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Mucosal-associated invariant T (MAIT) cells are a unique subset of T cells that

recognizes metabolites derived from the vitamin B2 biosynthetic pathway. Since

the identification of cognate antigens for MAIT cells, knowledge of the functions

of MAIT cells in cancer, autoimmunity, and infectious diseases has been rapidly

expanding. Recently, MAIT cells have been found to contribute to visual

protection against autoimmunity in the eye. The protective functions of MAIT

cells are induced by T-cell receptor (TCR)-mediated activation. However, the

underlying mechanisms remain unclear. Thus, this mini-review aims to discuss

our findings and the complexity of MAIT cell-mediated immune regulation in

the eye.
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1 Introduction

The eye is the organ responsible for visual function, which is associated with quality of

life. Therefore, it is essential that harmful immune responses in the eye are strictly

regulated. The unique immunoregulatory features of the eye were first recognized by

Peter Medawar in the mid-20th century. He showed that tissue from nongenetically

identical animals was successfully grafted to the anterior chamber of the eye (1). T cells play

a central role in graft rejection. Thus, most studies have focused on understanding how

their functions are regulated in the eye. Under normal conditions, the immune-privileged

environment in the eye is established through physical compartmentalization by the blood–

retinal barrier, which is composed of retinal pigment epithelial cells and retinal vascular

endothelial cells (2). The blood–retinal barrier sequesters retinal T-cell antigens within the

eye (3). T cells in the eye are not only functionally regulated through TCR-mediated signals

upon recognition of their cognate antigens. They are also regulated by other interactions

with retinal glial Müller, retinal pigment epithelial, corneal endothelial and ciliary body
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epithelial cells. These interactions are mediated through inhibitory

cell-surface molecules, such as membrane-bound transforming

growth factor-b (TGF-b), Fas ligand, cytotoxic T-lymphocyte-

associated protein 4, galectin-1 and thrombospondin (4). In

addition to cell-contact dependent mechanisms, ocular fluids

contain various immunoregulatory molecules such as TGF-b2,
interleukin (IL)-10 and a series of neuropeptides. Notably,

immunosuppressive factors in the eye lead to systemic tolerance.

The administration of foreign antigens to the anterior chamber of

the eye induces the migration of antigen-capturing macrophages

from the eye to peripheral tissues such as the spleen, thereby

dampening antigen-specific inflammatory responses in the

periphery (5, 6). This phenomenon is known as anterior

chamber-associated immune deviation.

In addition to the eye, the thymus plays a role in maintaining

homeostasis by eliminating pathogenic T cells that recognize self-

antigens. After T cell progenitors enter the thymus, functional T

cells undergo positive selection. Among the selected functional T

cell repertoires, most self-antigen-specific T cells are deleted or are

functionally energized via negative selection. In this process, self-

antigen-presenting medullary thymic epithelial cells dictate T cell

fates via high affinity binding with the self-antigen-specific T cells.

Arrays of gene expressions that encode tissue-specific self-antigens

are regulated by a transcriptional regulator protein, Autoimmune

regulator (Aire) (7). However, some self-antigen-specific T cells

with potential to cause autoimmunity escape this checkpoint.

Autoimmune uveitis is an autoimmune disorder of the eye that is

thought to be induced by such escapee T cells. Indeed, using

experimental autoimmune uveitis (EAU) models, T cells

recognizing self-antigens such as arrestin, interphotoreceptor

retinoid-binding protein (IRBP), rhodopsin, recoverin and

phosducin have been identified (8). Using EAU mouse models,

the breakdown of central tolerance in the thymus was reported to

worsen clinical symptoms of EAU, as genetic depletion of the gene

encoding the retinal T-cell antigen, IRBP, augmented the antigen-

specific T-cell response to IRBP and thereby enhanced ocular

inflammation in the retina (9). In support of this, mice lacking

the Aire gene responsible for expressing tissue-specific self-antigens

including IRBP in the thymus spontaneously developed retinal

autoimmunity (7, 10). Furthermore, after identification of the

regulatory T (Treg) cells responsible for maintenance of

immunological self-tolerance and homeostasis (11), accumulating

studies have shown that Treg cells play a role in regulating the

pathogenesis of autoimmune disorders including autoimmune

uveitis (12, 13). Depletion of Treg cells leads to increased

susceptibility to EAU (9, 14, 15).

Other T cell subsets, such as natural killer T (NKT) and

mucosal-associated invariant (MAIT) cells, have been reported to

be involved in ocular immunity through the recognition of

nonpeptide antigens such as lipids and metabolites. In an EAU

mouse model, NKT cell activation by alpha-galactosylceramide (a-
GalCer), a prototype antigen, conferred mitigation of clinical

symptoms partly through innate interferon-gamma (IFNg)
production that reduced pathogenic IFNg and IL-17A production

(16, 17). This finding was further supported by a study that showed

administration of RCAI-56, a Th1-biased NKT cell ligand, to EAU
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mice had higher therapeutic efficacy than a-GalCer (18). More

recently, protective effects against EAU have been observed upon

activation of MAIT cells with the authentic antigen, 5-(2-

oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) by IL-

22 secretion (19). This data suggest that the inflammatory responses

triggered by retinal antigen-specific T cells during EAU induction

are counteracted not only by Treg cells but also by other T-cell

subsets including NKT and MAIT cells.

Among these T cell subsets involved in ocular immunity, we

focus on MAIT cells in the following sections.
2 MAIT cells

MAIT cells are a subset of innate-like T cells that require major

histocompatibility complex (MHC) class I-related molecule 1

(MR1) for their development (20). MR1 is an antigen-presenting

molecule that captures metabolites such as 5-OP-RU and 5-(2-

oxoethylideneamino)-6-D-ribitylaminouracil, derived from

intermediates in the vitamin B2 biosynthetic pathway, which is

present in bacteria and fungi but not in mammals (21, 22). MAIT

cells recognize the antigen-MR1 complex through semi-invariant

ab T-cell receptors (TCRs). In humans, these are typically TRAV1-

2-TRAJ33/12/20 a chains paired preferentially with limited b
chains such as TRBV6-1, TRBV6-4, and TRBV20, and Trav1-

Traj33 a chains paired with b chains, such as Trbv13 and Trbv19

in mice. Germ-free mice had a severely reduced MAIT cell number,

but monocolonization with vitamin B2-producing bacteria

recovered MAIT cell development in the thymus (23–26). These

findings suggest that MAIT cells develop or expand in response to

5-OP-RU derived from symbiotic bacteria (26). Consistent with

these studies, it has been reported that human MAIT cell frequency

is very low from the fetal to perinatal period and rapidly expands

after birth when the individual is exposed to symbiotic bacteria (27,

28). Thus, the development and function of MAIT cells are

regulated by symbiotic bacteria during early ontogeny. Because

this developmental program is evolutionally conserved among

mammals, MAIT cells may have nonredundant functions in adult

life (29, 30). In support of this, MAIT cells have been shown to play

an important role in infection, autoimmunity, and cancer through

the production of various inflammatory mediators such as

cytokines, cytotoxic molecules and growth factors. MAIT cells

were activated after co-culture with bone marrow-derived

dendritic cells infected with wide variety of bacteria including

Pseudomonas aeruginosa, Klebsiella pneumoniae, Lactobacillus

acidophilus, Staphylococcus aureus and Streptococcus epidermidis

(23). Protective roles of MAIT cells have been reported in infection

against Streptococcus pneumoniae (31), Klebsiella pneumoniae (32),

Francisella tularensis (33) and Legionella longbeachae (34). Among

these bacteria, Staphylococcus aureus, Streptococcus pneumoniae

and Pseudomonas aeruginosa are the major causal agents of eye

diseases such as bacterial conjunctivitis , keratitis and

endophthalmitis (35), although the involvement of MAIT cells

has not been reported. In the tumor environment, MAIT cells

have not only cytotoxic activity against tumors (36, 37) but also

tumor-promoting activity (38). Recently, a new function of MAIT
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cells related to tissue homeostasis has been proposed (39). In a

wound-healing mouse model after a skin-punch biopsy, MAIT cells

had tissue repair functions that were inducible by the

administration of MAIT cell antigen 5-OP-RU (25). In the brain,

MAIT cells maintain tissue integrity through the production of

antioxidant molecules. MAIT cell deficiency in mice accumulates

reactive oxygen species around the meninges, impairing meningeal

barrier function (40). Such context dependent multifaceted MAIT

cell functions raise the question of how they are regulated in vivo.

MR1-dependent MAIT cell activation is required for host defense

against Legionella and Francisella infection (34, 41, 42). In contrast,

in a wound-healing mouse model, the migration and tissue repair

function of MAIT cells were MR1-independent (43). These findings

have been summarized in previous review articles (44–47).

However, in these articles, the role of MAIT cells in the eye has

not been well described. Nevertheless, association of MAIT cell

frequencies in particular autoimmune diseases such as ankylosing

spondylitis and Sjogren syndrome with ocular manifestations

suggests the potential role in the eye (48–50). Therefore, we

aimed to introduce the role of MAIT cells in autoimmune uveitis

and further discuss other eye diseases, such as age-related macular

degeneration (AMD), allergic conjunctivitis and acute anterior

uve i t i s (AAU) , in which MAIT ce l l s may have an

immunoregulatory role (Figure 1).
3 MAIT cells and eye diseases

3.1 MAIT cells in autoimmune uveitis

Autoimmune uveitis is a leading cause of blindness

among patients with uveitis in the United States and Asia (51, 52).

Autoimmune uveitis has two types: eye-specific inflammation, such

as Sympathetic ophthalmia and Birdshot retinochoroidopathy, and

systemic inflammation that also affects the eye, such as Behcet’s
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disease, Sarcoidosis and Vogt-Koyanagi Harada (VKH) disease (4).

In these patients, severe inflammation is frequently observed in the

retina, located in the posterior compartment of the eye where neural

and photoreceptor cells responsible for the transmission of visual

information to the brain are present (Figure 1 and Figure 2A).

Recognition of retinal antigens by T cells is thought to induce

chronic inflammation in the retina and adjacent structures

including optic nerves, leading to impairment of visual functions

resulting from cell damage. In contrast to the pathogenic roles of T

cells, their protective functions remain less understood. Dr. R. R.

Caspi’s group showed the protective functions of IL-22-producing T

cells using a mouse model of EAU induced by the retinal antigen

IRBP (53). IL-22 bound to the IL-22 receptor on retinal ganglion cells

and prevented their cell death (53) (Figure 1). Another possible

protective mechanism could be that IL-22 can suppress MHC class II

expression responsible for the development of retinal antigen-specific

T cells (54). MAIT cell frequency in the peripheral blood has been

found to be inversely correlated with disease activity in patients with

VKH disease, which is representative of autoimmune uveitis with

chronic inflammation in the retina (19). These findings motivated us

to explore MAIT cell functions in a mouse model of EAU induced by

the retinal antigen IRBP. MAIT cells also secrete IL-22 and contribute

to the reduction of EAU clinical symptoms after EAU induction (19).

MAIT cells were hardly detected in the retina under normal

conditions and gradually increased after EAU induction. This

finding suggests that MAIT cells migrate from the draining lymph

nodes, where preceding MAIT cell expansion was observed (19). The

involvement of TCR-mediated signaling in MAIT cell expansion

during EAU induction has not been experimentally proven.

However, TCR-mediated activation of MAIT cells was observed in

the eyes and draining lymph nodes of EAU-inducedmice. TheMAIT

TCR-mediated signal has a therapeutic potential. Administration of

the cognate antigen 5-OP-RU improved clinical symptoms and visual

function, although the underlying mechanism need to be further

explored (19).
FIGURE 1

MAIT cell functions in eye diseases. This figure shows how MAIT cells or TRAV1-2+ cells are involved in ocular diseases such as experimental
autoimmune uveitis (EAU), age-related macular degeneration (AMD), acute anterior uveitis (AAU), and allergic conjunctivitis in different locations.
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Previous studies have implicated TCR-mediated MAIT cell

activation by the gut microbiota in EAU. Bacteroides and

Parabacteroides species belonging to Bacteroidetes were

significantly increased in patients with VKH disease compared

with healthy controls (55), and Bacteroidetes contained species

that produce metabolites with higher MAIT cell agonistic activity

(56). The activation of MAIT cells by metabolites from symbiotic

bacteria can occur in the eyes of individuals with autoimmune

uveitis, as 5-OP-RU has been reported to travel between distal

organs (26). Furthermore, MAIT cells may be primed in the gut and

infiltrate the eye, as in the case of retina-specific T cells (57).

However, a more precise analysis to investigate how and where

MAIT cell functions are regulated in vivo is required.
3.2 Implication of the immunoregulatory
functions of MAIT cells in other
eye diseases

AMD is a neurodegenerative disorder with a similar

pathogenicity to Alzheimer’s and Parkinson’s disease. The

similarity in anatomy and cellular composition between the retina

and brain prompted the consideration of similar immunological

roles of MAIT cells. AMD causes progressive photoreceptor

degeneration in the macula, leading to vision loss alongside with

aging (Figure 2B). In a previous study, single-cell RNA sequencing

analysis using human retinal cells demonstrated that the expression

of AMD-associated genes identified by a genome-wide association

study (GWAS) was highly biased toward particular retinal cell

populations, including Müller glia and astrocytes (58). Another

study showed that the highest expression of MR1 was observed in

the retinal astrocytes of patients with AMD (59) (Figure 1).

Astrocytes are resident neural cells present in the brain and

retina. Brain astrocytes have been shown to express MR1 and

have the potential to activate MAIT cells (60). MAIT cells have

been reported to play a protective role in neuroinflammation by

maintaining tissue integrity through the productions of IL-10 and

antioxidative molecules in the brain (40, 61). However, MAIT cell

functions in AMD remain unclear.

The conjunctiva is a mucosal tissue in the anterior eye with

barrier functions against pathogenic insults. These functions are

mediated by resident immune cells, and dysregulated activation of
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immune cells can cause allergic conjunctivitis. Allergic

conjunctivitis is associated with chronic inflammation at the

ocular surface where there is immunoregulatory interplay

between commensal microbiota, conjunctival intraepithelial

lymphocytes and epithelial cells (62). Approximately 16% of

CD45+ leukocytes in the upper tarsal conjunctiva of healthy

individuals were MAIT cells (63). MAIT cell frequency was not

increased at the ocular surface in patients with chronic allergic

conjunctivitis, in whom Cutibacterium acnes became the

predominant commensal bacterial population (63) (Figure 1).

This suggests that C. acnes does not induce MAIT cell expansion

as observed in human volunteers infected with Salmonella

Paratyphi A (64). Although C. acnes has a vitamin B2 synthetic

pathway, it has a low MAIT cell-stimulating ability (56). Thus, it is

possible that C. acnes has evolved to escape adaptive immunity by

reducing MAIT cell antigen production, as described in Salmonella

and Francisella sp. (41, 42). Thus, examining whether MAIT cell

functions are regulated by C. acnes in allergic conjunctivitis in

future studies would be interesting.

AAU is the most common form of uveitis (65) and frequently

accompanies HLA-B27-related inflammatory diseases, such as

ankylosing spondylitis and spondyloarthropathies (66). AAU

manifests as an acute onset of nongranulomatous uveitis,

characterized by cellular and protein extravasation into the aqueous

humor. GWAS between patients with AAU and healthy donors using

peripheral blood revealed several AAU-associated loci, including IL6R,

IL10, IL19 and IL18R (67). IL-18R is one of the authentic markers for

MAIT cells (23). The frequency ofMAIT cell-enriched TRAV1-2+ cells

producing IL-17A, IL-17F and IL-22 was increased in the peripheral

blood compared with the healthy control (68) (Figure 1). It remains to

be determined whether enrichment of immunoregulatory MAIT cells

also occurs in the anterior chamber of the eye.
4 Discussion for future direction

The retina converts light stimuli into signals and transmits visual

images to the brain. Layered nerve cell populations transmit signals

one after another through intercellular interactions to accomplish

their complex functions, thus maintaining visual function (Figure 1).

Degeneration or dysfunction of only one of the component cells can

destroy this sophisticated interaction (69). Under inflammatory
A B

FIGURE 2

Pathological tissue images of autoimmune uveitis and Age-related Macular Degeneration (AMD). (A) Fluorescein Angiography (FA) (left) and Optical
Coherence Tomography (OCT) (right) images of Vogt-Koyanagi-Harada (VKH) disease. FA shows multiple fluorescent leaks around the blood vessel.
OCT shows retina layers with subretinal fluid, choroidal thickening, and retinal pigment detachment. (B) Indocyanine Green Angiography (left) and
OCT (right) images of AMD. Images shows layers of retina with choroidal neovascularization associated with macular edema due to
exudative changes.
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conditions, infiltrating inflammatory cells, such as monocytes,

macrophages, and T cells, and resident glial cells, such as astrocytes

and microglial cells, have immunoregulatory functions to maintain

tissue homeostasis in the retina and uvea. Therefore, understanding

spatiotemporal cell functions in the eye is essential for understanding

the pathogenesis of certain diseases. Recent advances in single-cell

technology with spatial information allows us to understand their

functions and mutual interactions at the single-cell level. Elucidation

of the regulatory network could open a new avenue to clarify the full

picture of ocular immunity and how MAIT cells are involved in

this process.

Accumulating evidence has shown that MAIT cells play an

immunoregulatory role in autoimmune diseases targeting various

organs, including the eye. In the case of autoimmune uveitis, recent

findings on the therapeutic potential of TCR-mediated MAIT cell

activation have motivated us to identify putative MAIT cell antigens

in EAU mice. More detailed analysis of metabolites using highly

sensitive mass spectrometry (70–72) and single metabolite-probing

technology (73) will allow us to test this possibility.
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