Skurnik M, et al.
The role of yersinia enterocolitica O:3 lipopolysaccharide in collagen-induced arthritis.
J Immunol Res. (2020) 2020:7439506. doi: 10.1155/2020/7439506

221. Nogai A, Siffrin V, Bonhagen K, Pfueller CF, Hohnstein T, Volkmer-Engert R,
et al. Lipopolysaccharide injection induces relapses of experimental autoimmune
encephalomyelitis in nontransgenic mice via bystander activation of autoreactive
CD4+ cells. J Immunol. (2005) 175:959–66. doi: 10.4049/jimmunol.175.2.959

222. Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T,
et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of
autoimmune arthritis in genetically susceptible mice. J Exp Med. (2005) 201:949–60.
doi: 10.1084/jem.20041758

223. Kohashi O, Kuwata J, Umehara K, Uemura F, Takahashi T, Ozawa A.
Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free,
and conventional rats. Infect Immun. (1979) 26:791–4. doi: 10.1128/iai.26.3.791-
794.1979

224. Tanaka A, Saito R, Sugiyama K, Morisaki I, Kotani S. Adjuvant activity of
synthetic N-acetylmuramyl peptides in rats. Infect Immun. (1977) 15:332–4.
doi: 10.1128/iai.15.1.332-334.1977

225. Fang J, Fang D, Silver PB, Wen F, Li B, Ren X, et al. The role of TLR2, TRL3,
TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal
autoimmunity model. Invest Ophthalmol Vis Sci. (2010) 51:3092–9. doi: 10.1167/
iovs.09-4754

226. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF,
Radstake TR, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of
T cells in a mouse model of arthritis. J Clin Invest. (2008) 118:205–16. doi: 10.1172/
JCI32639

227. Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, et al.
Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of
the literature and personalized risk-based prevention strategy. Ann Oncol. (2020)
31:724–44. doi: 10.1016/j.annonc.2020.03.285

228. Ceccarelli F, Natalucci F, Picciariello L, Olivieri G, Cirillo A, Gelibter A, et al.
Rheumatic diseases development in patients treated by anti-PD1 immune checkpoint
inhibitors: A single-centre descriptive study. Life (Basel). (2023) 13:877. doi: 10.3390/
life13040877

229. Harada T, Ohno N. Contribution of dectin-1 and granulocyte macrophage-
colony stimulating factor (GM-CSF) to immunomodulating actions of beta-glucan. Int
Immunopharmacol. (2008) 8:556–66. doi: 10.1016/j.intimp.2007.12.011

230. Hida TH, Kawaminami H, Ishibashi K, Miura NN, Adachi Y, Yadomae T, et al.
Effect of GM-CSF on cytokine induction by soluble beta-glucan SCG in vitro in beta-
glucan-treated mice. Microbiol Immunol. (2009) 53:391–402. doi: 10.1111/j.1348-
0421.2009.00139.x

231. Nissen C, Stern M. Acquired immune mediated aplastic anemia: is it
antineoplastic? Autoimmun Rev. (2009) 9:11–6. doi: 10.1016/j.autrev.2009.02.032

232. Purev E, Dumitriu B, Hourigan CS, Young NS, Townsley DM. Translocation
(8;21) acute myeloid leukemia presenting as severe aplastic anemia. Leuk Res Rep.
(2014) 3:46–8. doi: 10.1016/j.lrr.2014.04.002
frontiersin.org

https://doi.org/10.1016/j.chom.2011.10.004
https://doi.org/10.1016/j.chom.2011.10.004
https://doi.org/10.1146/annurev-med-010312-133513
https://doi.org/10.1146/annurev-med-010312-133513
https://doi.org/10.3390/ijms24010265
https://doi.org/10.1093/gastro/goac008
https://doi.org/10.1146/annurev-immunol-042718-041841
https://doi.org/10.1080/19490976.2018.1441662
https://doi.org/10.1016/j.autrev.2021.102777
https://doi.org/10.3390/pathogens9060431
https://doi.org/10.1016/j.biopha.2023.114620
https://doi.org/10.3389/fimmu.2023.1127743
https://doi.org/10.3389/fimmu.2020.01741
https://doi.org/10.1021/acs.jafc.2c02654
https://doi.org/10.2527/jas.50965
https://doi.org/10.1111/jgh.14987
https://doi.org/10.1111/jgh.14987
https://doi.org/10.1159/000492853
https://doi.org/10.1073/pnas.1917597117
https://doi.org/10.1073/pnas.1917597117
https://doi.org/10.1016/j.coi.2018.09.003
https://doi.org/10.1007/s11926-021-00986-z
https://doi.org/10.3389/fimmu.2021.624360
https://doi.org/10.1016/j.ijmm.2016.03.010
https://doi.org/10.1016/j.immuni.2017.06.010
https://doi.org/10.1097/QAD.0000000000002557
https://doi.org/10.1007/s12275-023-00044-6
https://doi.org/10.1007/s12275-023-00044-6
https://doi.org/10.1186/s13059-021-02482-0
https://doi.org/10.3390/microorganisms8020212
https://doi.org/10.1016/j.jped.2022.09.002
https://doi.org/10.1371/journal.pone.0260423
https://doi.org/10.1016/j.biopha.2004.04.009
https://doi.org/10.3390/medicina59020364
https://doi.org/10.3390/medicina59020364
https://doi.org/10.1016/j.autrev.2017.11.037
https://doi.org/10.1016/j.autrev.2017.11.037
https://doi.org/10.1007/s12026-016-8811-0
https://doi.org/10.1007/s12026-016-8811-0
https://doi.org/10.1038/sj.gene.6364329
https://doi.org/10.3760/cma.j.issn.0366-6999.20122723
https://doi.org/10.3390/ijms22084199
https://doi.org/10.1155/2020/7439506
https://doi.org/10.4049/jimmunol.175.2.959
https://doi.org/10.1084/jem.20041758
https://doi.org/10.1128/iai.26.3.791-794.1979
https://doi.org/10.1128/iai.26.3.791-794.1979
https://doi.org/10.1128/iai.15.1.332-334.1977
https://doi.org/10.1167/iovs.09-4754
https://doi.org/10.1167/iovs.09-4754
https://doi.org/10.1172/JCI32639
https://doi.org/10.1172/JCI32639
https://doi.org/10.1016/j.annonc.2020.03.285
https://doi.org/10.3390/life13040877
https://doi.org/10.3390/life13040877
https://doi.org/10.1016/j.intimp.2007.12.011
https://doi.org/10.1111/j.1348-0421.2009.00139.x
https://doi.org/10.1111/j.1348-0421.2009.00139.x
https://doi.org/10.1016/j.autrev.2009.02.032
https://doi.org/10.1016/j.lrr.2014.04.002
https://doi.org/10.3389/fimmu.2024.1339971
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1339971
233. Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-
Kozakiewicz AM. Cancer-associated inflammation: pathophysiology and clinical
significance. J Cancer Res Clin Oncol. (2023) 149:2657–72. doi: 10.1007/s00432-022-
04399-y

234. Sahu A, Kose K, Kraehenbuehl L, Byers C, Holland A, Tembo T, et al. In vivo
tumor immune microenvironment phenotypes correlate with inflammation and
vasculature to predict immunotherapy response. Nat Commun. (2022) 13:5312.
doi: 10.1038/s41467-022-32738-7

235. Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-
tumour functions of cGAS-STING signalling. Essays Biochem. (2023) 67:905–18.
doi: 10.1042/EBC20220241

236. Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone
marrow immune microenvironment in myelodysplastic syndromes. Cancers (Basel).
(2022) 14:5656. doi: 10.3390/cancers14225656

237. Vallelonga V, Gandolfi F, Ficara F, Della Porta MG, Ghisletti S. Emerging
insights into molecular mechanisms of inflammation in myelodysplastic syndromes.
Biomedicines. (2023) 11:2613. doi: 10.3390/biomedicines11102613

238. Hashimoto H, Güngör D, Krickeberg N, Schmitt J, Doll L, Schmidt M, et al.
TH1 cytokines induce senescence in AML. Leuk Res. (2022) 117:106842. doi: 10.1016/
j.leukres.2022.106842

239. Mucci A, Antonarelli G, Caserta C, Vittoria FM, Desantis G, Pagani R, et al.
Myeloid cell-based delivery of IFN-g reprograms the leukemia microenvironment and
induces anti-tumoral immune responses. EMBO Mol Med. (2021) 13:e13598.
doi: 10.15252/emmm.202013598
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