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From immune checkpoints to
therapies: understanding
immune checkpoint regulation
and the influence of natural
products and traditional
medicine on immune checkpoint
and immunotherapy in
lung cancer
Yibin Zhou1, Fenglan Wang1, Guangda Li1, Jing Xu1,
Jingjing Zhang1, Elizabeth Gullen2, Jie Yang1

and Jing Wang 1*

1Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese
Medicine, Beijing, China, 2Department of Pharmacology, Yale Medical School, New Haven,
CT, United States
Lung cancer is a disease of global concern, and immunotherapy has brought lung

cancer therapy to a new era. Besides promising effects in the clinical use of

immune checkpoint inhibitors, immune-related adverse events (irAEs) and low

response rates are problems unsolved. Natural products and traditional medicine

with an immune-modulating nature have the property to influence immune

checkpoint expression and can improve immunotherapy’s effect with relatively

low toxicity. This review summarizes currently approved immunotherapy and the

current mechanisms known to regulate immune checkpoint expression in lung

cancer. It lists natural products and traditional medicine capable of influencing

immune checkpoints or synergizing with immunotherapy in lung cancer,

exploring both their effects and underlying mechanisms. Future research on

immune checkpoint modulation and immunotherapy combination applying

natural products and traditional medicine will be based on a deeper

understanding of their mechanisms regulating immune checkpoints.

Continued exploration of natural products and traditional medicine holds the

potential to enhance the efficacy and reduce the adverse reactions

of immunotherapy.
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1 Introduction

Lung cancer is the leading cause of cancer death and ranks the

second for the incidence rate worldwide, over 45% of lung cancer

patients are diagnosed at late stage (1, 2). Chemotherapy and

targeted therapy are widely used in advanced lung cancer

depending on the status of actionable driver mutations (3). Besides

directly killing tumor cells, clinicians are now concentrating on the

tumor microenvironment. It is reported that immunosuppressive

environment is related to poor treatment results (4). The tumor can

evade immune surveillance in this environment and easily

metastasize (5). Immune checkpoints are observed to be associated

with immunosuppressive environment. Programmed cell death 1

(PD-1) and programmed death-ligand 1 (PD-L1), the most studied

immune checkpoints, play essential roles in tumor progression (6, 7).

Other immune checkpoints like IDO (Indoleamine-2,3-dioxygenase)

and B7-H3 can also inhibit the immune reaction and promote lung

cancer progression (8–10). Immune checkpoint inhibitors (ICIs) are

now widely used for lung cancer treatment and have shown

promising therapeutic activities (11, 12).

Nevertheless, only a few patients can benefit from this therapy, and

the expression level of immune checkpoints such as PD-L1 is positively

correlated to the effect of ICIs (13). Natural products are promising

candidates to promote ICIs efficacy by upregulating immune

checkpoints expression. On the other hand, ICIs directly blockade

the interaction between immune checkpoints, while natural products

can interrupt checkpoints interaction by inhibiting their expression via

different mechanisms (14–16). Therefore, understanding the regulatory

mechanisms of immune checkpoints in lung cancer and mechanisms

of how natural products modulate immune checkpoint expression are

extremely significant for exploring novel approaches to inhibit immune

checkpoint expression and develop new drugs based on natural

products. In this study, we would like to summarize currently known

immune checkpoint regulation mechanisms in lung cancer and

introduce the effect of natural products and traditional medicine that

can influence immune checkpoints or promote immunotherapy in

lung cancer.
2 Immunotherapy in lung cancer

Immune check point inhibitors pembrolizumab, atezolizumab,

or cemiplimab can be used as first-line single-agent for metastasized

non-small cell lung cancer (NSCLC) patients with PD-L1

expression level ≥50% and negative driver gene mutation that

have recommended first-line targeted therapy according to the

NCCN guideline (17). Furthermore, NCCN also recommends

that metastatic NSCLC patients with PD-L1 levels of 1% to 49%

and negative driver gene mutation to use pembrolizumab alone as a

first-line therapy. Meanwhile, immune checkpoint inhibitors are

not recommended as single-agents in small cell lung cancer (SCLC).

Besides being used as a single agent in advanced NSCLC, immune

checkpoint inhibitors can combine with chemotherapy before or after

surgery. CheckMate 816 is a phase 3 randomized trial that discovered

neoadjuvant therapy with nivolumab plus platinum-doublet
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chemotherapy has a longer event-free survival time and higher

pathologic complete response rate, major pathologic response rate,

and overall response rate versus chemotherapy alone (18). Thus NCCN

guidelines recommends nivolumab plus platinum-doublet

chemotherapy as neoadjuvant therapy in resectable (tumors ≥4 cm

or node positive) NSCLC (17). NCCN guidelines also recommends

atezolizumab as an adjuvant therapy for patients who have previously

received adjuvant chemotherapy with completely resected stage IIB to

IIIA or high-risk stage IIA NSCLC and PD-L1 ≥1%, according to

clinical trial results from another phase 3 randomized trial-

IMpower010 which compared adjuvant therapy with atezolizumab

versus best supportive care in patients with resected early-stage NSCLC

(12). For extensive-stage SCLC, atezolizumab plus carboplatin plus

etoposide followed by maintenance atezolizumab, or durvalumab plus

etoposide plus (carboplatin or cisplatin) followed by maintenance

durvalumab as first-line therapy based on the clinical trial data from

two phase 3 randomized trials: IMpower133 or CASPIAN (11, 19–21).

In SCLC, the NCCN guidelines recommend carboplatin plus etoposide

plus atezolizumab as the first-line systemic therapy, followed by

maintenance atezolizumab for patients with extensive-stage SCLC,

based on the clinical outcomes of the IMpower133 trial (21–23).

According to the results from the CASPIAN trial, the NCCN panel

recommends durvalumab plus etoposide plus (carboplatin or cisplatin)

as a first-line systemic therapy option, followed by maintenance

durvalumab for patients with extensive-stage SCLC (20, 22) (11,

24, 25).

Although immunotherapy brings clinical benefits and gets

involved in first-line therapy, a large number of patients do not

respond to immune checkpoint inhibitors (26, 27). And for immune

checkpoint inhibitors used in adjuvant and neoadjuvant therapy, there

lacks a clearly defined best target population, which needs further

exploration (28). Immune-related adverse events (irAEs) also need

further research, the incidence of irAEs across agents and trials ranges

from 15% to 90%, and approximately 0.5% to 13% of them happened

severe irAEs which need immunosuppression or treatment

discontinuation in monotherapy (29, 30). In brieg summary, there

are still a lot of unsolved questions in immunotherapy requiring further

exploration to bring patients better outcomes and fewer adverse events.
3 Immune checkpoints regulation in
lung cancer

Most study of immune checkpoint regulation in lung cancer has

focused on the regulation of PD-L1. Therefore, in this section, the

regulatory mechanisms of PD-L1 are primarily discussed (Figure 1).
3.1 PD-L1 regulation

3.1.1 Epigenetic regulation
Epigenetic regulation can alter chromatin structure and control

the expression of PD-L1 by modulating the recognition and binding

between transcription factors and DNA elements instead of altering

the DNA sequence (31), for instance, epigenetic regulation of lung
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cancer PD-L1 involves gene amplification, DNA methylation, and

histone modifications.

3.1.1.1 Gene amplification

In NSCLC, around 1.9% of patients have PD-L1 gene

amplification and approximately 8.2% of them exhibit PD-L1

gene amplification at 9p24.1 which is associated with the JAK-

STAT pathway and concurrent amplification of the JAK2 gene

(32–34).

3.1.1.2 DNA methylation

DNAmethylation involves the covalent modification of cytosine at

the 5-position of nucleotides (35), regulates gene expression by

controlling chromatin structure, DNA stability, and conformation

(36). Study showed that TGF-b1 can inhibit the activation of

DNMT1 (DNA methyltransferase-1), thereby demethylating the

CD274 (PD-L1) promoter to upregulate PD-L1 expression (37).

However, studies suggest that methylation negatively correlates with

PD-L1 expression in NSCLC biopsies, yet the correlation is relatively

weak, the role of methylation in PD-L1 expression remains contentious

and the potential benefits of demethylation therapy combined with

immunotherapy remain debatable (38).

3.1.1.3 Histone modification

Histone methylation plays a role in regulating the expression of

PD-L1. Combined with histone methyltransferase, EZH2

(Enhancer of Zeste homolog2) can suppress PD-L1 expression by
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increasing trimethylation of histone H3K27 at the promoter, which

is a regulatory mechanism that depends on HIF-1a in lung

cancer (39).

Histone acetylation also plays a role in the regulation of PD-L1

expression. In drug-resistant A549/CDDP cell line, the downregulation

of COP1 (E3 ligase constitutive photomorphogenesis protein 1)

promotes the activation of the JNK/c-Jun pathway, subsequently

inhibiting the expression of histone deacetylase 3 (HDAC3). This

ultimately enhances the acetylation of histone H3 at the CD274

promoter resulting in the upregulation of PD-L1 expression (40).

Also, a positive correlation has been observed between elevated PD-

L1 expression in cisplatin-resistant NSCLC patients and c-Jun

expression while a negative correlation exists with HDAC3 (40).

However, another study suggests that the application of HDAC

inhibitors can downregulate PD-L1 expression levels in afatinib-

resistant NSCLC patients (41). Another research observed a positive

correlation between HDAC10 and PD-L1 expression levels in

NSCLC patients through immunohistochemistry (42). These

findings contradict results mentioned above, indicating the need

for a further understanding of the role histone acetylation playing in

PD-L1 regulation.

3.1.2 Transcriptional regulation
3.1.2.1 Oncogenes regulation
3.1.2.1.1 KRAS

KRAS mutations have been found to upregulate PD-L1

expression through the MAPK pathway, in which AP-1 family
FIGURE 1

Overall regulatory mechanisms of immune checkpoints in lung cancer. Abbreviation: IDO= Indoleamine-2,3-dioxygenase; IL-6= Interleukin-6;
MUC1-C= Mucin 1-C; TTP= AU-rich element-binding protein tristetraprolin; UROD= Uroporphyrinogen Decarboxylase; eEF2K= Eukaryotic
Elongation Factor 2 Kinase.
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plays a vital role. Chen et al. found that the upregulation of PD-L1

in KRAS mutation lung adenocarcinoma is correlated with p-ERK

regardless of p-AKT (43). Sumimoto et al. further discovered that

KRAS mutations enhance PD-L1 transcription through the MAPK

pathway by binding the downstream AP-1 component cJUN to the

CD274 enhancer (44). KRAS mutations were identified as an

independent factor inducing PD-L1 expression in the study of

premalignant human bronchial epithelial cells, regulates PD-L1

expression through the MEK-ERK pathway and part of the

MAPK pathway, with downstream involvement of the AP-1

family member FRA1 (FOS-related antigen 1) (45).

3.1.2.1.2 EML4-ALK

The EML4 (Echinoderm microtubule-associated protein like-4)

- ALK (anaplastic lymphoma kinase) fusion has been detected in

approximately 4-8.1% of NSCLC patients (46, 47). A study

discovered lung adenocarcinoma patients with EML4-ALK fusion

have higher levels of PD-L1 on tumor cells than patients without

EML4-ALK fusion. The expression of PD-L1 of patients with the

EML4-ALK fusion is positively correlated with p-ERK, p-STAT3,

and p-AKT (48). Hong et al.’s research indicates that EML4-ALK

fusion upregulates PD-L1 expression through the p-ERK1/2 and p-

AKT signaling pathways, but it is not associated with the JAK3/

STAT3 pathway (49). A study of lung adenocarcinoma

demonstrated that EML4-ALK fusion can upregulate p-STAT3

levels, then p-STAT3 upregulates PD-L1 expression by binding to

the CD274 promoter. Additionally, EML4-ALK fusion can

upregulate HIF-1a under hypoxic conditions, and inhibit HIF-1a
ubiquitination and degradation. Then HIF-1a binds to the CD274

promoter to upregulate PD-L1 expression. The authors also

emphasized the synergistic role of HIF-1a and STAT3 in

promoting PD-L1 expression under hypoxic conditions (50).

MAPK, JAK-STAT, and PI3K-AKT pathways involved in EML4-

ALK regulated PD-L1 expression, and HIF-1a effective at

specific conditions.

3.1.2.1.3 EGFR

Akbay et al. initially mentioned a positive correlation between

EGFR mutations and PD-L1 expression, however, their study did

not further focus on EGFR mutations’ mechanisms regulating PD-

L1 expression until subsequent research explored that (51). Studies

suggested that EGFR mutations can upregulate PD-L1 expression

through the AKT-STAT3 and p-ERK1/2/p-c-Jun pathways (52, 53).

Okita et al. found that the baseline expression of PD-L1 in NSCLC

was positively correlated, while EGFR levels negatively correlated

with HER2 levels. However, EGF-induced PD-L1 expression was

merely associated with EGFR levels. Both baseline and EGF-

induced PD-L1 expression were partially associated with the

PI3K/AKT and JAK/STAT pathways (54). In EGF-stimulated

EGFR mutant NSCLC, EGF induced IL-6 secretion, and IL-6,

subsequently induced PD-L1 expression through the JAK/STAT3

pathway (55). Guo et al.’s research suggested that EGFR mutations

regulate PD-L1 expression through multiple pathways with

interconnections among them, including PI3K-AKT-mTOR-HIF-

1a, NF-kB, and the MAPK pathway (56). In lung adenocarcinoma

with EGFR mutations, the EMT-related receptor tyrosine kinase
Frontiers in Immunology 04
AXL was positively correlated with PD-L1 expression. Inhibition of

AXL kinase activity could downregulate PD-L1 mRNA (57, 58).

Other studies put forward that in EGFR tyrosine kinase inhibitors

(TKIs) resistant cells, PD-L1 levels were positively correlated with

E-cadherin and EGFR phosphorylation levels, yet the exact

mechanism remains unrevealed (59, 60). To summarize, EGFR

mutation regulates PD-L1 mainly through JAK-STAT, PI3K-AKT,

MAPK, and NF-kB pathways that interconnect with each other.

However, negative correlation between PD-L1 expression and

EGFR mutation levels are also proposed, so the regulation of PD-

L1 by EGFR mutations requires further research (61).

PD-L1 expression in EGFR mutant lung cancer cells is generally

higher than that in wild-type (62). However, research found that

PD-L1 expression was associated with the STAT3, AKT, and ERK

pathways in wild-type EGFR NSCLC, and ubiquitin ligases Cbl-b

and c-Cbl could downregulate PD-L1 expression by inhibiting

phosphorylation of STAT3/AKT/ERK pathways (63). The TUSC2

(also known as FUS1) gene can downregulate the activation of

multiple tyrosine kinases, including EGFR (64, 65). Cao et al. found

that TUSC2 in NSCLC could inhibit mTOR, thereby

downregulating PD-L1 expression, and Dai et al. suggested that

TUSC2 restoration in wild-type EGFR could downregulate PD-L1

expression through the mTOR pathway (66, 67). In wild-type EGFR

cells, tumor cell-intrinsic CTLA4 could upregulate PD-L1

expression through the MEK-ERK pathway downstream of EGFR

(68). Stutvoet et al. studied on non-EGFR mutant lung

adenocarcinoma, found that EGF could induce IL-6 secretion in

cells. IL-6, eventually induced PD-L1 expression through the

STAT1 pathway. The authors also suggested that the MAPK

pathway plays an essential part in regulating PD-L1 expression, as

it can upregulate PD-L1 mRNA expression and increase the

stability of PD-L1 mRNA (69). Generally speaking, PI3K-AKT,

JAK-STAT, and MAPK are the pathways that participate in the

regulation of PD-L1 in wild-type EGFR lung cancer.

Some studies have shown that EGFR TKIs can downregulate

PD-L1 expression levels. EGFR combined with gefitinib can lower

the expression of PD-L1 in EGFR mutant NSCLC through the NF-

kB pathway (62, 70). However, Okita et al.’s research indicated that

gefitinib cannot downregulate baseline PD-L1 expression which

caused by EGFR mutations, but can inhibit EGF-induced

upregulation of PD-L1. EGFR TKIs’ mechanism of regulating

PD-L1 still remains unknown (54).

Although most studies suggested a positive correlation between

EGFRmutations and PD-L1 expression, some studies indicated that

EGFR mutant patients have a lower response to PD-1/PD-L1

treatment (71–74). Anti-PD-L1 immunotherapy and EGFR TKI

treatment showed no synergistic effect but increasing toxicity in

clinical studies, which suggests more exploration of the regulation

of PD-L1 by EGFR in clinical applications (75, 76).

3.1.2.1.4 MYC

The MYC oncogene is overexpressed in 41% of NSCLC and is

associated with the loss of cell differentiation (77). Studies have

found a positive correlation between MYC expression levels and

PD-L1 levels. MYC can directly bind to the PD-L1 gene promoter,

then promote PD-L1 expression (78–80).
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3.1.2.1.5 PTEN

PTEN (phosphatase and tensin homolog) is a gene that functions

as a tumor suppressor by inhibiting the PI3K-AKT pathway. It is one

of the most common mutated tumor suppressor genes (81, 82). In

lung squamous cell carcinoma, approximately 15% of cases exhibit

PTEN mutations (83). Studies have shown that PTEN loss in lung

cancer is associated with high PD-L1 expression (84). The activation

of the PI3K-AKT pathway, regulated by PTEN, is often linked to the

upregulation of PD-L1 (4, 85). PTEN knockout significantly

upregulates the expression of PI3K-AKT pathway (81). Therefore,

current research suggests that the functional impairment of PTEN

primarily upregulates PD-L1 expression through the PI3K-

AKT pathway.

3.1.2.2 Signaling pathways
3.1.2.2.1 MAPK pathway

The MAPK pathway regulates PD-L1 expression in KRAS

mutation NSCLC and EGFR mutation mentioned previously.

Studies by Della Corte and Demuth have shown that the MAPK

pathway can control PD-L1 expression at the transcriptional level

by regulating PD-L1 mRNA levels (86, 87). It is found that MAPK

can stimulate PD-L1 transcription through NF-kB as it can bind to

the CD274 promoter to promote PD-L1 transcription, which

suggests complex regulatory interactions among different

pathways in PD-L1 regulation (86). The authors’ research further

indicates that inhibiting key factors of the MAPK pathway, such as

MEK, can increase the immunogenicity of tumor cells leading to the

upregulation of MHC-I (major histocompatibility complex class-I)

expression and increased mRNA levels of IFN-g, IL-6, IL-1B, and
TNF-a. Conversely, it downregulates the expression of other

immune checkpoint molecules like CTLA-4, TIM-3, and LAG-3,

thereby promoting various immune responses (86).

In addit ion to EGFR and KRAS mutat ions , MET

(mesenchymal-epithelial transition factor) amplification positively

correlates with PD-L1 expression. Inhibiting MET expression can

downregulate PD-L1 levels (88, 89). MET also regulates PD-L1

expression through the MAPK pathway (87). Nevertheless, MET

primarily regulates PD-L1 via the MAPK and PI3K/AKT pathways

rather than the NF-kB pathway in EGFR-TKI-resistant NSCLC

cells and whether NF-kB is involved in the MAPK pathway’s

regulation of PD-L1 requires further investigation (90).

3.1.2.2.2 Hippo pathway

The Hippo pathway regulates tumor immunity highly

associated with cancer (91). Several studies have indicated

activation of the Hippo pathway proteins YAP (Yes-associated

protein) and TAZ (WW domain-containing transcription

regulator 1) can upregulate PD-L1 expression in NSCLC. Further

research has shown that YAP and TAZ can form complexes with

TEAD family proteins, bind to the CD274 promoter or enhancer,

thus enhance PD-L1 expression (92–95). Other upstream factors

like PKA (protein kinase A) and LATS (large tumor suppressor)

also inhibit YAP and TAZ. In this regard, PD-L1 expression can be

promoted by upregulating TAZ/YAP (92, 95).
Frontiers in Immunology 05
3.1.2.2.3 ADORA1-ATF3 pathway

The ADORA1-ATF3 pathway also modulates the

transcriptional regulation of PD-L1. Research by Liu et al.

indicates that ADORA1 (adenosine A1 receptor) inhibition leads

to increase in ATF3 (cAMP-dependent transcription factor 3)

levels, which binds to the CD274 promoter and upregulates PD-

L1 expression (96).

3.1.2.3 Cytokines
3.1.2.3.1 IFN-g

The cytokine IFN-g is considered as a primary inducer of PD-L1

expression in various tumors (97, 98). Several studies have suggested

that IFN-g promotes the expression of IRF-1 (interferon regulatory

factor-1) by activating the JAK-STAT pathway in NSCLC. IRF-1 can

bind to the CD274 promoter and facilitate PD-L1 transcription (99).

Meanwhile, IRF-1 also plays a crucial role in both constitutive and

IFN-g-induced PD-L1 expression (100).

Lv et al. found that the JAK-STAT pathway activated by IFN-g
can promote the binding of TET1 (ten-eleven translocation

methylcytosine dioxygenase 1) to IRF-1, regulating IRF-1

demethylation and thereby promoting PD-L1 expression (101). Lai

et al. demonstrated a negative correlation between the methylation

levels of IRF1/7 and PD-L1 expression and Decitabine demethylates

IRF1/7 leading to the restoration of PD-L1 expression levels (102). In

contrast to IRF-1, IRF-2 competitively binds to the CD274 promoter,

inhibiting IRF-1’s ability to promote PD-L1 expression (103).

Gao et al. discovered that IFN-g affects downstream IRF-1 to

regulate PD-L1 expression through the JAK2-STAT1 pathway, and

participates in regulation through the PI3K-AKT pathway. Further

research indicated that the PI3K-AKT pathway also acts through

STAT1 to control PD-L1 expression in IFN-g-induced PD-L1

expression, emphasizing the primary role of the JAK-STAT

pathway and it suggested that STAT3 does not participate in

IFN-g-mediated PD-L1 regulation (104). It is mentioned before in

EGFR also demonstrated that IFN-g can induce PD-L1 expression

through STAT1, and inhibition of the EGFR pathway could

partially affect IFN-g-mediated PD-L1 expression (69). However,

another research suggested that IFN-g upregulates PD-L1

expression in lung adenocarcinoma cells through the PI3K/AKT

and JAK/STAT3 pathways, which need for further research support

to prove the potential of STAT3 in IFN-g induced PD-L1

expression (105).

Besides IFN-g, Morimoto et al. demonstrated that type I

interferon IFN-b increases STAT1 mRNA levels and ultimately

upregulates PD-L1 expression via IRF9 through the JAK1/2-STAT1

pathway and independently of the mTOR pathway (106).

3.1.2.3.2 HIF-1a
Hypoxia-inducible factor-1a (HIF-1a) is positively correlated

with PD-L1 mRNA and protein expression in NSCLC (56, 107,

108). In myeloid-derived suppressor cells (MDSCs) of LLC (Lewis

Lung Carcinoma) mice, HIF-1a can directly bind to the hypoxia-

response element (HRE) in the CD274 promoter, promoting PD-L1

transcription (109). As mentioned earlier, it has also been observed
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that HIF-1a can bind to the CD274 promoter to upregulate PD-L1

expression in EML4-ALK fusion NSCLC (50).

3.1.2.3.3 TGF-b
TGF-b is known to promote tumor epithelial-mesenchymal

transition (EMT) and inhibit anti-tumor immunity (110). It can

upregulate the expression of DC cell immune checkpoints PD-L1 in

an in vitro lung cancer microenvironment model (111). Researchers

found that TGF-b and TGF-b1 can increase PD-L1 expression in

NSCLC cells (112, 113).

David et al. further investigated how TGF-b1 upregulates PD-L1
expression. Their research indicates that TGF-b1 upregulates PD-L1
expression by enhancing PD-L1 transcription levels rather than

increasing PD-L1 mRNA stability. This upregulation process might

be dependent on Smad2. They found that the transcriptional start site

of CD274 has Smad-binding elements, suggesting that Smad2 might

upregulate PD-L1 expression by binding to the CD274 promoter, and

further research is needed to validate these results (114). The study

also suggests that in A549 cells, TGF-b1 may partially upregulate PD-

L1 expression through the PI3K pathway.

Interestingly, the research also indicates that TGF-b1 can regulate

microRNAs associated with PD-L1 mRNA regulation despite

experimental results suggesting that TGF-b1 cannot increase the

stability of PD-L1 mRNA (114). More research is needed to

understand how TGF-b regulates PD-L1 expression. Conversely, PD-

L1 can activate the TGF-b/Smad pathway and participate in primary

resistance to EGFR-TKIs in EGFR mutant NSCLC cells (115).

Moreover, studies have shown that TGF-b can impede the efficacy

of anti-PD-1/PD-L1 treatments, and the immunosuppressive effects of

TGF-b and PD-L1 are independent and complementary (116, 117).

Combining anti-TGF-b with anti-PD-1/PD-L1 therapies enhances the

therapeutic effectiveness and overcomes treatment resistance

(118–121). Therefore, the development of anti-TGF-b/PD-L1
bispecific antibodies, such as YM101, BiTP, and M7824, represents a

valuable direction in anti-tumor research (122–126).

3.1.2.3.4 Other cytokines

Other cytokines, such as IL-27, have been shown to upregulate

PD-L1 mRNA and cell surface protein levels in A549 cells (127).

Nevertheless, not all cytokines positively regulate PD-L1 expression.

For instance, research by Schalper et al. demonstrated that IL-10

does not impact PD-L1 expression, while Gao et al.’s study found

that IL-10 can inhibit IFN-g-induced STAT1 phosphorylation in

lung adenocarcinoma, thereby suppressing IFN-g-induced
upregulation of PD-L1 (128, 129).

Other mechanisms in transcriptional regulation include MUC1,

a frequently overexpressed transmembrane glycoprotein in NSCLC.

Its subunit, MUC1-C, can form a complex with NF-kB’s p65

subunit and bind to the CD274 promoter, thereby enhancing PD-

L1 expression (130).

3.1.3 Post-transcriptional regulation
Post-transcriptional regulation of PD-L1 is primarily achieved

through binding to the 3’ untranslated region (3’ UTR) of PD-L1

mRNA. The factors involved in this regulation are primarily

microRNAs (miRNAs) and a subset of other regulatory factors.
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MicroRNAs (miRNAs) generally exert their inhibitory effects

on target genes by binding to the 3’ UTR of mRNA, thereby

promoting their degradation or inhibiting their transcription.

Experimental evidence has demonstrated that microRNAs miR-

34, miR-140, let-7, miR-200, and miR-200a-3p can bind to the 3’

UTR of PD-L1 mRNA, thereby downregulating the expression of

PD-L1. miR-155-5p theoretically possesses binding sites in the 3’

UTR of PD-L1 mRNA but lacks experimental validation (131–137).

Other factors can regulate the expression of PD-L1 by

modulating the levels of these miRNAs. For instance, wild-type

p53 can bind to the promoter of miR-34, upregulating its expression

(136). Long non-coding RNAs (lncRNAs) often act as molecular

sponges, directly inhibiting miRNA function: Circ-CPA4 inhibits

let-7 (132), MALAT1 inhibits miR-200a-3p (133), lncRNA

LINC01140 can inhibit miR-377-3p and miR-155-5p, which are

predicted to bind to the 3’ UTR of PD-L1 mRNA (138). MiR-142

has potential binding sites in PD-L1 mRNA and can downregulate

PD-L1 expression, while lncRNA FGD5-AS1 acts as a molecular

sponge directly interacting with miR-142 (139). One of Circular

RNA (circRNA) named hsa_circRNA_002178 can also sequester

miR-34 (140). Additionally, the non-RNA factor ZEB1 (zinc-finger

E-box-binding homeobox 1) can relieve the inhibitory effect of

miR-200 on PD-L1 expression (137).

Apart from miRNAs, other factors can directly act on PD-L1

mRNA. One such factor is TTP (AU-rich element-binding protein

tristetraprolin), which can bind to the 3’ UTR of PD-L1 mRNA and

inhibit PD-L1 expression (141). In addition, the AU-rich element-

binding protein HuR, regulated by the Ang II (Angiotensin II)/

AGTR1 pathway, can stabilize PD-L1 mRNA by binding to its 3’

UTR, thereby upregulating PD-L1 expression (142). Furthermore,

research indicates that variant single nucleotide polymorphisms

within the binding sites in the 3’ UTR of PD-L1 mRNA can disrupt

this inhibitory effect (143).

Interestingly, miRNAs can not only directly regulate PD-L1

expression at the post-transcriptional level but can also indirectly

influence PD-L1 by modulating related pathways. For instance,

miR-135 can promote the phosphorylation of kinases in the JAK/

STAT pathway, leading to an upregulation of PD-L1 expression

(144). MiR-3127-5p has been found to increase PD-L1 expression

by promoting STAT3 phosphorylation (145). MiR-181a and miR-

940, by inhibiting the ubiquitin ligase Cbl-b and c-Cbl, activate the

STAT3/AKT/ERK pathway, resulting in elevated PD-L1 levels (63).

Additionally, miR-197 downregulates PD-L1 expression by

inhibiting the CKS1B/STAT3 pathway (146).

In addition, the long non-coding RNA (lncRNA) NKX2-1-AS1

can inhibit the transcription of CD274 (PD-L1) by preventing the

binding of NKX2-1 protein to the CD274 promoter (147). LncRNA

SNHG12 enhances the stability and expression of PD-L1 and USP8

mRNA by binding to HuR. Simultaneously, USP8, through

mediating deubiquitination, stabilizes PD-L1 protein (148).

3.1.4 Translational regulation
Currently, there is limited research on the translational

regulation of NSCLC PD-L1. Suresh et al.’s study suggests that

the deficiency of Uroporphyrinogen Decarboxylase (UROD) leads

to a shortage of heme, which in turn activates an eIF2a kinase called
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Heme-Regulated Inhibitor (HRI). Then, phosphorylated eIF2a
triggers a cascade of other kinases, inducing the integrated stress

response (ISR) and global translation initiation inhibition. Under

this stress, PD-L1 mRNA is preferentially translated. Moreover,

eIF2a promotes the bypass of inhibitory upstream Open Reading

Frames (uORFs), thereby facilitating PD-L1 translation (149). In

another study, Wu et al. demonstrated that Eukaryotic Elongation

Factor 2 Kinase (eEF2K) enhances the association between PD-L1

mRNA and active polysomes, leading to an upregulation of PD-L1

levels (150).
3.1.5 Post-translational regulation
Post-translational regulation of PD-L1 refers to the modulation

of the PD-L1 protein. It primarily involves processes such as

ubiquitination, phosphorylation, glycosylation, palmitoylation,

acetylation, and others, all contributing to regulating PD-L1 at

the protein level.
3.1.5.1 Ubiquitination regulation

Ubiquitination regulation encompasses both deubiquitination and

ubiquitination of PD-L1. Deubiquitinase USP22 deubiquitinates PD-

L1, preventing its proteasomal degradation (151). Furthermore, USP22

stabilizes CSN5, another deubiquitinase, through its deubiquitination

activity. CSN5 has been shown in other tumors to stabilize PD-L1

protein through deubiquitination (152). AndWang et al. suggested that

USP22 and CSN5 mutually enhance each other’s stabilizing effect on

PD-L1 (151). Zhu et al.’s research revealed that deubiquitinases can

upregulate PD-L1 protein levels in A549 cells. Their subsequent studies

in other non-NSCLC cell lines found that deubiquitinase OTUB1

deubiquitinates PD-L1 by cleaving K48-linked poly-ubiquitin chains,

stabilizing PD-L1. This study confirmed that OTUB1 can prevent the

endoplasmic reticulum-associated degradation of PD-L1 (153).

However, not all deubiquitinases act to stabilize PD-L1. Xiong

et al.’s research indicates that deubiquitinase USP8 downregulates

PD-L1 protein levels by targeting K63-linked deubiquitination

instead of K48-linked deubiquitination. More specifically, K63-

linked deubiquitination antagonizes K48-linked deubiquitination,

and deubiquitination of K63 leads to an increase in K48

ubiquitination. Therefore, USP8’s action is opposite to that of

OTUB1, which deubiquitates PD-L1 at K48, promoting the

degradation of PD-L1 protein (154). Nevertheless, USP8

mentioned above in lncRNA research suggests it can stabilize PD-

L1 protein, so whether USP8 promotes or inhibits PD-L1

expression remains further explored (148).

Research on PD-L1 ubiquitination regulation brings up new

points. The E3 ubiquitin ligase MARCH8 can interact with the N-

terminal region of PD-L1 and ubiquitinate it, promoting the

proteasomal degradation of PD-L1 (155). In other tumor types,

members of the CMTM protein family have been shown to inhibit

the ubiquitination of PD-L1 (156). In NSCLC-related research,

CMTM6 has been found to co-localize with PD-L1, preventing

PD-L1 from becoming a target of lysosome-mediated degradation

(157). On the other hand, E3 ubiquitin ligase TRAF6 promotes K63

ubiquitination to stabilize PD-L1 (154).
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3.1.5.2 Phosphorylation regulation

Phosphorylation and ubiquitination of the PD-L1 protein are

closely interconnected. Wu et al. found that the EGFR inhibitor ES-

072 can downregulate PD-L1 levels, and this process mainly

depends on the ubiquitination of PD-L1 at K48 which leads to

the proteasomal degradation of PD-L1. Further research revealed

that ES-072 activates GSK3a through the AKT pathway. GSK3a
phosphorylates PD-L1 at Ser279 and Ser283, and phosphorylation

of PD-L1 promotes E3 ubiquitin ligase ARIH1 to ubiquitinate PD-

L1 at K48. This demonstrates that phosphorylation and

ubiquitination of PD-L1 act synergistically to promote its

degradation (158).

Cha et al. discovered that AMPK can directly phosphorylate

PD-L1 at Ser195. This induces abnormal endoplasmic reticulum

mannose trimming during PD-L1 glycosylation, preventing PD-L1

from translocating to the cell membrane. Ultimately, this may lead

to a reduction in PD-L1 expression through endoplasmic-

reticulum-associated degradation (159).

The post-translational regulation of PD-L1 in NSCLC primarily

involves ubiquitination and phosphorylation. There is also research

indicating that mTOR can regulate PD-L1 expression by inhibiting

its lysosomal protein degradation (160). In other types of cancer,

there are additional modes of regulation, such as glycosylation,

palmitoylation, and acetylation (161–163). The multifaceted

regulation of PD-L1 post-translational regulation in NSCLC

requires further investigation. The PD-L1 regulation mechanisms

are summarized in Table 1.
3.2 IDO regulation

Indoleamine 2,3-dioxygenase (IDO) expression is identified as an

independent negative prognostic factor in cancer (164, 165). IDO

expression is associated with tumor-infiltrating forkhead box P3

positive regulatory T-cells (FoxP3+ Tregs) and is negatively

associated with CD8+ cytotoxic T-cells (165). Currently, research

on IDO regulation is rare. IL-27 can upregulate IDO mRNA levels

and cell surface protein levels in A549 cells (127). IL-6 activates

STAT3, which can bind to the IDO promoter, increasing IDO

expression. The elevated IDO, in turn, promotes the transcription

of IL-6 through AHR (aromatic hydrocarbon receptor), resulting in

increased IL-6 secretion. This establishes an IDO–AHR–IL-6–STAT3

loop to sustain IDO expression (166). COX-2 (cyclooxygenase-2)/

PGE2 (prostaglandin E2) pathway can support IDO1 constitutive

expression in NSCLC; downstream b-catenin and ETV4 can bind to

IDO1 promoter and promote IDO1 transcription (167).
3.3 GITRL regulation

Glucocorticoid-induced TNFR related protein (GITR) is

expressed in various immune cells including T cells and natural

killer cells. GITR can be activated by its ligand GITRL, leading to

increased resistance to tumors and viral infections (168, 169). In an

in vitro lung cancer microenvironment model, TGF-b has been
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TABLE 1 PD-L1 regulation in lung cancer.

Regulation type Regulators PD-L1 level References

Epigenetic regulation Gene amplification - ↑ (32–34)

DNA methylation TGF-b1 ↑ (37)

Histone methylation EZH2 ↓ (39)

Histone acetylation COP1 ↓ (40)

Transcriptional regulation Oncogenes KRAS ↑ (43–45, 160)

EML4-ALK ↑ (48–50)

EGFR ↑ (52–60, 63–69)

MYC ↑ (78–80)

PTEN ↑ (4, 81, 84, 85)

Signaling pathway MAPK ↑ (86, 87, 90)

Hippo ↑ (92–95)

ADORA1-ATF3 ↓ (96)

Cytokines IFN-g ↑ (69, 99–105)

IFN-b ↑ (106)

HIF-1a ↑ (56, 107–109)

TGF-b ↑ (112–114)

IL-27 ↑ (127)

Other MUC1 ↑ (130)

Post-transcriptional regulation microRNA miR-34, miR-140, let-7, miR-200,
and miR-200a-3p

↓ (131–137)

Other TTP ↑ (141)

HuR ↓ (142)

Translational regulation UROD ↓ (149)

eEF2K ↑ (150).

Post-translational regulation Ubiquitination USP22 ↑ (151) (152)

USP8 ↓ (154)

MARCH8 ↓ (155)

CMTM6 ↑ (157)

TRAF6 ↑ (154)

Phosphorylation GSK3a ↓ (158)

AMPK ↓ (159)
F
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LLC, Lewis lung carcinoma; TGF-b1, Transforming growth factor-b1; EZH2, Enhancer of Zeste homolog2; COP1, E3 ligase constitutive photomorphogenesis protein 1; KRAS, Kirsten rat
sarcoma viral oncogene homologue; EML4-ALK, Echinoderm microtubule-associated protein like-4-anaplastic lymphoma kinase; EGFR, Epidermal growth factor receptor; PTEN, Phosphatase
and tensin homolog; MAPK, Mitogen-activated protein kinase; IFN-g, Interferon-g; IFN-b, Interferon-b; HIF-1a, Hypoxia-inducible factor-1a; TGF-b, Transforming growth factor-b; IL-27,
Interleukin-27; MUC1, Mucin 1; TTP, AU-rich element-binding protein tristetraprolin; HuR, Human antigen R; UROD, Uroporphyrinogen Decarboxylase; eEF2K, Eukaryotic Elongation Factor
2 Kinase; USP22, Ubiquitin-specific protease 22; USP8, Ubiquitin-specific protease 8; MARCH8, Membrane-associated RING-CH 8; CMTM6, CKLF-like MARVEL transmembrane domain
containing 6; TRAF6, Tumor necrosis factor receptor-associated factor 6; GSK3a, Glycogen synthase kinase 3a; AMPK, Adenosine 5’-monophosphate-activated protein kinase. The up and
down arrows, respectively, represent PD-L1 upregulation and downregulation.
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shown to upregulate the expression of GITRL on DC cells (111).

Further exploration is needed to command more specific details of

mechanisms that can regulate GITR/GITRL in lung cancer.

4 Natural products targeting immune
checkpoints or combined
with immunotherapy

4.1 Natural products targeting the PD-1/
PD-L1 axis

Most research focuses on natural products targeting the PD-1/

PD-L1 axis in lung cancer. The strategy includes blocking the

interaction between PD-1 and PD-L1 and influencing PD-1/PD-

L1 expression (upregulation or downregulation).

4.1.1 Natural products block PD-1/
PD-L1 interaction

The interaction between PD-1 and PD-L1 can suppress the

proliferation, activation, and function of CD8+ T cells (170). The

combination of PD-1 and PD-L1 is reversible and the competitive

binding to PD-L1 or PD-1 can inhibit the interaction between these

immune checkpoints (171). The blockade of PD-1/PD-L1

interaction further restores T cells’ anti-tumor function (171).

Quercetin, a flavonoid derived from various fruits and

vegetables, can inhibit progression and enhance apoptosis in

various types of cancer (172, 173). Quercetin can inhibit the

interaction between His-HA-PD-1 and His-HA-PD-L1 with an

IC50 value of 5mM in the ELISA assay (174). Quercetin interacts
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with PD-L1 more strongly because the dissociation constant of

quercetin to PD-L1 is smaller than that to PD-1. It can enhance

PMBC cells to kill PD-L1 high-expressed NCI-H460 cells. The

researcher further proved that quercetin can inhibit PD-1/PD-L1

binding in HEK293 cells and suppress MDA-MB-231 xenografted

mouse tumor growth by reactivating T cells. Nevertheless, the effect

of quercetin inhibiting PD-1/PD-L1 in lung cancer needs

further exploration.

4.1.2 Natural products downregulate tumor cell
PD-L1 expression

Natural products can downregulate PD-L1 expression through

different mechanisms. Most of them regulate PD-L1 at the

transcriptional level, mainly through PI3K-AKT, JAK-STAT, NF-

kB, and p53 signaling pathways. Some natural products can inhibit

PD-L1 protein synthesis, promote PD-L1 protein degradation, and

promote PD-L1 extracellular secretion to suppress PD-L1

expression (Table 2). All these natural products aim to inhibit

tumor cells and activate immune cells.

Gallic acid, silibinin, and lycopene can inhibit PD-L1 expression

through PI3K-AKT signaling. Gallic acid is derived from fruits,

plants, and green tea (204, 205). It can prevent carcinogenesis,

inhibit cancer cell proliferation, and induce cancer cell apoptosis

(206, 207). Gallic acid can inhibit PD-L1 protein and mRNA levels

in A549 and H292 cells. Further study proves that gallic acid binds

to and therefore inhibits EGFR phosphorylation, binging about

PI3K/AKT phosphorylation reduction and its downstream p53

protein and mRNA expression increase, and finally, through miR-

34a to downregulate PD-L1 expression (175). Silibinin is extracted

from Silybum marianum, a plant traditionally used to treat liver
TABLE 2 Natural products inhibit PD-L1 expression on tumor cell.

Natural product Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

Gallic Acid PD-L1
Combine
with PD-
1 mAb

H292, A549 PD-L1 mRNA
and protein↓

PI3K-Akt Tumor cell growth and
survival↓

Activates the T-cell-
mediated immune

response
Enhance PD-1 mAb

natural plants,
fruits, and
green tea

(175)

Silibinin PD-L1 A549, H292, H460 PD-L1 protein↓ PI3K-Akt
JAK2-STAT5

Cell Proliferation
Migration and Invasion↓

Cell cycle arrest
and apoptosis↑

Silybum
marianum

(176)

Lycopene PD-L1
Combine
with PD-
1 mAb

LLC mice PD-L1↓ PI3K-Akt Enhance PD-1 mAb
Tumorigenesis ↓
Apoptosis ↑

CD4+/CD8+ ↑
Tumor volume ↓

Tomato (177, 178)

Fraxinellone PD-L1 A549, A549 mice Cell-surface
PD-L1↓

JAK1,JAK2-STAT3
mTOR
MAPK

Cell proliferation/growth ↓
Tumor volume ↓

Dictamnus
dasycarpus

(179)

EGCG PD-L1 A549, H1299, Lu99
mice inject NNK

Cell-surface PD-
L1 protein↓

JAK2-STAT1 Tumor growth↓
PD-L1 positive cell in

Green tea (180)

(Continued)
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TABLE 2 Continued

Natural product Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

PD-L1 mRNA
and protein↓

mice↓
Average tumor number ↓

Luteolin and apigenin PD-L1
Combine
with PD-
1 mAb

KRAS-mutant
H358, H460,
H2122, A549

Nude mice- inject
H358

C57bl/6J mice
inject LLC

PD-L1 mRNA
and protein↓

JAK-STAT3 Cell growth ↓ apoptosis↑
Enhance PD-1 mAb
Tumor volume ↓

Enhance PD-1 mAb
suppress tumor volume

Various fruits
and vegetables

(181–183)

Myricetin PD-
L1, IDO1

A549, NCI-
H1650, NCI-H460

PD-L1 mRNA
and protein↓
IDO1 mRNA
and protein↓

JAK-STAT - Ampelopsis
grossedentata

and
Xanthoceras
sorbifolia

(184)

Nobiletin PD-L1
Combine
with PD-
1 mAb

A549, H292, H460 Cell-surface PD-
L1 ↓

PD-L1 mRNA
and protein↓

JAK2-STAT3 Tumor progression↓
Enhance PD-1 mAb

citrus peels (185)

Oleic acid
and

oleoylethanolamide

PD-L1 A549 PD-L1 mRNA
and protein↓

JAK-STAT1 Apoptosis↑ olive oil (186)

Ursolic Acid PD-L1 A549, H460 PD-L1 mRNA
and protein ↓

JAK2-STAT3 Cell Proliferation↓
Cell Cycle Arrest
and Apoptosis↑

fruits and
medicinal
herbs

(187)

Butein PD-L1 A549, H292,
H460,

HCC827, H1975,
H1299, PC-
9, CT26

PD-L1 mRNA
and protein↓

Cell-surface PD-
L1 ↓

STAT3 Cell growth↓
Killing ability of T cells↑

Rhus
verniciflua
Stokes bark

(188)

Triptolide PD-L1 NCI-H460,
NCI-H1650

PD-L1 mRNA
and protein↓

Cell-surface PD-
L1 ↓

JAK1/2-STAT1/3
IRF-1

- Tripterygium
wilfordii
Hook. F.

(189)

Andrographolide PD-L1
Combine
with PD-
1 mAb

H1975, H1299,
H1650, H460,
BEAS-2B

PD-L1 mRNA
and protein↓

Cell-surface PD-
L1 ↓

STAT3 Cell proliferation↓
Apoptosis↑

Andrographis
paniculate

(Burm.f.) Nees

(190)

Ginsenoside Rg3 PD-L1 A549, A549/DDP
cell

(cisplatin-
resistance)

PD-L1 protein↓ Akt
NF-kB

Cell viability↓
Attenuated DDP

resistance
Apoptosis↑

Panax Ginseng (191)

Ginsenoside Rk1 PD-L1 A549, PC9
A549 mice

PD-L1 protein↓ NF-kB Cell growth↓
Cell apoptosis↑
Tumor volume ↓

ginseng (192)

Arsenic sulfide PD-L1 A549, A549/DDP,
A549/DDP mice

PD-L1↓ p53/miR-34a-
5p axis

Sensitivity of to DDP↑
Apoptosis↑

Tumor volume ↓

Realgar (193)

Evodiamine PD-L1
Combine
with PD-
1 mAb

H1975, H1650
H1975 or
LLC mice

PD-L1 mRNA↓
Cell-surface PD-

L1 ↓

through MUC1-
C/PD-L1 axis

Cell growth↓
Apoptosis↑ in vitro
tumor volume ↓

Enhance PD-1 mAb
suppress tumor volume
Improving survival

Tetradium (194)

Nemania sp.
EL006872 extract

(mainly radianspenes

PD-L1,
ICOSL,
GITRL

H1975 PD-L1 mRNA↓
Cell-surface PD-

L1 ↓

Inhibit PD-L1
expression

through AHR

Suppress cancer
cell proliferation

endolichenic
fungus

(195)

(Continued)
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diseases; it can suppress tumorigenesis in various cancer types and

inhibit lung cancer proliferation and angiogenesis (208, 209). Alexis

et al. proved that silibinin inhibits NSCLC cell PD-L1 expression

by suppressing PI3K/AKT molecular phosphorylation, and

silibinin also influences PD-L1 expression through JAK2/STAT5

signaling (176). Lycopene, mainly present in tomatoes, can block

AKT signaling by inhibiting AKT phosphorylation from

downregulating IFN-g induced PD-L1 protein and mRNA

expression in LLC cells (177, 178). Epidermal growth factor

receptor (EGFR) is the main receptor influencing PI3K-AKT

signaling; gallic acid and silibinin can bind to EGFR and inhibit

its phosphorylation, influencing the downstream signaling pathway

(175, 176).

Fraxinellone, EGCG, luteolin, myricetin, oleic acid, silibinin,

ursolic acid, butein, triptolide, and andrographolide can

downregulate the PD-L1 expression through the JAK-STAT

signaling pathway. D. dasycarpus is a traditional herb with various

medical functions (210–212). Fraxinellone, a limonoid extracted from

D. dasycarpus, can suppress the phosphorylation of JAK1 and JAK2

and then inhibit STAT3 transcription and phosphorylation, and it

also inhibits HIF-1a protein synthesis; both pathways can reduce
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PD-L1 expression (179). (–)-epigallocatechin gallate (EGCG) is the

main polyphenol in green tea whose cancer prevention effect has been

widely reported (213). EGCG can reduce the p-STAT1 level, and

further analysis showed that the reduction of p-STAT1 is highly

correlated to the down-regulation of cell-surface PD-L1. EGCG can

also influence the PI3K-AKT pathway, but this pathway failed to

reduce surface PD-L1 (180). Luteolin can be discovered in various

fruits and vegetables (181, 182). Luteolin and its derivative, apigenin,

can potentially enhance chemotherapy (214, 215). Jiang et al.

discovered that apigenin and luteolin inhibit cell surface PD-L1

and PD-L1 mRNA expression through downregulating STAT3

phosphorylation (183). Myricetin, also derived from various fruits

and vegetables, possesses immune regulation and anti-tumor effects

(216–221). Chen et al. discovered that myricetin inhibits PD-L1

protein and mRNA expression by inhibiting IFN-g induced STAT1

and STAT3 phosphorylation (184). Nobiletin is from citrus peels that

induce apoptosis function in lung cancer (222). Nobiletin

downregulated the phosphorylated EGFR, JAK2, and STAT3 to

suppress cell-surface protein and mRNA levels of PD-L1. Nobiletin

can also promote miR-197 expression, inhibiting the STAT3 pathway

(185). Oleic acid is an extract of olive oil and can be transformed in
TABLE 2 Continued

Natural product Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

C and D, and
dahliane D)

GITRL,
and ICOSL↓

Licochalcone A PD-
L1, IDO1

A549,
H1299, H1650

Cell-surface PD-
L1 ↓

IDO1 protein↓

Inhibition PD-L1
protein synthesis

- Glycyrrhiza
inflata Batalin

(196)

Berberine PD-L1 A549, H157,
H358, H460,
H1299, H1975,

LLC mice

Cell-surface PD-
L1 ↓

PD-L1 protein↓

Ubiquitinates PD-
L1 to induce

protein
degradation

Sensitivity of cancer cells
to T-cell↑

Tumor growth↓
Tumor volume ↓

Coptis
chinensis

(197)

Berberine PD-1/
PD-L1

Urethane-Induced
Lung Model

Serum PD-L1
level↓

Spleen T
lymphocyte
surface PD-
1 expression↓

- Attenuate
immunosuppressive

NLR level↓

Coptis
chinensis

(198)

SA-49 PD-L1 A549, NCI-H157,
NCI-H1975, NCI-

H1299, NCI-
H460, Lewis cells

PD-L1 protein↓ Induce PD-L1
lysosomal
degradation

Enhances the
cytotoxicity of T and NK

cells
Tumor volume ↓

Sophora
alopecuroides

L.

(199)

Platycodin D PD-L1 NCI–H1975,
NCI–H358

Cell-surface PD-
L1 ↓

PD-L1 protein↓

Triggers the
extracellular

release of PD-L1

Restore the Jurkat T
cells activation

Platycodon
grandiflorus
(Jacq.) A. DC.

(200)

Usnic acid PD-L1 A549 PD-L1 protein↓ - - Usnea
diffracta Vain

(201)

Lac water extract
(active components
laccaic acid A, B, C,

and E)

PD-L1 PC9, A549 PD-L1 protein↓ - - Kerria lacca (202)

Acorus calamus
L. Polysaccharide

PD-L1 LLC mice PD-L1↓ - Inhibit tumor growth
Tumor volume ↓

Acorus
calamus L.

(203)
LLC, Lewis lung carcinoma; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; AHR, aromatic hydrocarbon receptor. The up and down arrows, respectively, represent upregulation
and downregulation.
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the gut and become oleoylethanolamide (OEA) (223, 224). Oleic acid

has an anti-tumor effort, and oleic acid and OEA can block IFN-g
induced STAT1 phosphorylation to suppress PD-L1 protein and

mRNA expression (186). Ursolic acid, derived from many fruits and

herbs, inhibits cancer cell proliferation and autophagy (225–227).

Ursolic acid can bind to EGFR and block its activation, suppressing

downstream JAK2 and STAT3 phosphorylation. STAT3 can bind to

the CD274 promoter and promote PD-L1 mRNA synthesis, thus

upregulating PD-L1 protein expression (187). Butein is derived from

Rhus verniciflua Stokes bark, and it can inhibit tumor angiogenesis,

invasion, and metastasis (228, 229). Butein can inhibit STAT1

transcription and downregulate IFN-g induced PD-L1 expression

(188). Triptolide is extracted from Tripterygium wilfordii Hook. F.,

and Triptolide has been proven to regulate PD-L1 in other tumor cell

lines, such as breast cancer and glioma (230–232). Triptolide can

inhibit STAT3 to inhibit IFN-g induced PD-L1 expression; it also

inhibits JAK1 and JAK2 expression, STAT1 phosphorylation, and

IRF1 protein level, resulting in PD-L1 transcriptional inhibition

(189). Andrographolide (AD), extracted from Andrographis

paniculate (Burm.f.) Nees (A. paniculate), was reported to possess

anti-inflammatory and anti-cancer characteristics (233–235). AD can

downregulate IFN-g induced PD-L1 expression through

downregulating the phosphorylation of STAT3 (190).

Ginsenoside Rg3 and Rk1 can downregulate PD-L1 expression

through the NF-kB signaling pathway and Arsenic sulfide through the

p53 signaling pathway. Panax Ginseng is widely used in traditional

Chinese medicine to enhance immunity (236, 237). Ginsenoside Rg3

and Rk1 derived from Panax Ginseng can attenuate PD-L1 expression.

Rg3 and Rk1 inhibit the phosphorylation of p65, while Rk1 also

inhibits p65 expression and IKKa and IkBa phosphorylation, and

Rg3 can also affect PI3K-Akt signaling (191, 192). Realgar derivative

Arsenic sulfide (As4S4) has anti-tumor activities in several cancers

(238, 239). It suppresses PD-L1 protein expression by upregulating p53

and miR-34a-5p levels (193).

Evodiamine and Nemania sp. EL006872 can downregulate PD-

L1 expression through other mechanisms. Evodiamine is derived

from Tetradium with anti-tumor activity (240, 241). MUC1-C can

upregulate PD-L1 expression, and Jiang et al. discovered that

evodiamine downregulates MUC1-C mRNA and protein

expression and correlates with PD-L1 suppression (194). Nemania

sp. EL006872 is an endolichenic fungi isolated from lichen Bryoria

fuscescens (Gyelnik) Brodo and D. Hawksw; its secondary

metabolites (mainly radianspenes C and D, and dahliane D)

downregulate the aromatic hydrocarbon receptor (AHR) therefore

decreasing surface PD-L1 expression in benzo[a]pyrene treated

H1975 cells (195).

Licochalcone A, berberine, and SA-49 can influence protein

synthesis or degradation of PD-L1. Licochalcone A (LCA) is derived

from the root of Glycyrrhiza inflata Batalin. LCA induces apoptosis

and decreases viability in lung cancer cells. That LCA abolishes PD-

L1 protein synthesis induced by IFN-g was proved by Yuan et al.

using the Click-iT protein synthesis assay (196). Berberine is

derived from the traditional Chinese medicine Coptis chinensis

and has an anti-tumor effect with less cytotoxicity to normal cells

(242, 243). Berberine can ubiquitinate PD-L1 and induce PD-L1

protein degradation without influencing PD-L1 transcription (197).
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Platycodin D (PD), a natural product isolated from Platycodon

grandiflorum (244), decreases lung cancer cell surface PD-L1 levels

by triggering PD-L1 extracellular release (200). Aloperine, derived

from Sophora alopecuroides L., possesses an anti-tumor effect (245,

246). And its derivate, SA-49, was discovered can trigger PD-L1

degradation (199). Further exploration showed SA-49 inhibits

GSK3b activation, inactivated GSK3b enhanced MITF

transcription activity, and MITF finally promoted lysosome

biogenesis, triggering PD-L1 lysosomal degradation (199).

Usnic acid derived from Usnea diffracta Vain and Lac water

extract (active components laccaic acid A, B, C, and E) derived from

lac insects can downregulate PD-L1 protein expression in lung

cancer cells (201, 202, 247). While the researchers further explore

related pathways in other tumor cells, such as Hela cells and

melanoma cells, the mechanism of these natural products

regulating PD-L1 expression in lung cancer needs further

exploration. Acorus calamus L. Polysaccharide can suppress PD-

L1 levels in LLC mice but also needs further exploration of the

mechanisms (203).

4.1.3 Natural products upregulate tumor cell PD-
L1 expression

PD-L1 expression in tumor cells is closely related to the

effectiveness of anti-PD-L1 therapy; thus, some researchers sought

to find natural products that increase PD-L1 expression

(Table 3) (254).

Sophora alopecuroides Linn (SAL) is a Chinese herb with

immunomodulating and anti-tumor functions (255). Sophocarpine

(Sop) is one of the Alkaloids from SAL, and it can upregulate

ADORA1 and ATF3 expression to increase the mRNA and protein

level of PD-L1 (248).

Nagilactone E (NLE) is a diterpenoid derived from Podocarpus

nagi seed oil—which can inhibit NSCLC cell migration and invasion

(256, 257). NLE can promote the expression and phosphorylation of

JNK to phosphorylate c-Jun and then upregulatemRNA, protein, and

membrane PD-L1 expression (249).

Resveratrol is a polyphenol from fruits and vegetables. Studies

have found that resveratrol possesses anti-proliferation, anti-

migration, and enhanced chemotherapy properties. Resveratrol

can inhibit Axin2 transcription, destabilize b-catenin, and

promote b-catenin/TCF binding to CD274 promoter, thus

upregulating PD-L1 expression (250).

Z-guggulsterone (Z-GS), extracted from the gumresin of the

Commiphora mukul tree, can reduce growth and induce apoptosis

in cancer cells (258, 259). Z-GS can inhibit the farnesoid X receptor,

a transcription factor that inhibits PD-L1 expression, which is the

partial reason Z-GS promotes PD-L1 expression (260). Z-GS can

also activate PI3K/AKT (promote AKT phosphorylation) and

MEK/Erk1/2 (promote ERK phosphorylation) pathways to induce

PD-L1 expression (252).

Sponges extractive fascaplysin can upregulate PD-L1 expression

and enhance anti-PD-1 immunotherapy in NSCLC cells and LLC

tumor-bearing mice (253, 261). Fascaplysin combined with anti-

PD-1 immunotherapy promoted CD4+ and CD8+ T cell

infiltration. However, the mechanism fascaplysin influences PD-

L1 remains unclear (253).
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4.1.4 Natural products influence PD-1 or PD-L1
on immune cells

Some natural products can influence PD-1 or PD-L1 expression

on immune cells, providing another anti-tumor method (Table 4).

Tumor-educated DCs can inhibit CD4(+) T cell proliferation

and suppress T cell response, b-glucan can downregulate tumor-

educated dendritic cells surface PD-L1 expression in LLC mice,

which enhances priming of Th1 cells and CD8+ T cells while

decreasing Treg cell differentiation (262, 267). Cordyceps militaris

polysaccharide can inhibit M2 macrophage PD-L1 expression,

induce polarization of M2 macrophages to M1, and reverse the

immunosuppression effect of M2 macrophages on T lymphocytes

(263). Tussilago farfara L. Polysaccharides can decrease peripheral

CD274+ lymphocytes in LLC mice (264).

Platycodon grandiflorum (PG) is used as medicine for

pulmonary and respiratory diseases in traditional Chinese

medicine, and its immunomodulatory and anti-cancer effects

were widely reported (244, 268–272). Unlike other natural

products targeting PD-L1 expression on tumor cells, PG can

reduce PD-1 expression on the CD8+ T cell surface. Yang et al.
Frontiers in Immunology 13
discovered that PG could reduce STAT3 phosphorylation and

downregulate VEGF-A secretion in tumor cells. VEGF-A-VEGFR

axis can upregulate PD-1 expression on CD8+ T cells; thus, PG

indirectly inhibits CD8+ T cells PD-1 by inhibiting tumor VEGF-A

secretion (265).

Artesunate is extracted from Artemisia carvifolia. Xing et al.

discovered that Artesunate can upregulate PD-1 expression on

peripheral CD8+ or CD4+ T cells. Moreover, they discovered that

age over 60, lymphocytes>1.26×109/L, neutrophil to lymphocyte

ratio (NLR)<5, chemotherapy, and monocytes between 0.29-

0.95×109/L are positive factors that promote Artesunate induce

CD8+ cell PD-1 expression. Lymphocytes ≤ 1.26×109/L, NLR<5,

chemotherapy, monocytes between 0.29-0.95×109/L, and TNM

stage≤III are positive factors that promote Artesunate inducing

CD4+ cell PD-1 expression. Artesunate-induced PD-1 expression in

CD8+ or CD4+ T cells may improve the prognosis of patients

undergoing immune checkpoint inhibitor therapy (266). As

mentioned, berberine also downregulates spleen T lymphocyte

surface PD-1 expression and reverses the doxorubicin-induced

immunosuppressive microenvironment (197).
TABLE 3 Natural products promote PD-L1 expression on tumor cell.

Natural
product

Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

Sophocarpine PD-L1
Combine
with ICI

H1975, A549, LLC
LLC mice

PD-L1
protein ↑

ADORA1-ATF3 Tumor volume ↓
Enhance anti-PD-L1

immunotherapy suppress
tumor volume

Sophora
alopecuroides

Linn

(248)

Nagilactone
E

PD-L1 A549, NCI-H460,
NCI-H1975

PD-L1
mRNA
and

protein ↑
Cell-
surface
PD-L1↑

JNK-c-Jun May improve the PD-1/PD-
L1 antibody therapies

Podocarpus
nagi

(Thunb.) Pilg

(249)

Resveratrol PD-L1 A549, H1299 PD-L1
mRNA
and

protein ↑

Wnt pathway Suppressed T cell function in fruits
and

vegetables.

(250)

Resveratrol PD-L1 A-427, A549, HCC827,
NCI-H1299, NCI-H1581,
NCI-H1703, NCI-H358

PD-L1
mRNA
and

protein ↑

- Antiproliferative activity
against all the lung

cancer cell

in fruits
and

vegetables.

(251)

Z-
guggulsterone

PD-L1 A549, H1975, LLC
LLC mice

PD-L1
mRNA
and

protein ↑
Cell-
surface
PD-L1↑

Partly through FXR
inhibition

Partly by the activation
of the Akt and Erk1/2
signaling pathways

Inhibits cell viability
Tumor volume ↓

Commiphora
mukul tree

(252)

Fascaplysin PD-L1
Combine
with PD-
1 mAb

A549 and LLC cell PD-
L1

protein↑

- Promote CD4+ and CD8+
T cell infiltration when

combined with PD-1 mAb
tumor volume ↓

Enhance anti-PD-L1
immunotherapy suppress

tumor volume

Sponges (253)
LLC, Lewis lung carcinoma; FXR, farnesoid X receptor. The up and down arrows, respectively, represent upregulation and downregulation.
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4.2 Natural products targeting other
immune checkpoints

Natural products that target other immune checkpoints are

listed in Table 5. Astragaloside IV, erianin, dihydroartemisinin,

calotropin, and Berbamine Hydrochloride can target other immune

checkpoints besides PD-1 and PD-L1. Tumor-expressed IDO can

limit the anti-tumor function of cytotoxic T cells (278). Astragalus

membranaceus is a widely used herb in traditional Chinese

medicine with strong immune modulatory properties (279, 280).

Astragaloside IV extracted from Astragalus membranaceus can

inhibit IDO expression in IDO-overexpressed lung cancer cells,

upregulate co-cultured CD8+CD28+ cells, and downregulate Treg

cells (273). Erianin extracted from the Dendrobium Chrysostom

also can downregulate IDO mRNA and protein levels (274, 281).

Dihydroartemisinin (DHA), derived from the antimalarial drug

Artemisia annua, can downregulate B7-H3 expression (275, 282).

Calotropin isolated from Asclepias curasavica L can repress CTLA-

4 expression (276, 283). Berbamine Hydrochloride is derived from

Coptis Chinensis and has an anti-tumor function (284–286).

Berbamine Hydrochloride can activate Nox2 to resist lysosomal

acidification and, therefore, inhibit lung cancer cell autophagy,

which may potentiate the effect of chemotherapy (277).

Some other natural products that were described before

targeting the PD-1/PD-L1 axis also affect other immune

checkpoints: Nemania sp. EL006872 extract can downregulate

GITRL and ICOSL protein expression (195); Licochalcone A can

downregulate IDO1 protein expression (196).
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4.3 Natural products combine with other
therapies targeting immune checkpoints or
combine with immunotherapy

Natural products can combine with other therapies like

radiotherapy and chemotherapy and modulate immune checkpoint

expression. Natural products can combine with immune checkpoint

inhibitors to enhance the immunotherapy effect (Table 6).

Aconitum carmichaelii Debx, also called Fuzi in traditional

Chinese medicine; previous studies proved that Fuzi inhibits tumor

growth by improving immune responses (293, 294). Radiotherapy

increases lung cancer tissue PD-L1 mRNA and protein levels, while

Fuzi decreases it. Furthermore, when Fuzi combines with

radiotherapy, it can increase serum immune-promoting cytokine

(IL-2, IL-5, IL-6, IL-12) levels but decrease immune-suppressing

cytokine (IL-10, TGF-b) levels (287).
B7-H3 is an immune checkpoint overexpressed on tumor cells

and is positively related to poor prognosis and tumor progression

(295, 296). Astragaloside IV sensitizes lung cancer cells to cisplatin

by decreasing B7-H3 mRNA and protein levels (288).

Ginsenoside Rh2 and Rg3, both extracted from ginseng, can

downregulate lung cancer cells PD-L1 expression induced by cisplatin:

Ginsenoside Rh2 through PI3K/Akt pathway while Rg3 through PI3K/

Akt and NF-kB pathway (191, 289). Moreover, Rh2 and Rg3 can

attenuate cisplatin resistance and promote apoptosis in lung cancer cells.

Astragalus Polysaccharide Injection (PG2) is a prescription

drug that alleviates cancer-related fatigue (297). Shih et al. treated

lung cancer patients with immune checkpoint inhibitors (ICIs) and
TABLE 4 Natural products influence immune cells PD-1 or PD-L1 expression.

Natural
product

Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

b-glucan PD-L1 LLC mice Tumor-educated
dendritic cells
surface PD-L1 ↓

- Tumor volume ↓
Abrogated immune

suppression
CD4+PD-1+ T cells both
in the tumor and the
draining lymph nodes↓

from the cell
walls of

Saccharomyces
cerevisiae.

(262)

Cordyceps
militaris

polysaccharide

PD-L1 LLC mice M2 macrophages
PD-L1↓

- Anti-tumor effect
Tumor volume ↓

Cordyceps
militaris

(263)

Tussilago
farfara
L.

Polysaccharides

PD-L1 LLC mice Decrease
peripheral
CD274

+ lymphocytes

- - Tussilago
farfara L.

(264)

Platycodon
grandiflorum

PD-1
Combine
with ICI

LLC, H1975,
A549

LLC mice

PD-1 on CD8+ T
cells ↓

Indirectly reduces
PD-1 on CD8+ T
cells through the
VEGF-A–VEGFR-
2 axis in tumor

Tumor growth ↓
Tumor volume ↓

CD8+ T cell infiltration↑
Improving survival

Platycodon
grandiflorum

(265)

Artesunate PD-1 Patient CD8+、CD4+ T
cell

PD-1↑

- - Artemisia
carvifolia

(266)
LLC, Lewis lung carcinoma. The up and down arrows respectively represent upregulation and downregulation.
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PG2 or ICIs alone and found out that PG2 can decrease the patient

neutrophil-to-lymphocyte ratio (NLR). A low NLR is correlated

with a better prognosis (291). Salvia miltiorrhiza Bunge (Danshen)

extract cryptotanshinone, combined with anti-PD-L1 antibody, can
Frontiers in Immunology 15
make LLC-bearing mice tumor-free and increase CD45+

leukocytes, CD4+, and CD8+ T cells infiltration in tumors (292,

298). Some natural products, such as Platycodon grandiflorum and

Sophocarpine, have been reported to enhance the efficacy of anti-
TABLE 5 Natural products influence other immune checkpoints.

Natural
product

Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

Astragaloside IV IDO IDO-overexpressed
LLC mice

IDO mRNA
and protein↓

- Percentage of Tregs↓
Percentage of CTLs in

spleen↑
Tumor volume ↓
Improving survival

Astragalus
membranaceus

(273)

Erianin IDO 2LL IDO mRNA
and

protein ↓

- Cell proliferation↓
Cell invasion, metastasis,

and angiogenesis↓

Dendrobium
Chrysostom

(274)

Dihydroartemisinin B7-H3 A549, HCC827
A549 transplanted
nude athymic mice

B7-H3
protein ↓

- Cell growth and
migration↓
apoptosis↑

Tumor growth↓
Tumor volume ↓

Artemisia annua (275)

Calotropin CTLA-4 H358
H358 transplanted

nude mice

CTLA-4
protein ↓

- Cell growth, migration
and invasion↓
Apoptosis↑

Tumor volume ↓
Improving survival

Asclepias
curasavica L

(276)

Berbamine
Hydrochloride

NOX2 nude mice
xenograft

H1299, H1975

Nox2
activation

Resists lysosomal
acidification by
activating Nox2

Enhance killing effect of
chemotherapy

Tumor volume ↓

Coptis
Chinensis

(Ranunculaceae)

(277)
LLC, Lewis lung carcinoma. The up and down arrows, respectively, represent upregulation and downregulation.
TABLE 6 Natural products combined with other therapy.

Natural
product

Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Origin Reference

Fuzi PD-L1
Combine
with

radiation

LLC mice Reduce radiation
induced PD-L1
mRNA and

protein expression

- Enhance efficacy of
irradiation

Tumor volume ↓
Improving survival

Aconitum
carmichaelii

Debx.
(Ranunculaceae)

(287)

Astragaloside IV B7-H3
Combine
with

Cisplatin

A549,
HCC827,
H1299

B7-H3 mRNA and
protein ↓

- - Astragalus
membranaceus

(288)

Ginsenoside Rh2 PD-L1
Combine
with

Cisplatin

A549, H1299 Reduce cisplatin
induced PD-L1
mRNA and

protein expression

EGFR-PI3K-
AKT-mTOR

Enhanced Cisplatin-
Induced A549 Cell
Death, Apoptosis

Panax ginseng
C.A.

Meyer (Araliaceae)

(289)

Silibinin PD-L1
Combine
with

crizotinib

NCI-H3122
crizotinib

resistance cell

PD-L1 mRNA↓ JAK-STAT3 Reverses acquired
resistance to crizotinib

Silybum
marianum

(290)

Astragalus
Polysaccharide

Injection

Combine
with ICI

Patient - - Decrease NLR Not mentioned (291)

Cryptotanshinone Combine
with ICI

A549, LLC
LLC mice

- - Can eliminate tumor
tumor volume ↓

CD4+ and CD8+ T
cell↑, DCs↓

Danshen/Salvia
miltiorrhiza Bunge

(292)
LLC, Lewis lung carcinoma. The up and down arrows, respectively, represent upregulation and downregulation.
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PD-L1 antibodies, suppressing tumor growth (248, 265).

Evodiamine has shown the ability to enhance the effectiveness of

anti-PD-1 monoclonal antibodies (mAb), suppressing tumor

growth and improving survival in LLC mice (194). Luteolin and

apigenin have been observed to augment the impact of monoclonal

antibodies, leading to tumor growth suppression, enhanced survival

in LLC mice, and a notable increase in CD8+ T cells within the

blood, spleen, and tumor (183). Nobiletin has demonstrated its

ability to enhance PD-1 mAb treatment, promoting cytokine

secretion in peripheral blood mononuclear cells (PBMC) and

inducing greater tumor cell death (185). Lycopene has been

shown to enhance the impact of PD-1 mAb therapy, resulting in

increased tumor cell death, elevated production of anti-tumor

cytokines (IL-2, IFNg), and a higher CD4+/CD8+ ratio in the

spleen (178). Gallic acid can potentially enhance the impact of

PD-1 mAb treatment, leading to increased tumor cell death in a

PBMC co-cultured system and elevated PBMC IFN-g secretion

(175). Andrographolide has been found to potentiate the anti-

tumor effect of PD-1 mAb (190).
5 Traditional medicine targeting
immune checkpoints or combined
with immunotherapy

Traditional medicine can also influence immune checkpoints or

combine with immunotherapy (Table 7, Supplementary Table 1). Bu

Fei decoction is widely used in improving lung function, especially in

the Qi deficient condition. Bu Fei decoction can reduce mRNA and

protein levels of PD-L1 in tumor cells and reduce PD-L1 protein

expression in xenograft mouse lung cancer cells (299). HYR-2

(Huoxue Yiqi recipe-2) is formed from the traditional Chinese

medicine Ze Qi decoction. HYR-2 downregulates PD-L1 mRNA

and protein expression in H1975 cells and LLC-xenograft mice, and

further exploration shows HYR-2 inhibits PD-L1 through PI3K/Akt

signaling (300). Qingfei Jiedu decoction is used as a decoction treating

lung cancer (310). Pan et al. used Qingfei Jiedu decoction-containing

serum to treat A549 cells and observed that it could reduce cell PD-L1

expression by modulating EGFR, HIF-1, JUN, andNF-kB expression.

Moreover, Qingfei Jiedu decoction increases CD8+PD-1+ T cells,

which are regarded as activated T cells, in LLC-bearing mice spleen

(301). Qiyusanlong decoction can inhibit PD-L1 mRNA and protein

expression in tumor tissue and PD-1 mRNA and protein expression

in the spleen in LLC-bearing mice (302). The Feiji Recipe can reduce

spleen Treg cells in mice-bearing LLC transfected with IDO and

prolong mouse life span, and further research found that Feiji Recipe

can downregulate IDO in LLC mice (303, 304). Yu-Ping-Feng (YPF),

an ancient Chinese herbal formula, can inhibit IDO expression,

increase NK cell tumor infiltration, and enhance NK cell

cytotoxicity (305).

Lung Cancer Fang No. 1 was reported to improve immune

function in SCLC patients. Lung Cancer Fang No. 1 combined with

PD-1/PD-L1 inhibitor chemotherapy compared with using PD-1/PD-

L1 inhibitor chemotherapy can decrease CYFRA21-1, CA125, and

VGEF levels, increase CD4+, CD3+, and CD4+/CD8+ levels, and
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improve clinical symptoms (including cough, expectoration of sputum,

hemoptysis, chest tightness, fatigue, chest pain, and fever) in SCLC

patients (306). A clinical study on Jianpichuji Fang in combination

with ICIs for the treatment of advanced NSCLC was conducted (307).

The control group received sintilimab injection in combination with

platinum-based combination chemotherapy, while the experimental

group received Jianpichuji Fang in addition to the treatment used in the

control group. There was no significant difference in disease control

rates between the two groups after two treatment cycles. However,

patients in the experimental group showed a greater improvement in

KPS scores compared to the control group. Moreover, the incidence of

digestive system nausea symptoms and leukopenia was lower in the

experimental group than in the control group. In another advanced

NSCLC clinical study, Yanghe Decoction was used in combination

with ICIs (308). The control group received chemotherapy combined

with immune checkpoint inhibitors (including pembrolizumab,

camrelizumab, tislelizumab, and sintilimab), and the treatment group

received Yanghe Decoction in addition to the treatment used in the

control group for a total of four treatment cycles. The treatment group

demonstrated better improvement in clinical symptoms (cough,

sputum, hemoptysis, fatigue), stable KPS scores, and reduced levels

of tumor markers CEA and CA19-9. In a study focused on NSCLC

patients experiencing diarrhea after ICI treatment, the control group

received oral prednisolone (1 mg/kg), while the treatment group

received Warming Spleen and Kidney Fang for a total of 4 weeks

(309). The results showed no significant difference in efficacy between

the control and treatment groups. Nevertheless, the KPS level increased

more in the treatment group, and there were fewer occurrences of

common side effects associated with hormone treatment, such as

nausea, vomiting, dizziness, headache, dry mouth, throat dryness,

and infection.
6 Conclusion and outlook

This study reviewed immune checkpoints regulation mechanisms

and summarized natural products and traditional Chinese medicine

that influence immune checkpoints or immunotherapy in lung cancer.

Immune checkpoint regulation in lung cancer includes epigenetic,

transcriptional, post-transcriptional, translational, and post-

translational regulation. Most research focuses on PD-L1 regulation.

Furthermore, transcriptional regulation was mainly studied; oncogenes

or cytokines through multiple signal pathways finally influence CD274

promoter or enhancer. Exploring the PD-L1 regulator provides a basis

for investigating how natural products influence PD-L1. Therefore,

most current research focuses on natural products that influence the

PD-1/PD-L1 axis (Figure 2). Some natural products influence other

immune checkpoints like IDO, B7-H3, CTLA-4, GITRL, ICOSL, and

Nox2, but the underlying mechanisms need further elucidation.

Natural products’ immune checkpoint regulation properties provide

the potential to become new clinical immune checkpoint inhibitors or

as a prodrug in research (199). Natural products and Traditional

medicine can influence the expression of immune checkpoints through

different signaling pathways, some of which can influence multiple

pathways at the same time, such as silibinin, ginsenoside Rg3,

fraxinellone, Z-guggulsterone, and Qingfei Jiedu decoction
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(176, 179, 191, 252, 301). Moreover, myricetin, Nemania sp. EL006872,

and Licochalcone A can influence multiple immune checkpoints (184,

195, 196).When combined with immunotherapy, natural products and

Traditional medicine can enhance the growth inhibition ability of

immunotherapy and promote anti-tumor lymphocyte infiltration (178,

194, 253, 292, 306). Traditional medicine can also alleviate immune

checkpoint-related adverse reaction and enhance patients’ physical

well-being (306–309). Furthermore, some natural products can

inhibit immunosuppressive factor secretion: IL-10, TGF-b; promote

anti-tumor factor secretion: IL-2, IL-5, IL-6, IL-12; reduce
Frontiers in Immunology 17
immunosuppressive immune cells: Treg, M2 microphage; increase

anti-tumor CD8+ T-cells (253, 262, 263, 265, 273, 287, 292, 303,

304). As a result, the combination of immune checkpoint inhibitors

with low-toxicity natural products is a good solution to treat

lung cancer.

In the future, further exploring PD-L1 and other immune

checkpoint regulation mechanisms and explaining the mechanisms

of natural products influencing signaling pathways are needed: Silibinin

alone can inhibit PD-L1 expression through both PI3K/AKT and

JAK2/STAT5 signaling, while when it combines with crizotinib treating
TABLE 7 Traditional medicines influence immune checkpoints or combine with immunotherapy.

Studied
Materials

Target/
Therapy

Cell type/
Model

Effect Mechanism/
Pathway

Pharmacological
effect

Reference

Bu Fei Decoction PD-L1 M2-polarized
TAM

A549 or NCI-
H1975 mice

PD-L1 mRNA and
protein ↓

- Suppress NSCLC cell
proliferation

Tumor volume ↓

(299)

HYR-2 PD-L1 A549, H1975,
H1299, 95-D
LLC mice

PD-L1 mRNA
and protein↓

PI3K-Akt Inhibits the proliferation
of lung cancer cells in

vitro
Tumor volume ↓

(300)

Qingfei
Jiedu decoction

PD-1/PD-L1 A549, LLC
LLC mice

PD-L1 mRNA ↓
PD-L1 in tumor tissue↓

CD8+PD-1+T% in spleen↑

EGFR, HIF-1, JUN,
and NFkB
signaling

- (301)

Qiyusanlong
decoction

PD-1/PD-L1 C57BL/6 mice +
LLC cell

PD-L1 mRNA and protein
in tumor tissue ↓

PD-1 mRNA and protein
in spleen tissue ↓

- Tumor volume ↓ (302)

Feiji Recipe IDO LL/2-EGFP-
IDO mice

IDO protein↓
Treg cell ratio↓

- Tumor volume ↓
Improving survival

Downregulate Treg cell
Inhibit T-cell apoptosis

(303, 304)

Yu-Ping-Feng IDO LLC mice IDO mRNA ↓ - Tumor volume ↓
Improving survival

Increase NK cell tumor
infiltration

Enhanced NK
cell cytotoxicity

(305)

Lung Cancer Fang
No. 1

Combine with ICIs
(nivolumab,

pembrolizumab,
sintilimab,

atezolizumab)

Patient - - CYFRA21-1, CA125,
and VGEF ↓

CD4+, CD3+, and CD4
+/CD8+ ↑

(306)

Jianpichuji Fang Combine with
sintilimab and
chemotherapy
(carboplatin +
pemetrexed or

paclitaxel-albumin)

Patient - - KPS score ↑
Incidence of digestive

system nausea
symptoms

and leukopenia↓

(307)

Yanghe Decoction Combine with ICI
(pembrolizumab,
camrelizumab,
tislelizumab,

and sintilimab)

Patient - - CEA and CA19-9↓,
stable KPS scores,
relieve clinical

symptoms (cough,
sputum,

hemoptysis, fatigue)

(308)

Warming Spleen and
Kidney Fang

Combine with ICI
(tislelizumab,
and sintilimab)

Patient - - KPS score ↑
Relieve ICIs-associated
diarrhea symptoms

(309)
LLC, Lewis lung carcinoma. The up and down arrows respectively represent upregulation and downregulation.
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crizotinib-resistant cells, it inhibits PD-L1 expression through JAK-

STAT3 signaling; Platycodon grandiflorum can reduce tumor cells

downregulate VEGF-A secretion by inhibiting STAT3

phosphorylation, although it can inhibit STAT3 phosphorylation, the

researcher did not report whether Platycodon grandiflorum can reduce

tumor cell PD-L1 expression through this pathway (176, 265).

Determining the synergistic effect among natural products influences

different pathways is helpful for drug combinations.

Moreover, the low water solubility of some natural products will

hinder their absorption and reduce their bioavailability in the body

(311). Tumor heterogeneity is ubiquitous among the different

pathological types of lung cancer, and the same natural products

may have different effects on different types of lung cancer. Because

of the above questions, no natural products are now used as single

immune checkpoint inhibitors, and few clinical trials combine natural

products with immune checkpoint inhibitors. Based on these

unanswered questions, there is still a gap in the clinical use of

natural products. The good news is that chemical or enzymatic

modification of natural products may improve solubility and

combine with a delivery system such as nanoparticles to improve

drug bioavailability (312). Currently, there are numerous ongoing trials

investigating natural products as lead compounds in anticancer

formulations (313). Moreover, since gut microbiota can regulate the

metabolism of oral natural products, understanding how gut

microbiota affect each natural product also remains a critical

question for the clinical use of natural products (314, 315). The

extraction of natural products must adhere to principles of

sustainability and cost-effectiveness. Some natural products, like
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ginsenoside Rk1, Rh2, and Rg3 derived from ginseng, have relatively

high raw material costs and low extraction yields, limiting their

widespread application. Therefore, improving the extraction yield of

natural products or exploring chemical synthesis and semi-synthesis

will be crucial directions for future research in this field (316).

Meanwhile, traditional medicine, a promising way for the

clinical application of natural products, always combines many

herbs to treat lung cancer based on clinical experience. Traditional

medicine may have synergistic effects that can improve therapeutic

efficiency, but the mechanism needs comprehensive exploration.

Network pharmacology, through screening potential oncogenic

pathways and targets between drug and tumor, is widely used to

theoretically explore traditional medicine’s synergistic effects on

lung cancer (317–319). Furthermore, further exploration of

traditional medicine may need more understanding of signaling

pathways and more in vivo and clinical experiments. Natural

products widely exist in nature, a treasure house for searching for

new tumor therapeutic drugs. They deserve our attention and need

further study to enhance their therapeutic effect on lung cancer.
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FIGURE 2

Schematic represents natural products that influence immune checkpoints in the lung cancer cell. Most natural products influence PD-L1 expression
(upregulate or downregulate) through different pathways, and some natural products influence other immune checkpoints like IDO or B7-H3.
Arrows indicate activations; blunt-ended lines indicate inhibitory effects; dotted arrows indicate translocations.
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Glossary

NSCLC Non-small Cell Lung Cancer

SCLC Small-Cell Lung Cancer

PD-1 Programmed cell death 1

PD-L1 Programmed death-ligand 1

IDO Indoleamine-2,3-dioxygenase

DNMT1 DNA methyltransferase-1

HDAC3 Histone deacetylase 3

FRA1 FOS-related antigen 1

MHC-I major histocompatibility complex class-I

MET mesenchymal-epithelial transition factor

YAP Yes-associated protein

TAZ WW domain-containing transcription regulator 1

PKA protein kinase A

LATS large tumor suppressor

ADORA1 adenosine A1 receptor

ATF3 cAMP-dependent transcription factor 3

IRF-1 interferon regulatory factor-1

TET1 ten-eleven translocation methylcytosine dioxygenase 1

AHR aromatic hydrocarbon receptor

COX-2 cyclooxygenase-2

PGE2 prostaglandin E2

LLC Lewis lung carcinoma

TGF-b1 Transforming growth factor-b1

EMT epithelial-mesenchymal transition

EZH2 Enhancer of Zeste homolog2

COP1 E3 ligase constitutive photomorphogenesis protein 1

KRAS Kirsten rat sarcoma viral oncogene homologue

EML4-
ALK

Echinoderm microtubule-associated protein like-4-anaplastic
lymphoma kinase

EGFR Epidermal growth factor receptor

PTEN Phosphatase and tensin homolog

MAPK Mitogen-activated protein kinase

IFN-g Interferon-g

IFN-b Interferon-b

HIF-1a Hypoxia-inducible factor-1a

TGF-b Transforming growth factor-b

IL-27 Interleukin-27

MUC1 Mucin 1

3’ UTR 3’ untranslated region
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miRNAs microRNAs

lncRNAs Long non-coding RNAs

circRNA Circular RNA

ZEB1 zinc-finger E-box-binding homeobox 1

TTP AU-rich element-binding protein tristetraprolin

Ang II Angiotensin II

HuR Human antigen R

UROD Uroporphyrinogen Decarboxylase

HRI Heme-Regulated Inhibitor

ISR integrated stress response

uORFs upstream Open Reading Frames

eEF2K Eukaryotic Elongation Factor 2 Kinase

uORFs upstream Open Reading Frames

USP22 Ubiquitin-specific protease 22

USP8 Ubiquitin-specific protease 8

MARCH8 Membrane-associated RING-CH 8

CMTM6 CKLF-like MARVEL transmembrane domain containing 6

TRAF6 Tumor necrosis factor receptor-associated factor 6

GSK3a Glycogen synthase kinase 3a

AMPK Adenosine 5’-monophosphate-activated protein kinase

EGCG (-)-epigallocatechin gallate

LCA Licochalcone A

PD Platycodin D

SAL Sophora alopecuroides Linn

Sop Sophocarpine

NLE Nagilactone E

Z-GS Z-guggulsterone

PG Platycodon grandiflorum

NLR neutrophil to lymphocyte ratio

PG2 Astragalus Polysaccharide Injection

PBMC peripheral blood mononuclear cells

HYR-2 Huoxue Yiqi recipe-2
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