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Combined repetitive transcranial
magnetic stimulation and gut
microbiota modulation through
the gut–brain axis for prevention
and treatment of autism
spectrum disorder
Pengya Feng1,2*, Yangyang Zhang1, Yonghong Zhao1,
Pengju Zhao1 and Enyao Li1*

1Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth
Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China, 2The American Psychiatric
Association, Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan
Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental

conditions characterized by enduring impairments in social communication and

interaction together with restricted repetitive behaviors, interests, and activities.

No targeted pharmacological or physical interventions are currently available for

ASD. However, emerging evidence has indicated a potential association between

the development of ASD and dysregulation of the gut-brain axis. Repetitive

transcranial magnetic stimulation (rTMS), a noninvasive diagnostic and

therapeutic approach, has demonstrated positive outcomes in diverse

psychiatric disorders; however, its efficacy in treating ASD and its

accompanying gastrointestinal effects, particularly the effects on the gut–brain

axis, remain unclear. Hence, this review aimed to thoroughly examine the

existing research on the application of rTMS in the treatment of ASD.

Additionally, the review explored the interplay between rTMS and the gut

microbiota in children with ASD, focusing on the gut-brain axis. Furthermore,

the review delved into the integration of rTMS and gut microbiota modulation as

a targeted approach for ASD treatment based on recent literature. This review

emphasizes the potential synergistic effects of rTMS and gut microbiota

interventions, describes the underlying mechanisms, and proposes a potential

therapeutic strategy for specific subsets of individuals with ASD.
KEYWORDS

autism spectrum disorder, rTMS, gut microbiota, gut-brain axis, immunology
Abbreviations: ASD, Autism spectrum disorder; rTMS, Repetitive transcranial magnetic stimulation; GI,

Gastrointestinal; CNS, Central nervous system; DLPFC, Dorsal lateral prefrontal cortex; IRI, Interpersonal

response index; dmPFC, Dorsomedial Prefrontal Cortex; ATEC, Autism treatment evaluation; IL-1,

Interleukin-1; INF, Interferon; TNF, Tumor necrosis factor; SCFA, Short-chain fatty acid; GABA,

Gamma-aminobutyric acid; tDCS, transcranial direct current stimulation; E/I, Excitation/inhibition.
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1 Introduction

Aut i sm spec t rum disorder (ASD) i s a pro found

neurodevelopmental condition that manifests in infants and

young children (1). It is characterized by deficits in social and

communication skills and a tendency to engage in repetitive

behaviors (2). According to the Global Burden of Disease, Injury

and Risk Factor Study 2016, the global prevalence of ASD is

estimated at 62.2 million people (3). Moreover, its incidence has

evidently increased over time (4). Consequently, it is imperative to

prioritize theoretical investigations on and clinical interventions

for ASD.

ASD is associated with a wide variety of comorbid conditions

such as epilepsy, anxiety, melancholy, Tourette syndrome, and

gastrointestinal (GI) disorders (5–7). Among the comorbidities

commonly observed in children with ASD, GI issues, including

stomach pain, constipation, and diarrhea, have been reported to

affect 9%-70% or more individuals (8). The etiology of these GI

issues might be associated with alterations in gut microorganisms.

In recent years, there has been growing interest in investigating the

role of the gut-brain axis in ASD, with studies demonstrating

changes in the composition and function of gut microbiota in

individuals with ASD. The gut-brain axis refers to the two-way

communication between the central nervous system and the

individual at large. A recent study indicated that changes in the

gut microbiota can affect brain function and development (9).

Meanwhile, repetitive transcranial magnetic stimulation (rTMS)

has emerged as a noninvasive method of brain stimulation with the

potential to ameliorate ASD-related symptoms (10). Research has

indicated that rTMS significantly influences the composition and

functionality of the gut microbiota (11). Consequently,

comprehending the correlation and interplay between rTMS and

the gut microbiota is of particular significance for ASD treatment.

This article reviews the current literature on the role of rTMS in

ASD treatment, underlining its effects on ASD-related

gastrointestinal symptoms and exploring potential future

implications in ASD treatment.
2 Role of rTMS in ASD processing

ASD affects approximately 1 in 59 children, but there are

currently no biological treatments that address its underlying

symptoms (12). According to preliminary research, rTMS can

potentially alleviate the challenges faced by individuals with ASD

(13). rTMS is a noninvasive brain stimulation method used to alter

brain activity (14). In particular, rTMS under different stimulation

modes can lead to long-term changes in activity in target brain

regions that possibly outlast the effects of stimulation (15).

Substantial research supports the potential efficacy of rTMS in

treating the core symptoms of ASD (16).

Several previous studies have identified transcranial direct

current stimulation (tDCS) as a promising therapeutic tool for

modulating synaptic plasticity abnormalities and minimizing

memory and learning deficits in many animal models of

neuropsychiatric diseases. The accumulated studies suggest that
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tDCS modulates brain plasticity via synaptic modifications within

the stimulated area. In these studies, changes in plasticity-related

mechanisms were achieved through the induction of long-term

potentiation (LTP) and upregulation of neuroplasticity-related

proteins, such as c-Fos, brain-derived neurotrophic factor

(BDNF), or N-methyl-D-aspartate receptors (NMDARs) (17).

Moreover, three sessions of tDCS conducted at 1-3-week intervals

significantly reduced the levels of several inflammatory cytokines in

the brains of healthy rats. The tDCS-mediated reductions in

inflammatory cytokine levels highlight its potential use as a

countermeasure against inflammation and support the hypothesis

that cytokines contribute to the modulation of synaptic plasticity

(18). Excitation/inhibition (E/I) imbalance remains a widely

discussed hypothesis in ASD. A previous study provided evidence

in favor of the excitation/inhibition imbalance hypothesis in ASD

and related neurodevelopmental disorders while revealing that its

nature is region-specific with distinct pre- and postsynaptic

mechanisms. In the hippocampus, disproportionate expression of

gamma-aminobutyric acid (GABA)-A receptor dominates, whereas

excessive GABA/glutamate ratios are the hallmark of changes in the

prefrontal cortex and striatum (19).
2.1 rTMS could acted as an investigational
tool in ASD

The ideal stimulation settings must be established to maximize

the effectiveness and safety of rTMS for ASD treatment. Passing

magnetic pulses, stimulating strength, pulse frequency, and interval

time are variables in the stimulation process (20). The best stimulus

environment that leads to neurological changes in the human body

is the basis of the current rTMS program (21). Various TMS

paradigms have been developed, including single-pulse TMS,

pairing-pulse TMS, and rTMS, to improve lateral network

excitation, inhibitory control, and plasticity. These techniques

have been used to study neurological ASD, especially in

individuals without intellectual barriers (Table 1) (15). The

influence of rTMS on the brain and behavior is affected by factors

such as the position, strength, frequency, quantity, and duration of

stimulation and the specific pathophysiology of the disease being

treated (28). The dorsolateral prefrontal cortex is a target region for

stimulation to improve irritability, repetitive behaviors, and

executive functioning (29). The main symptoms and

supplementation of the sports cortex are also designed to improve

exercise movement (30). The frontal pelt layer of the inner side

improves intelligence, and simulation of the frontal cortex improves

voice generation and the hand-eye coordination (31).

The Food and Drug Administration has approved two separate

TMS devices, including high- and low-frequency rTMS systems, for

the treatment of ASD (32). Both high-frequency (10-20 Hz) and

low-frequency (1-5 Hz) rTMS devices have been examined for

possible therapeutic effects against ASD. However, the differential

frequency of rTMS resulted in different effects on the direction of

long-term adaptation in neural excitability. rTMS at 20 Hz

bilaterally increased regional cerebral blood flow in the frontal

cortex, and surprisingly, 1-Hz rTMS decreased regional cerebral
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blood flow only in the contralateral prefrontal cortex (33). This

raises the possibility of therapeutic applications that selectively

activate or inhibit specific areas of the brain in different

neuropsychiatric syndromes using this noninvasive procedure.

Low- or high-frequency rTMS can be differentially used to

reregulate dysfunctional circuits associated with ASD. To reduce

ASD-associated excitement, low frequencies are applied to the left

prefrontal cortex. This paradigm is used to study irritability and

repeated behavior in patients with ASD, which has significantly

improved, resulting in the expected defects of cortical suppression

(34). Other studies used low-frequency rTMS to modify the

operation of various lateral networks in the prefrontal cortex (35).

In other studies, different lateral networks in the frontal cortex were

differentially affected by low-frequency rTMS (36). Fecteau found

that the 1-Hz rTMS can improve naming skills in individuals with

ASD (37). When the object is named the left pars opercularis, it is

enhanced when the left pars triangularis is applied. Enticott et al.

observed improvement of movement-related cortical potentials

following rTMS. A single cycle of stimulation of the primary

motor cortex and supplementary motor area resulted in increased

activity in these areas in subjects with ASD compared to the effects

of sham treatment. There was no obvious change in exercise (38).
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To improve the excitement of the invalid pelt area and the ASD

connection, some studies have adopted high-frequency rTMS

technology. In double-blind, randomized, placebo-controlled

trials, Enticott et al. provided rTMS or sham stimulation to the

lateral prefrontal cortex (38) and found no change in the

interpersonal response index but found significant improvement

in the Ritvo Autism Asperger Diagnostic Scale (RAADS). Panerai

et al. utilized high-frequency (8 Hz) stimulation in children with

ASD and intellectual difficulties (39) and achieved significant

improvement in eye coordination through providing training in

behavior hand-fusion.
2.2 rTMS could acted as a therapeutic
intervention in ASD

In recent years, guidelines for evaluating the therapeutic efficacy

of rTMS in a variety of diseases have been published (Table 2). Four

different types of studies were listed. A prospective, randomized,

placebo-controlled clinical trial with concealed outcome assessment

and a sample size of at least 25 actively treated patients was

considered Class I if the following criteria were met: (a) well-
TABLE 1 The studies of investigational use of TMS in ASD.

Number

Mean age
(Maximum

to
minimum)
(years)

Gender
(M/F)
(M

number)

Country Site Intensity Reported Effects Reference

32
25

(37 to 11)
M/F
18

USA

L M1 120% RMT

No group difference in degree of corticospinal
excitability in response

to single static hand stimuli or two person
interactive hands.

(22)

36
26

(40 to 15)
M/F
15

USA
and China

L and
R M1

130% RMT;
115% and
130% AMT

No group difference in RMT.
Heterogeneous response to paired pulse TMS in the

ASD group.
(23)

19
12

(24 to 8)
M
19

USA

L M1 80% AMT

Positive linear relationship between age
and duration of modulation of TBS after effects in

children and
adolescents with ASD. A subgroup of the ASD

participants showed
paradoxical facilitation

(24)

35
36

(39 to 16)
M/F
12

USA

L M1 80% AMT

Longer lasting inhibition (suppressed MEP) and
greater degree of inhibition (area under the curve)
following TBS in ASD. Age did not significantly

contribute to the model.

(25)

34
26

(30 to 10)
M/F
25

Switzerland

L M1 120% RMT

No group difference in degree of corticospinal
excitability in response to observation of single

static hand stimuli.
Impaired corticospinal

facilitaiton in response to single hand transitive
hand actions in the ASD

group.

(26)

15
18

(22 to 6)
M/F
11

USA
R
M1

(PAS)

Lowest intensity
producing

average 1mV
motor-evoked

potential

No LTP-like MEP facilitation in ASD
(group difference significant at 60 min).

No group difference in response to ppTMS.
(27)
M1, Primary Motor Cortex; RMT, Resting Motor Threshold; AMT, Active Motor Threshold; PAS, Paired Associative Stimulation; MEP, Motor Evoked Potential; LTP, long-term potentiation;
ppTMS, Paired Pulse TMS; L M1: Left Primary Motor Cortex; R M1: Right Primary Motor Cortex.
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explained dropouts and a sufficiently low number of crossovers to

have a minimal likelihood of bias, (b) well-specified exclusion/

inclusion criteria, (c) well-defined primary outcome, (d)

appropriate consideration of dropouts and crossovers, and (e) the

use of correlation analysis. Studies with smaller sample sizes (10-25)

or randomized, placebo-controlled studies that did not meet at least

one of the aforementioned criteria were considered type II studies.

Category III included all other controlled trials. Type IV included

uncontrolled studies, case series, and case reports. Although rTMS

was the focus of 15 studies and case reports, most of these studies

were categorized into Class III or IV. Consequently, the use of rTMS

in ASD treatment was classified as Level C (possibly effective) (44).
Frontiers in Immunology 04
Many knowledge gaps remain regarding the use of TMS for

ASD treatment, including the stimulus intensity, optimal stimulus

settings and application positions, possible clinical goals, and

standards for selecting participants. Only a small number of

clinical trials (n=4), three of which were randomized, double-

blind, placebo-controlled studies (ClinicalTrials.gov IDs

NCT02311751, NCT01388179, and NCT00808782), used rTMS

as an intervention for different ASD symptom objectives. Before

the off-label clinical use of rTMS in the treatment of ASD without

an experimental device exemption and outside of an IRB-

sanctioned research study can be considered, additional well-

controlled trials with adequate power are needed.
TABLE 2 The studies of therapeutic use of TMS in ASD.

Number

Mean age
(Maximum to
minimum)
(years)

Gender
(M/F)
(M

number)

Country Site Coil Intensity Reported Effects Reference

10
37

(46 to 22)
M/F
6

France,
Netherlands,
Switzerland,

Italy,
Serbia,

Germany,
Finland,
Portugal,
Monaco

L & R pars opercularis,
L

& R par triangularis
(MRIneuronavigation),

sham (central
lobe midline)

F08
70% of

stimulator
output

Increased response
latency after L
pars opercularis

Decreased response
latency after L
pars triangularis

(37)

45 (25
rTMS,

20 waitlist)

13
(16 to 5)

M/F
38

USA
L & R dlPFC (5 cm
anterior to M1)

F08 90% RMT;
Reduced error rate
Increased frontal

EEG N200 to targets.
(40)

11
18

(21 to 10)
M/F
4

USA
SMA (15% of nasion to
inion anterior to Cz),
L M1,(Sham M1)

F08 100% RMT

SMA: increased early
EEG component

PMC: increased EEG
negative slope

(38)

1 42
F
0

Italy M1 – –

ABC Irritability: Active
40 to 33,

Sham 39 to 35, ABC
Sterotypy:

Active 18 to 12, Sham 16
to 15

(41)

40 (20
rTMS,

20 waitlist)

14
(18 to 7)

M/F
23

China
L & R dlPFC (5 cm
anterior to M1)

F08 90% RMT

Reduced error rate
Increased frontal EEG

P50 amplitude
to targets

Increased frontal EEG
P50 latency to

targets

(42)

28 (15
active,

13 sham)

33
(42 to 27)

M/F
18

Italy
dmPFC (7 cm anterior

to M1)
H-
coil

100%RMT

Reduced social
relatedness (RAADS)
Reduced personal
distress (IRI)

(39)

18
13

(23 to 7)
M/F
10

USA
L & R dlPFC (5 cm
anterior to M1)

F08 90%RMT

Increase in R-R interval,
SDNN, and

HF power. Significant
decrease in

the LF/HF ratio and
SCL. Significant

improvements in RBS-R
and

ABC rating scores

(43)
dlPFC, Dorsolateral Prefrontal Cortex; Fo8, Figure of 8 coil; dmPFC, Dorsomedial Prefrontal Cortex.
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3 Relationship between the gut
microbiota and ASD

Numerous studies have revealed that GI issues, such as

diarrhea, constipation, and abdominal pain, are common

comorbidities in children with ASD and that they are associated

with changes in the composition and diversity of the gut

microbiota in those with ASD compared to typically developing

individuals (Figure 1).
3.1 Gastrointestinal abnormality correlated
with symptom severity of ASD

The occurrence of certain behavior problems is typically used

to diagnose GI diseases (45). According to universal reports, there

is a great correlation between the severity of ASD symptoms as

measured by the Autism Treatment Evaluation Checklist and GI

symptoms as measured by the 6-item Gastrointestinal Severity

Index (46). The most common GI symptom in children with

autism is constipation (47). Abdominal discomfort is significantly

related to the severity of ASD core symptoms (48). The

aforementioned research assumes that there is an association

between GI tract abnormalities and behavior in ASD (49).

Additionally, the abnormal GI tract is related to other ASD

complications, including sleep problems, strange moods, and

social deficiencies. GI comorbidities were found to be associated

with sleep problems; mood abnormalities; argumentativeness;

oppositional, defiant, or disruptive behavior; anxiety; sensory

reactivity; rigidity; obsessive-compulsive behavior; self-

mutilation, aggression; lack of expressive language; and social

impairment (50).
Frontiers in Immunology 05
3.2 Gut microbiota dysbiosis is associated
with ASD-related
gastrointestinal symptoms

Numerous studies revealed that the gut microbiota of children

with ASD who experience constipation is significantly different from

that of typically developing children. Substantial evidence has showed

ASD children with constipation have higher relative abundances of

Escherichia/Shigella and Clostridium cluster XVIII (51), the order

Fusobacteriales, the family Actinomycetaceae, and the genera

Fusobacterium, Barnesiella, Coprobacter, Olsenella and Allisonella

(52), as well as lower Faecalibacterium prausnitzii, Bacteroides

eggerthii, Bacteroides uniformis, Oscillospiraplautii, and Clostridium

clariflavum amount (51). Additionally, although chronic constipation

in healthy children is related to fatigue, low lactate levels (53) could

explain constipation in patients with ASD (54). In the feces of

patients with ASD and allergy, the relative abundance of

Proteobacteria related to autoimmune diseases is higher (55).

Furthermore, an increase in the rate of food allergies has been

linked to the ratio of corporate/sterilization. There is an association

between ileum and cecum richest company and cecal Proteobacteria

counts (56). Accumulating evidence has revealed a relationship

among feces, immune function, and the corporate/fungus ratio in

children with ASD (55). Among children with ASD who report

stomach discomfort, Clostridium aldenense and O. plautii counts are

elevated. Some bacteria, such as C. aldenense and O. plautii, are

related to ASD as well as constipation and other GI symptoms (57).

Interestingly, among some young individuals with ASD, a Sanguinis

related to GI issues was found (58). Parracho et al. proved that

children with ASD exhibited higher levels of tissue-soluble toxin

producers in their feces, although their levels were not higher than

those observed in their healthy siblings (59). High-level scatterro

bacteria is closely related to GI problems in individuals with ASD.
FIGURE 1

The interrelationship between core symptoms of ASD, gastrointestinal abnormities and gut microbiota dysbiosis. Gastrointestinal abnormities was
recognized as one of the core symptoms of ASD as well as anxiety, epilepsy and attention deficit. The mainly features of the gastrointestinal
abnormities including diarrhea, constipation and abdominal pain. All these features could resulted in gut microbiota dysbiosis, which showed some
pathogenic genus like Shigella and Clostridium cluster XVIII was increased and some beneficial genus like Lactobacilli and Bacteroides eggerthii was
decreased. The three parts of core symptoms, gastrointestinal symptoms and gut microbiota changes was interacted and mutual influence in ASD.
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3.3 Gut microbiota dysbiosis leads to
immune system dysregulation in ASD

Gut microbiota dysbiosis in ASD might contribute to immune

dysregulation, GI symptoms, and abnormal neurotransmitter

metabolism (60). Immune system abnormalities are often caused

by gut microbiota dysbiosis in autism (61). A functioning immune

system releases chemokines and cytokines including interleukin

(IL)-1, IL-6, interferon, and tumor necrosis factor, which can cross

the blood-brain barrier. These mediators bind to endothelial cells in

the brain and induce immune responses (62). A previous study

revealed that the plasma levels of IL-1, IL-6, and IL-8 were

considerably higher in patients with ASD than in typically

developing controls (63). Additionally, approximately 80% of the

immune system is located in and around the gut mucosa (64).

Moreover, the gut microbiota alters brain functioning mostly

via its special metabolites. Patients with ASD exhibit increased

levels of metabolites including short-chain fatty acids (SCFAs), p-

cresol, and ammonia in serum, urine, and feces. These

compounds can cause behavioral symptoms in autism and

symptoms resembling autism through the vagal pathway (65).

Among these metabolites, SCFAs, including acetic acid,

propionic acid, butyric acid, valeric acid, and caproic acid, have

been identified as major signaling metabolites, playing critical

roles in regulating catecholamine production throughout life and

preserving the neurotransmitter phenotype after birth (66). These

SCFAs were demonstrated by several studies to have importance

in ASD (67).
4 Potential synergistic effects and
mechanism of combined rTMS and
gut microbiota modulation in ASD
prevent and therapy

Poor social interaction, communication problems, and

repetitive behaviors are hallmarks of ASD, which is a complex

neurodevelopmental disorder (68). Numerous studies suggest that

the development of autism depends on both hereditary and

environmental factors (69). rTMS, as a noninvasive brain

stimulation technology, has gained popularity and exhibited

potential to treat ASD symptoms (70). Interest in the role of the

gut-brain axis in ASD has increased recently because of studies

demonstrating a relationship between gut microbiota composition

and function in children with ASD. Thus, rTMS and gut microbiota

modulation could be used as a combined treatment for

ASD (Figure 2).

A previous study demonstrated the existence of a sophisticated

network of nervous, metabolic, immune, and other associations

between the brain and the GI tract, known as the gut-brain-

microbiome axis (71). rTMS influenced selected phyla of the gut

microbiota, and the changes were associated with alterations in

behavioral and metabolic parameters. Recent investigations suggest
Frontiers in Immunology 06
that alterations of the composition and diversity of gut microbiota

caused by impaired energy homeostasis could play an important

role in the development of neuropsychiatric and metabolic

disorders (72). Furthermore, rTMS can reverse adverse effects on

the gut microbiome, supporting the hypothesis of the existence of

complex bidirectional communication between the brain and GI

tract (gut-brain-microbiome axis). Several pathways, including

those involving the vagus nerve, the immune and endocrine

system, and the enteric nervous system, mediate the bidirectional

communication between the brain and gut microbiota (73).
4.1 Combination of rTMS and gut
microbiota modulation could modulate the
nervous system

rTMS can enhance neuroplasticity by modulating neural

activity and promoting synaptic plasticity (74). Some protocols

appear to induce suppression or facilitation through Hebbian

mechanisms of long-term depress ion and long-term

potentiation across populations of neurons, whereas others

induce these changes by modulating activity in GABAergic

interneurons. The prominent role of inhibitory interneurons in

the rTMS-induced modulation of cortical excitation is of

importance in autism, similarly as the GABAergic system. rTMS

as an investigational treatment partially supports the theories

suggesting excitation/inhibition imbalance and aberrant

plasticity mechanisms in ASD. Conversely, gut microbiota

modulation can influence neuroplasticity through the

production of neuroactive compounds and regulation of

neurotransmitter metabolism (75). By combining these

interventions, it is possible to enhance neuroplasticity

mechanisms in the brain, leading to improved cognitive and

behavioral outcomes in individuals with ASD. Additionally, the

modulation of neurotransmitters is another potential pathway

explaining the effects of the combined treatment. Both rTMS and

gut microbiota modulation can influence neurotransmitter levels

in the brain (76, 77). Gamma-aminobutyric acid (GABA) and

glutamate are two neurotransmitters modulated by rTMS (78).

Through the generation of metabolites including SCFAs and

neurotransmitter precursors, gut microbiota modification can

also affect neurotransmitter metabolism (79). By combining

these interventions, it is possible to more comprehensively

modulate neurotransmitter levels, which help alleviate ASD

symptoms related to neurotransmitter dysregulation.
4.2 Combination of rTMS and gut
microbiota modulation could regulate the
immune response

rTMS and gut microbiota modulation have been implicated in

the regulation of inflammation (80, 81). Inflammation is known to

participate in the pathophysiology of ASD, and reducing
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1341404
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2024.1341404
inflammation can potentially alleviate symptoms associated with

the disorder (82). rTMS can modulate the immune response and

reduce pro-inflammatory cytokine levels (83). Gut microbiota

modulation can also regulate inflammation through the

production of anti-inflammatory factors and modulation of

immune cells (83). By combining these interventions, it is

possible to achieve synergistic anti-inflammatory effects, which

migh t he lp a l l ev i a t e ASD symptoms . B id i r e c t i ona l

communication between the gut and brain is achieved through

the gut-brain axis, which plays a crucial role in the regulation of

brain function and behavior. Both rTMS and gut microbiota

modulation can influence the gut-brain axis (84, 85). rTMS can

modulate gut microbiota composition and function through its

effects on neurotransmitters and the immune system (86).
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Conversely, gut microbiota modulation can affect brain function

and behavior through the production of neuroactive compounds,

modulation of the immune system, and regulation of the intestinal

barrier (87). By combining these interventions, it is possible to

more comprehensively regulate the gut-brain axis, thereby

improving ASD symptoms (Figure 3).
4.3 Combination of rTMS and gut
microbiota modulation could modulate
psychological aspects

The potential synergistic effects of the combination of rTMS

and gut microbiota modulation in ASD can be explored in other
FIGURE 2

Potential treatment responses triggered by combined rTMS and gut microbiota modulation against ASD through interaction by gut-brain axis. rTMS
can directly affect nervous function like glycosylation, immune response and retinoid metabolism to further affect brain performance. The fecal
metabolites and microbial taxa was affected by gut microbiota modulation through diet, probiotics or FMT, which was also affect the immunity like
IL-4, IL-10 and TGF-b. The interaction between microbial and nervous was achieved by gut microbiota-brain axis, which the intestinal function and
brain function was mutual influence. Combination rTMS and gut microbiota modulation can play a double regulation that is contributed to the
treatment of ASD.
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areas. GI symptoms, including abdominal pain, constipation, and

diarrhea, are commonly reported in individuals with ASD (88). Gut

microbiota modulation has been demonstrated to improve GI

symptoms by restoring the balance of gut bacteria and reducing

gut inflammation (89). rTMS, through its effects on the gut-brain

axis, might also have a positive impact on GI symptoms. By

combining these interventions, it is possible to target both the

neurological and gastrointestinal aspects of ASD, leading to a more

comprehensive improvement in overall well-being. Anxiety and

depression are frequently observed in individuals with ASD (90).

Both rTMS and gut microbiota modulation have proven

antidepressant and anxiolytic effects. rTMS can modulate neural

circuits involved in mood regulation (91), whereas gut microbiota

modulation can influence the production of neurotransmitters and

neuroactive compounds involved in mood regulation (92). By

combining these interventions, it is possible to target both the

neurological and psychological aspects of ASD, leading to

reductions in anxiety and depression symptoms. Impairments in

social communication and interaction are core features of ASD (93).

rTMS has been revealed to modulate brain regions involved in

social cognition and empathy, which are often impaired in

individuals with ASD (94). Gut microbiota modulation can also

influence social behavior through its effects on neurotransmitters

and the immune system (95). By combining these interventions, it is
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possible to target the underlying neural mechanisms involved in

social communication and interaction, leading to improvements in

these domains.
5 Conclusion and future directions

In this review, we discussed the interrelationship between rTMS

and the gut microbiota via the gut-brain axis in ASD. We also

discussed the potential of combining rTMS with gut microbiota

modulation as a novel therapeutic strategy for the prevention and

treatment of ASD in children. However, further investigation is

required to clarify the best treatment approaches, long-term

outcomes, and safety profiles of these therapies. Additionally, to

develop successful and focused therapies for individuals with ASD,

deeper understanding of the underlying processes and the intricate

relationships among rTMS, the gut microbiota, and the brain is

essential. As we indicated, rTMS is believed to be safe when

performed in compliance with current safety standards,

particularly in pediatric populations. However, rTMS carries a

small risk of unfavorable side effects. Therefore, before patients

receive rTMS, several criteria, including their current medicines and

medical history, must be evaluated. Additionally, the procedure’s

risk-benefit ratio must be carefully considered.
FIGURE 3

The ASD and dysregulation within the gut-brain axis and the appropriate mechanisms of interplay. The probiotics (e.g., Lactobacillus), symbiotics or
FMT can enhance the homeostasis to maintain intestinal health. The microbiota composition and production of metabolites such as SCFAs can cross
the “leaky gut” to affect brain function. Moreover, some microbiota can produce neuroactive compounds (e.g., GABA) that cross the “leaky gut” and
influence brain function and induce abnormal behaviors. These neuroactive compounds can directly influence the HPA axis and increase circulating
levels of cortisol. Metabolites, certain microbiota and neuroactive compounds can activate enteric neurons and affect brain function through the
vagus nerve. Some microbiota and metabolites can activate gut immune cells, which can release cytokines into circulation.
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13. Gómez L, Vidal B, Maragoto C, Morales LM, Berrillo S, Vera Cuesta H, et al.
Non-invasive brain stimulation for children with autism spectrum disorders: A short-
term outcome study. Behav Sci (Basel Switzerland) (2017) 7:63. doi: 10.3390/bs7030063

14. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of
human motor cortex. Lancet. (1985) 325:1106–7. doi: 10.1016/s0140-6736(85)92413-4
15. Oberman LM, Enticott PG, Casanova MF, Rotenberg A, Pascual-Leone A,
McCracken JT, et al. Transcranial magnetic stimulation in autism spectrum disorder:
Challenges, promise, and roadmap for future research. Autism Res (2016) 9:184–203.
doi: 10.1002/aur.1567

16. Khaleghi A, Zarafshan H. Effects of non-invasive neurostimulation on autism
spectrum disorder: A systematic review. Clinical Psychopharmacology And
Neuroscience (2020) 18:527–52. doi: 10.9758/cpn.2020.18.4.527
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