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With the continuous development of nuclear technology, the radiation exposure

caused by radiation therapy is a serious health hazard. It is of great significance

to further develop effective radiation countermeasures. B cells easily succumb to

irradiation exposure along with immunosuppressive response. The approach to

ameliorate radiation-induced B cell damage is rarely studied, implying that the

underlyingmechanisms of B cell damage after exposure are eager to be revealed.

Recent studies suggest that Notch signaling plays an important role in B cell-

mediated immune response. Notch signaling is a critical regulator for B cells to

maintain immune function. Although accumulating studies reported that Notch

signaling contributes to the functionality of hematopoietic stem cells and T cells,

its role in B cells is scarcely appreciated. Presently, we discussed the regulation of

Notch signaling on B cells under radiation exposure to provide a scientific basis to

prevent radiation-induced B cell damage.
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1 Introduction

Delayed recovery of the immune system after radiotherapy (RT) is one of the main

reasons for death in patients with malignant tumors. The higher the dose of ionizing radiation

(IR) used in radiotherapy, the more severe the impairment of the functioning of the immune

system. B cells are one of the highly sensitive cells to IR. B cells are derived from common

lymphoid progenitor (CLP) which can be differentiated from hematopoietic stem and

progenitor cells (HSPCs) in the bone marrow (BM). Even though Notch signaling is

essential for HSPCs and lymphocyte development, it is still important to in-depth

investigate how Notch signaling affects B cells injury and regeneration under irradiation.
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In the present review, we summarize the progression on the role of

the Notch signaling pathway in regulating B cells, which may be

applied to the immune system damage and recovery after

ionizing radiation.
2 Development and radiosensitivity
of B cells

With impressive outcomes, radiotherapy (RT) has been

extensively utilized in the treatment of B-cell malignancies (1). The

decrease of B cells counts in patients following radiotherapy has long

been recognized as a concern. RT has the potential to have both

immunostimulatory and immunosuppressive effects (2, 3). The

relationship between IR and the immune system is complicated (4).

The development and differentiation of B cells are regulated by genes

and external factors in the spleen and BM (5). The spleen, as the

largest immune organ, contains many B cells and subsets, which is

essential for immune regulation (6). The process of B cell

development in human is showed in Figure 1. In agreement with

previous findings in human, HSPCs in the BM can differentiate into

Preprogenitor B cells (Pre-pro-B cells), Progenitor B cells (Pro-B

cells), Precursor B cells (Pre-B cells), and immature B cells expressing

IgM through the rearrangement of immunoglobulin genes (7, 8),
Frontiers in Immunology 02
which is independent of antigenic stimulation, named antigen-

independent stage (8). The immature B cells are drained from the

BM to the peripheral and undergo differentiation into transitional B

cells (8, 9).

Transitional B cells play a key role in linking BM immature and

peripheral mature B cells (9). Human transitional B cells are

subdivided into two populations: transitional B cells of type 1

(T1) and type 2 (T2) (10–12). It has been demonstrated that in

the adult spleen T1 B cells develop into T2 B cells in 2 days (11–13).

After passing the transitional stage, they become mature B cells (12,

14). The transitional B cells development in mice is similar to

human (8, 12, 14). It is currently believed that peripherally

developed mature B cells can be divided into two types of B cells:

B-1 and B-2 (9, 15). B-2 B cells further differentiate into follicular B

cells (FoB) and marginal zone B cells (MZB) in the human (12, 16,

17), as shown in Figure 1. The multiple critical phases from the BM

of the central immune organ to the development of mature B cells in

the peripheral immune organs are considered to be important

targets for shaping the mature B cells pool (18).

How to maintain the homeostasis of sufficient B cells in the BM

and peripheral spleen B cell compartments is still unclear in

response to exposure to IR. It is known that lymphocytes among

blood cells are the most sensitive to radiation (19–22). B cells are

susceptible to radiation-induced apoptosis (4, 20, 23–25). Through
FIGURE 1

B-cell maturation and differentiation. In the BM, the B-lymphocyte lineage originates from hematopoietic stem cells (HSC) and progressively
differentiates into pre-pro-B, pro-B, and pre-B cells. Immature B cells leave the BM and transfer to the spleen for further development into
transitional B cells (T1/2). Mature B cells are composed of B-1 and B-2 cells. B-2 cells are classified into FoB and MZB cells. MZB cells continue to
develop into plasma cells. IR induced DSB and ROS production. NHEJ is essential for the process of V(D)J recombination in Pre-B cells. Notch signal
(+) expression, (++) moderated expression, and (+++) high expression.
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determining the frequency of apoptosis in different lymphocyte

subpopulations of peripheral blood mononuclear cells (PBMCs)

under irradiated (24 h, 2 Gy), the following order of radiosensitivity

was observed: B cells > memory T cells > NK cells (26). According

to previous studies, different subpopulations of B cells have different

radiosensitivities (20, 26). For example, exposed to X-radiation(0, 1,

2, 3, 4, 5 Gy), the rank order of increasing sensitivity was pre-

B>pro-B>mature B cells (27). Furthermore, previous data had

shown that pre-B cells were ultra-sensitive to radiation and

underwent apoptosis at very low levels of radiation exposure (28–

30). Moreover, the population of T1 B cells in the spleen was

severely decreased 24 hours after irradiation (2, 8, 20 Gy) while the

population of T2 B cells was increased (27). To determine the

radioresistance of the mature B cell subsets, purified splenic B-2

cells and peritoneal B-1 cells were exposed to 2 Gy of irradiation

(27, 31). B-2 cells were found to rapidly undergo apoptosis

following irradiation, whereas B-1 cells maintained viability (31).

A deeper analysis of the sequence of the B cell receptor (BCR) has

shown that radiation induces alterations in B cells repertoire and

clonogenicity (32, 33). Radiation increases the differentiation of

nuclear plasma cells from tumor-antigenic B cells (34).

Immunosuppression and imbalance of immune homeostasis

induced by IR may lead to inflammatory responses and death in

exposed organisms (35). The spleen experiences histomorphologic

changes following radiation at varying doses (36). These changes

include a reduction in the splenic index, a shrinkage of the B cells

follicular zone, a decrease in the area of the red medulla oblongata,

dense and compact splenic trabeculae, aggravation of splenic white

medulla atrophy, and a massive decrease in lymphocyte counts

(36, 37).

Previous studies have shown that the main target of IR is

intracellular genetic materials (38), including direct damage such

as double-strand breaks (DSBs), single-strand breaks (SSBs), and

inter-strand crosslinks (ICLs) (39, 40). The generation of DSBs

induces replicative stress that disrupts the stability of the cellular

genome (41). DNA repair can be carried out through pathways such

as non-homologous end joining (NHEJ), which is the main

approach to repair damaged DNA in mammalian cells and occurs

throughout the cell cycle (42). NHEJ is required for the repair of

DNA double-strand breaks associated with the normal

physiological Rag endonuclease-related process of V(D)J

recombination, which is important for B-cell development (42–

44) (Figure 1). Once DNA repair defects are created, they will affect

hematopoietic and immune regulation, leading to bone marrow

failure (BMF) and immune system malignancies (45). X-ray

irradiation has been shown to cause an increase in the number of

micronuclei in mouse spleen and bone marrow cells, which is a

major damage of SSB and DSB (46, 47). Radiation may interact with

free or bound water (35) in the cell to generate reactive oxygen

species (ROS) (35, 48). Additionally, excessive accumulation of

ROS, a byproduct of normal oxidative metabolism in eukaryotic

cells is the main factor causing indirect oxidative stress (49, 50).

ROS damages to B cells by interfering with the structure and

function of DNA, lipids (51), and proteins (48, 52). A previous

study demonstrated that the overproduction of ROS after radiation

exposure resulted in the formation of apoptotic nuclei leading to
Frontiers in Immunology 03
cellular apoptosis, inducing neutrophil accumulation and

inflammatory response (53–55). Nuclear factor erythroid-2-

related factor 2 (Nrf2) as the major effector of ROS in the cell

regulates Notch activation to counteract the deleterious effects of

ROS, such as DNA damage and apoptosis (56, 57). Paul has

reported that ROS acts as a rheostat to regulate the Nrf2-Notch

pathway (56). To further confirm ROS regulation of Nrf2-Notch,

relevant studies have demonstrated that the delayed repair seen in

the NRF2-/- airway after injury was rescued by activation of Notch

(56, 58). NRF2 can expand HSPCs by activating Notch1 signaling in

irradiated mice after ROS (57). In the case of oxidative stress after

radiation, the large amount of ROS produced can activate the ROS-

Nrf2-Notch pathway to regulate cell proliferation and thus reduce

ROS level (56). To gain a better understanding of how Notch signals

are involved in radiation response, correlated studies have found

that knockdown of Notch1 or Notch2 increased the radiosensitivity

of glioma stem cells (59). In the acute setting, radiation has

previously been shown to increase endothelial Notch signaling,

especially Notch1 and Notch2 (60–62), which were supported by

the upregulation of the Notch pathway components Jagged1 and

Hey1 (59, 61). Kondelaji observed that 8 Gy of irradiation in

pulmonary endothelial cells increased transcription of Notch2

target genes Hes1 and Hey2 at 6, 24, and 72 h following

irradiation (62). These results further validate the important role

of the Notch pathway in the regulation of radioresistance,

sugge s t ing tha t Notch ac t i va t ion may be requ i r ed

for radioresistance.

In the aforementioned studies, we found that B cells and their

subsets were damaged to varying degrees after radiation exposure,

such as cell apoptosis. Therefore, the extensive generation of ROS

and the impact of DNA damage on B cells during radiotherapy still

require our attention. More studies indicated that the Notch

signaling pathway is activated under conditions of oxidative stress

induced by radiation (57). It is worth further investigating whether

the Notch signaling pathway, a crucial regulator in B cells lineage

development, plays a regulatory role in B cells after radiation injury.
3 Notch signaling pathway

The Notch signaling pathway is a G protein-coupled receptor

(GPCR) and enzyme-linked receptors-mediated meristem signaling

pathway controlling diverse aspects of the differentiation and

maturation of lymphocytes and HSC (63, 64). As shown in

Figure 2, the Notch signaling pathway consists of four components:

the receptors, ligands, the CSL DNA-binding proteins, and

downstream target genes (65). Currently, four Notch receptors are

known, namely Notch1, Notch2, Notch3, and Notch4. Five ligands

namely Jagged1, 2, and Delta-like ligands 1, 3 and 4 (63). Structurally,

the Notch receptor is a single transmembrane heterodimer consisting

of an extracellular ligand-binding domain and intracellular structural

domain (66), which constitutes a transmembrane region and the

intracellular part that mediates the receptor ligation signal (67, 68).

The extracellular region of the Notch receptor is an elongated

structure (69), the N-terminal end of the protein located outside

the cell contains multiple epidermal growth factor-like receptor
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(EGF-like receptor) repeats (63). The numbers of EGF-like repeats

vary among Notch family members (68). The EGF-like receptors are

followed by the negative regulatory region (NRR) (63), which

prevents premature signaling of the Notch receptor by blocking

protein hydrolysis cleavage sites (70). Near the transmembrane

structural region of the NRR are Furin protease cleavage site 1 (S1),

a disintegrin and metalloproteinase domain (ADAM) cleavage site 2

(S2), and a g disintegrin and metalloproteinase cleavage site 3 (S3)

(71). The RBP-Jk association module (RAM), ankyrin repeat

sequence (ankyrin, ANK), transcriptional activation domain (TAD)

(72), and proline/serine/threonine-rich motifs (PEST) are composed

of the intracellular domain of Notch receptor (ICN) (73–75). The

PEST structural domain located at the C-terminal end contributes to
Frontiers in Immunology 04
Notch degradation (73–75). The TAD is capable of autonomous

transcriptional activity and directly binds to the coactivators PCAF

and GNC5 (64, 76). Upon binding of the Notch receptor and ligand,

the Notch receptor is cleaved by ADAM family proteins at site 2 (S2),

followed by the cleavage of site 3 (S3) by g-secretase (77), which

ultimately releases the Notch intracellular domain (NICD), making

the NICD readily localized to the nucleus, where it binds to the

coactivator (Mastermind-like-1, MAML1) and the transcriptional

repressor, RBP-Jk, to promote the activation of target gene

expression such as Hes, Hey and Dtx gene families (78–80).

Notch signaling regulates B cells maturation depending on

RBP-Jk (also called REPJ), the sequence-specific transcription

factor, which is formed in B cells to promote B cells development
FIGURE 2

The protective effect of the Notch signaling pathway on B cells under irradiation exposure. After exposure to radiation, DNA damage and other
associated harmful effects can lead to B cells exhaustion. Following radiation injury, the activation of Notch and its related signaling pathways
facilitates DNA damage repair and promotes B cells survival. Subsequently, the relative enzymes are released and target specific sites (S1, S2, S3)
within the Notch signaling pathway for cleavage in order to generate NICD. Once NICD enters the nucleus, it can recruit MAML and RBP-Jk,
releasing corepressors and recruiting coactivators. This process promotes the transcription of Notch target genes, such as Hes, Hey, and Dtx.
Through the regulation of Notch signaling, it promotes the recovery of B cells after irradiation. NICD, Notch intracellular domain; RBP-Jk,
Recombination signal-binding protein for immunoglobulin kappa J region; MAMLs, Mastermind-like proteins.
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under certain special conditions (81–83). Interestingly, the ADAM

family is particularly important in regulating Notch signaling

activation involved in lymphocyte development and maturation.

It has been shown that ADAM10 is required for initiating Notch2

signaling in B cells and plays an important role in the development

of the entire marginal zone B cells lineage (84–86). In ADAM10

deficient gene mice, the expression of Dtx1 and Hes1, Hes10, and

other downstream target genes of the Notch signaling pathway were

significantly suppressed in T1 B and MZB (84, 85). Taken together,

Notch signaling, especially Notch2, is critical for proper B

cells development.
4 Expression of Notch receptors in B
cells and its subsets

The four Notch receptors have different functions in different

cells due to the specificity of their receptor structures (87). Notch1

and Notch3 are highly expressed in thymus T-cells (88). Notch4 is

less expressed in mouse B cells (89–91). In particular, it was recently

reported that Notch2 is mainly expressed in B-cells (92–94). In BM,

Notch1 signaling inhibits the developmental differentiation of

HSPCs to B cells, thereby promoting early T cells development

(72, 95). The inclination of Notch1 to promote T cells development

is more pronounced in the BM (96), thus prompting the inquiry

into how B cells respond to Notch1 signaling to sustain their own

developmental processes (97). The B-cell lineage factor Pax5 has

been identified as capable of inhibiting the expression of Notch1

and attenuating the tendency of T cell differentiation, thereby

ensuring the development of the B-cell lineage (98–100).

To further investigate the function of Notch on B cells

development, recent studies have suggested that Notch2 is

expressed throughout B cells development which is particularly

highly expressed on a subpopulation of spleen-matured B cells (101,

102). Notch2-mediated RBP-Jk signaling is essential for MZB

development (83, 103, 104). The data supporting a role for

Notch2 signaling in MZB were obtained using CD19-Cre

knockdown of the RBJ-Jk allele in B cells, which exhibited a

significant reduction in the number of MZB and a modest

increase in the number of FoB (83, 105).

The Msx2 interacting nuclear target protein (MINT) promotes

FoB development by interacting with RBP-Jk, thereby inhibiting

Notch-RBP-Jk-mediated signaling (90). MINT was found to be a

negative regulator of Notch/RBP-J-dependent signaling (90), and

more highly expressed in FoB than that in MZB (90, 106). MINT

deficiency resulted in more efficient differentiation of splenic B cells

into MZB with a concomitant decrease in FoB (92). Notch2

influences B cells lineage differentiation toward MZB and FoB by

regulating the expression profile of RBP-Jk (92). A related report

found that Notch2 expression was low in B-1 cells in the spleen, but

higher in B-2 cells including FoB and MZB (107–109). This is

further evidence that Notch2 plays a crucial role in late

developmental differentiation of B cells (103, 110, 111). Notch1 is

preferentially expressed in immature T cells (112–114) while

Notch2 is expressed in mature B cells (93), indicating that
Frontiers in Immunology 05
Notch1 and Notch2 have functionally distinct roles in the

lymphocyte development (93, 115–117). This is due to their

different expression patterns or specific regulation in

lymphogenesis (93). The function of Notch3, due to its low

expression levels in mouse B cells, is not clear during B cells

development (93). The distinguishing feature of Notch4 is its

reduced number of EGF repeats, absence of a transcriptional

activation domain, and lack of cytokine response proteins while

exhibiting robust expression in endothelial cells (118). The

activation of the Notch4 signaling pathway enhances the activity

of HSPCs and promotes the proliferation of immature T cells

lineage, resulting in impaired B cells development. These findings

indicate that Notch4 may impede the differentiation of HSPCs into

B cells (119, 120).
5 Regulation of irradiated-B cells by
Notch signaling

Since the body requires a sufficient number of lymphocytes for

immune monitoring (21), it is essential to maintain a pool of

primary lymphocytes at different stages (121). Radiation-induced

immunosuppression leads to the emergence of opportunistic

infections (121, 122). The damage caused by these infections can

be fatal depending on the radiation dose, dose rate, and duration of

exposure (122). Therefore, protection of immunoreactive cells from

radiation-induced damage is important for immune hemostasis.

Among these immune cells, B cells play a major role in the humoral

immune response. Extensive studies of B cells development have

helped to determine the severity of radiation damage to B cells at

various stages (21). Epidemiological data showed that exposure of

infants or young adult mice to IR increases the risk of precursor B-

cell tumors (123).

The impact of irradiation on B cells development was assessed,

revealing an augmentation in the populations of Pro-B and Pre-B

cells within the BM of irradiated mice, while a substantial reduction

was observed in the numbers of Pre-pro-B cells (124–126). Pre-B, as

the next cell subset in the developmental stage of Pro-B, is the

earliest type of cell to produce Pre-B cells signaling receptors (Pre-

BCRs), which stimulates the proliferation of developing B cells (33).

Interestingly, the numbers of immature B cells in BM significantly

decreased on 3 days after irradiation and reversed to a significant

increase after 14 days (30). The resistance to radiation exhibited by

Pro-B and later developing Pre-B may be related to the

differentiation stages of the cells. Differentiated cells are usually

more resistant to radiation than undifferentiated cells (127).

According to the aforementioned analysis, relevant studies have

revealed significant alterations in the total count of B lymphocytes

at various stages subsequent to total body irradiation (30, 128, 129).

Further analysis on these points showed that a significant increase

in immunoglobulin heavy chain rearrangements and a decrease in

immunoglobulin light chains in B cells 1-2 weeks after irradiation

(21, 128, 130, 131). Importantly, heavy and light chain

immunoglobulin genes were recombined by V(D)J and

rearranged at the Pro-B and Pre-B stages, respectively, depending
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on RAG-1 and RAG-2 DNA nucleic acid endonucleases (30, 132,

133). The body achieves DNA repair through NHEJ. Radiation

activates the DNA damage repair response pathway, which includes

the NHEJ pathway required for B-cell development (30, 133). This

suggests that after irradiation 1-2 weeks, the period of transition

from pro-B to pre-B cells, is a critical period for early B cell subsets

to process DNA damage repair (21, 134).

Although precursor B cells are highly sensitive to radiation-

induced DNA damage within 1-2 weeks (21). To attenuate

radiation-induced damage to the lymphatic system (135), a

subpopulation of B cells achieves rapid regeneration and

differentiation under the regulation of Notch signaling (27, 136).

Notch signaling is involved in the stages of early B-cell development

probably through the regulation of early B-cell factor (EBF) (121,

137). Pax5 functions to activate pre-B cell-restricted target initiation

factors (e.g. Cd79a, l5, V-preB, and B29) (137). A regulatory

network consisting of the transcription factors EBF1, Pax5, E2A,

and Foxo1 is closely associated with B-cell gene activation and

lineage formation (121). In this network, both EBF1 and Pax5 are

involved in B cell development by repressing genes (98, 121, 137–

139), which are associated with T cell lineage development (99,

121). Pax5 represses genes encoding cell surface receptors (99), such

as Notch1, while EBF1 represses genes encoding T cell lineage-

promoting transcription factors, such as TCF1 and GATA3 (82, 98–

100, 121, 137). EBF may be a key regulator of Notch signaling in

pre-B cells generation, mainly through genes encoding key

components of the pre-B cells receptor (99, 121, 140, 141). In

addition, 72% of the genomic binding sites in pre-B cells were found

to overlap with EBF1 binding sites (82, 121, 137). MZB expressing

EFB1 also requires Notch2 signaling for maintenance, suggesting

that Notch signaling activates these transcription factors involved in

B cells development (93, 121). To investigate whether different

Notch ligands influence early B-cell differentiation, Delta-1 and

Jagged-1 were found to have different effects on early B-cell

differentiation (128). Delta-1-4 signaling prevented Pro-B cells

differentiation while promoting the development of cell

populations with T/Nk progenitor cell phenotypes (128). In

contrast, Jagged-1 did not interfere with the development of

HSPCs to B lymphocytes (128, 134). To investigate the effects of

radiation on peripheral splenic B cells subsets, relevant data showed

that B-regs cells, memory B cells, transitional (T1, T2) B cells, and

mature B cells showed different degrees of reduction in numbers

within 24 hours after irradiation, whereas plasma cells differentiated

from MZB showed a high degree of resistance to radiation (8, 30,

142). BAFF signaling and NF-kB signaling are required for the

development of T2 B cells into FoB, which recirculates back to

secondary lymphoid organs through the bloodstream and

lymphatics (30, 93). Thus, FoB tends to be more genetically

diverse than MZB in terms of IgV(D) genes (93). FoB interacts

with T helper (Th) cells to form germinal centers, undergo class-

switch recombination (CSR) and somatic hypermutation (SHM),

and ultimately produce high-affinity antibodies or memory B cells

(62, 77). Moreover, Notch2 is important for the development of T2

B cells into MZB (93). MZB is located in the marginal sinus at the

outer edge of the splenic follicle, which is the junction of the red and

white pulp (80). MZB participates in the thymic-independent
Frontiers in Immunology 06
antigenic immune response, allowing for the production of large

numbers of IgM-producing, short-lived plasma cells (81). In

addition, ADAM10 has been shown to play a key role in Notch2-

mediated MZB development. Bone marrow transplantation of

irradiated mice with recombinant ADAM10 revealed that the

lymph nodes of the transplanted mice had normal lymphoid

structure and the MZB in the cortical area were restored to

normal (143). The study demonstrated that Notch-mediated

ADAM10 expression restored secondary lymphoid structures and

promoted the neogenesis of splenic germinal centers in irradiated

mice (84, 144). In the spleen, the Notch2 ligand (delta-like 1, DL1)

is present at high concentrations in the small splenic veins which is

considered a key activator of MZB development (82, 84).

6 Notch signaling pathway is involved
in recovery of B cells and HSPCs
under irradiation exposure

HSC is a type of cells with self-renewal and differentiation

potential in the hematopoietic system (145). It has been shown that

exposure to IR doses (>1 Gy) within a short period of time can cause

acute radiation sickness, with myeloid acute radiation sickness

being the most serious (146). IR inhibits the self-renewal of HSCs

and induces the senescence of HSCs mediated by an abnormal

increase ROS production, which leads to premature senescence and

dysfunction of HSCs (147). In addition, DNA damage induced by

IR results in abnormal proliferation and differentiation of HSCs

(147, 148), leading to hematopoietic-related diseases such as acute

myeloid leukemia (149). Accidental or intentional exposure to

moderate to high doses of IR leads to not only acute

myelosuppression, but also long-term residual hematopoietic

damage manifested as defective HSC self-renewal (150).

Correspondingly, it has been recently reported that mice exposed

to different doses of IR (2, 4, 6 Gy) within 1 month after exposure

had a decrease in the total number of HSPCs and a decrease in the

ability of colony formation in vitro (55, 150). Recent findings

proved that both endothelial cells and osteoblasts express Notch

ligands and promote ex-vivo HSPCs maintenance, suggesting that

direct ligand or receptor interactions are a key component of the

HSPCs ecological niche. In addition, conditional Notch1 deletion in

BM endothelial cells results in reduced HSPCs after irradiation.

These data proved for the importance of Notch signaling in

maintaining HSPCs in the BM (81, 151).

HSPCs are found in the BM which is the ultimate source of all

blood cell lineages (152). Although most hematopoietic lineages

develop in the BM, B cell is unique in that it must complete its

maturation in peripheral immune organs (153). Furthermore,

recent studies have unveiled that Notch signaling can regulate

HSC embryonic development, maintenance of “sternness”, and in

vitro expansion (152, 154). Notch signaling is not only involved in

the maintenance of hematopoietic homeostasis (155), but also

regulates the development of HSC and B lymphocytes.

Endothelial cells express various Notch receptors and ligands to

regulate hematopoietic reconstruction in the absence of

homeostasis (156, 157). Relevant studies have found that high
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purity novel Notch ligand heavy histone delta-like receptor 1 (D1R)

has the biological effect of targeting anchored endothelial cells and

activating the Notch signaling pathway (158). When the BM is

acutely or chronically damaged by ionizing radiation, its long-term

hematopoietic reconstruction ability is impaired (57). Recombinant

protein D1R has the ability to exogenously activate the Notch

signaling pathway, a classical pathway of hematopoietic cells

within the hematopoietic niche (158, 159). D1R promotes the

reconsti tution of HSPCs in radiation-damaged mice,

endogenously expands hematopoietic cell populations, and

contributes to the spectral remodeling of the lymphocyte cells,

thus improving the immunity of the body (158, 159).

The BM is the main tissue that produces HSPCs and carries

some of the transition from stem cells to differentiated cells,

including precursor cells for the different stages of B cells

development (160). The stem cells or precursor B cells in the BM

are highly susceptible to IR resulting in a dramatic decrease in

peripheral B lymphocytes. The hematopoietic system has a strong

repair and regenerative capacity. The feature compensates for the

decrease in stem cells and lymphoid precursor cells through

the activation of the Notch signaling pathway to reestablish the

hematopoiesis and maintain homeostatic balance of hematopoiesis

in vivo (21, 55, 161). It has been demonstrated that the potential role

of Notch in regulating the self-renewal of HSPCs and in

determining B cells fates (162). Indeed, a commitment of HSPCs

into the B lineage needs to inhibit the Notch1 signal (163). For

instance, when Pro-B cells undergo maturation in the BM, bone

marrow stromal cells secrete the cytokine CXCL12, which

effectively suppresses the expression of Notch ligands (144). With

the Pro-B cells continuing to develop, Notch signaling plays an

increasingly important role in subsequent developmental processes

(134). The differentiation of HSPCs into the B-cell lineage is

influenced by distinct Notch ligands and receptors, each playing

specific roles (162, 164, 165). For example, Delta-like ligands-1

(Delta 1), as the important Notch2 ligand, induces immature B cells

homing to the spleen, where Notch2 activation DLL1-mediated

induces immature B2 cells to differentiate into MZB (144).

However, the lower densities of Delta 1 in BM is inhibited B

lineage development because the induced Notch signaling was not

sufficient (162). Relevant researchers found that early B lineage was

strongly inhibited in the Delta 1 transgenic NOG mice (NOG-D1-

Tg) which have been irradiated 2.5 Gy and transplanted HSC (166).

Interestingly, the researcher also showed decreased numbers of B

cells in NOG-D1-Tg mice, a similar differentiation rate in B-cell

subsets was observed for both NOG-D1-Tg and non-Tg mice (166).

This implies that irradiation, in the presence of the Notch signaling

ligand Delta, reduced the number of early B cells in the BM, but did

not affect the differentiation capacity of B cells. Based on the above

studies, we speculate that the depletion effect of radiation on early B

cells in BM may be related to the insufficient number of Delta 1

ligands and the silencing of Notch signaling in early B cells. With

the continuous differentiation of B cell lineages (134) and the

activation of Notch signaling (144, 162), subsequent developing B

cells become increasingly resistant to radiation, such as plasma

cells (30).
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Most of the studies on the effects of radiation on the immune

system have focused on HSPCs and T cells, but little is known about

the influences of radiation on the development and differentiation

of B cells. B cells are a specialized class of antigen-presenting cells

that produces antibodies to mediate humoral immune responses

and activate a large number of cytokines involved in immune

regulation, inflammatory responses, and hematopoiesis. B cells

are one of the most radiosensitive cells in mammalian cells (4,

23–25)while the mechanisms involved in irradiation-induced B

cells damage are still unknown. Notch is an evolutionarily

conserved intercellular signaling pathway that regulates cellular

differentiation and function at different developmental stages in

the spleen, BM, thymus, etc. Interestingly, The Notch pathway has

an important role in inducing the development of Pro-B cells to

mature B cells during hemopoietic and immune system.

Our present review provides insight into B cells injury from IR

and how Notch signaling activates progenitors and precursor B cells

to initiate proliferation and differentiation by regulating

transcription factors, such as EBF and Pax5, to replenish

damaged B cells in a timely manner. Given that previous

research, it is conceivable that Notch regulates B cells to perform

non-homologous end-joining for repairing damaged DNA. It is

worthwhile to further study that effector B cells (plasma cells) are

highly resistant to radiation, which may provide a new idea for

radiation therapy of B cells malignancy.
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