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Primary Graft Dysfunction (PGD) is a major cause of both short-term and long-

term morbidity and mortality following lung transplantation. Various donor,

recipient, and technical risk factors have been previously identified as being

associated with the development of PGD. Here, we present a comprehensive

review of the current literature as it pertains to PGD following lung

transplantation, as well as discussing current strategies to mitigate PGD and

future directions. We will pay special attention to recent advances in lung

transplantation such as ex-vivo lung perfusion, thoracoabdominal

normothermic regional perfusion, and up-to-date literature published in the

interim since the 2016 ISHLT consensus statement on PGD and the COVID-

19 pandemic.
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Introduction

Lung transplantation (LTx) is the current mainstay of care for patients with end-stage

pulmonary disease. Per the United Network for Organ Sharing (UNOS), 2,692 lung

transplants were performed in the United States in 2022. Despite the growing number of

lung transplants being performed, pulmonary allografts remain the least durable solid

organ out of kidney, liver, and heart (1). Primary graft dysfunction (PGD) is a major cause

of pulmonary allograft dysfunction in the immediate perioperative period carrying an

incidence of 10-30% of patients in which a mortality rate up to 40% can be observed (2, 3).

Though there is no consensus on the exact pathophysiology behind the development of

PGD, ischemia-reperfusion injury is generally considered as a major contributor to its

development for several reasons (4–6). Firstly, the lung is a unique organ with a dual blood
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supply; that of the pulmonary vasculature, and that of the bronchial

vessels. During transplantation, the bronchial blood supply is

disrupted, leaving distal airways more prone to ischemic injury.

Secondly, reactive oxygen species generated by an influx of cytosolic

calcium during warm and cold ischemic times in response to ATP

generation creates a cycle of inflammatory changes and eventual

endothelial damage, which leads to more inflammation from

increased capillary permeability and cytokine release, ultimately

leading to cell death in the donor allograft (6, 7). Furthermore, the

milieu of donor and recipient risk factors, which we will discuss in

this article, are also key in the pathophysiology of PGD (8, 9).

Importantly, PGD is strongly associated with the development of

chronic lung allograft dysfunction (CLAD), which is the primary

cause of long-term morbidity and mortality after LTx (10, 11).

Thus, it is critical to identify patients who are at risk of developing

PGD and maximize the lifespan of the transplanted lung. In this

review, we will discuss the current literature pertaining to the

definition of PGD as well as donor and recipient factors which

may contribute to the development of PGD.
PGD: current definition

PGD is a consensus-based, standardized definition and grading

system defined by the International Society for Heart and Lung

Transplantation (ISHLT) (12, 13). PGD is clinically characterized

by the presence of diffuse alveolar infiltrates on radiographic

imaging and the severity of hypoxemia based on the PaO2 to

FIO2 (P/F) ratio (Table 1). The diagnosis of PGD is that of

exclusion; it can only be made after rejection, volume overload,

pulmonary embolism, infectious, or structural mechanisms of graft

dysfunction have been ruled out. Additional caveats of the grading

system also specify Grade 3 PGD (PGD3) as patients who received

mechanical circulatory support post-transplant as well as patients

that required inhaled nitric oxide >48 hours following LTx. PGD is

graded in the immediate postoperative period every 24 hours from

time 0 to 72 hours post reperfusion. The guidelines reflect findings

in the literature that PGD3 is associated with higher rates of

postoperative bronchiolitis obliterans (BOS) in addition to both

short and long-term mortality (14, 15). PGD3 carries a much worse

prognosis than PGD1 or PGD2 with 5-year mortality rates as high

as 60% for PGD3 and 30% for PGD1/2 (3). Importantly, PGD at 72

hours seems to be the most reliable prognostic indicator during the

0-to-72-hour post reperfusion assessment interval (3). The most
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recent 2016 ISHLT PGD criteria has received recent criticism, as

different trends in outcomes for each PGD classification have been

observed following its implementation. A 2020 retrospective

analysis demonstrated a higher proportion of lower PGD grades

than prior to 2016, however, short-term mortality of patients with

PGD3 did not differ from the previous classification (16).
Donor risk factors for development
of PGD

Extended criteria donors

The ideal lung donor criteria are defined as age between 20 and

55 years, P/F ratio >350 mmHg, no smoking history, normal chest

x-ray, <5 days of mechanical ventilation, BAL with negative gram

stain and bronchoscopy, and <4-6 hours of ischemic time (17, 18).

However, these strict criteria have significantly limited the pool of

available donors. Thus, many centers have advocated for use of

extended donor criteria. The use of marginal donors has been

extensively studied for other organs. For lungs, several studies

suggest comparable outcomes to optimal donors (19–21). Below,

we will discuss some of the risk factors within these extended

criteria and their associations with PGD.
Age

Early studies have implicated donor age >45 years or <21 years as

being correlated with development of PGD (22, 23). More recent

studies have failed to demonstrate a significant association between

donor age and development of PGD; however, long-term outcomes

tended to correlate negatively with donor age as well as a higher

incidence of CLAD (24–28). In terms of extremes of age, recent

literature has examined outcomes after using lungs from donors >70

years of age. These studies report no significant difference in incidence

of PGD3 relative to donors aged less than 65 years (26, 29, 30). These

findings may suggest that previous effects of donor age on outcomes

may be mitigated with advances in perioperative care, organ

preservation strategies, and by placing greater emphasis on biological

rather than chronological age of the potential donor (31).
Lung donation following trauma

Use of pulmonary allografts following sustained chest trauma has

been controversial. However, this topic has garnered recent attention

to minimize loss of allografts from the donor pool. A 2022 study

examined this in detail, which demonstrated no difference in PGD3 at

72 hours, duration of ventilation, and long-term graft survival in

patients who received allografts with pulmonary contusions

compared to those who did not (32, 33). Further research is

needed in this area to examine whether the extent of contusion

serves as an effect modifier and what subset of contused lungs can

safely be used to expand the donor pool. In addition to sustaining

lung contusions, trauma patients frequently require transfusion of
TABLE 1 Grading of PGD as per 2016 ISHLT guidelines.

PGD
Grade

Mechanical
Circulatory
Support

Interstitial
Infiltrates on
Chest X-Ray

PaO2/
FIO2 Ratio

0 No No >300

1 No Yes >300

2 No Yes 200-300

3 Yes* Yes <200
*Requirement of Mechanical Circulatory Support is automatically graded as PGD3.
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blood products during initial resuscitation. Transfusion of blood

products has been identified as an independent risk factor for the

development of PGD and serves as an important consideration when

evaluating a potential donor (34).

Another uncommon factor to consider in accepting lung allografts

from a polytrauma donor is the occurrence of donor-acquired fat

embolism syndrome (DAFES). Description of DAFES is sparsely

described in the literature and limited to a handful of case series.

According to recent literature, 8 cases of DAFES have been reported,

and 3 of which were discharged alive (35–37). In these case reports,

each met criteria for PGD3 postoperatively, and each patient that

survived developed CLAD. A salient point made by Jacob and

colleagues is that it is unknown what percent of PGD are actually

DAFES, as signs/symptoms of DAFES often mimic PGD (37). In

addition, DAFES was only diagnosed post-mortem during autopsy in

nearly every previously reported case, emphasizing that the actual

incidence of DAFES is likely underappreciated. Thus, special attention

must be given to identify fat embolism in polytrauma donors during

retrograde flushing and bronchoscopy to mitigate PGD.
Sex mismatch

Mismatch between donor and recipient sex has previously been

implicated as a risk factor for developing PGD and adverse

outcomes in kidney, liver, and heart transplantation (38–41). The

data as it pertains to sex mismatch and PGD in LTx have been

mixed. Studies from France, the UK, and Canada have reported

significantly worse overall survival for female-to-male transplants,

as well as an increased likelihood of PGD development (38, 42, 43).

A 2013 single center analysis did not demonstrate any significant

difference in sex mismatched LTx in terms of overall outcome and

development of PGD (44). Given the above heterogeneity, paucity

of investigation, and lack of recent data on this topic, further

investigation is needed to elucidate the impact, if any, sex

mismatch has on PGD and overall outcomes.
Substance use

Other social/demographic donor characteristics which have

been demonstrated to correlate with PGD are smoking and

alcohol use (45–47). The 2016 ISHLT consensus guidelines go on

to list donor smoking as a “definite” risk factor for developing PGD

(13). However, a recent 2023 study indicated that donor smoking,

even >20 pack years, was not significantly associated with the

development of PGD (48). The study does not suggest that donor

smoking is benign, as it also demonstrates slightly worse long-term

outcomes, most pronounced at 5-years, among those that received

lungs from a smoking donor (48). In addition, in risk-prediction

models, the risk of developing PGD with donor smoking was

elevated in high-risk recipients but not low-risk recipients (49). A

recent study investigated donor substance use and LTx outcomes in

more granularity. This group examined donor cocaine, opioid,

methamphetamine, and cannabis use along with their effect on

recipient outcomes post-transplantation and did not find a
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significant difference in development of PGD or overall survival.

There was, however, an increased probability of developing PGD

when the donor was a smoker (50). The temporality of smoking has

also been postulated as contributing to the development of PGD

and adverse outcomes. A 2020 study demonstrated acceptance of

lungs from donors who were current smokers led to a higher

incidence of PGD3 at 72 hours than either former smokers or

never smokers (51). In addition to typical tobacco smoking, the rise

of e-cigarettes and vaping is a looming public health threat with

documented damage to lung tissue. A 2023 single center study

found no association between donor vaping and PGD3, as well as

other short term outcomes (52). However, the study only included

29 patients, and the authors cite their small sample size as a

limitation of their ability to detect a difference. Given the mixed

data, a nuanced approach should be undertaken when accepting

lungs from a donor with prior substance use on a case-by-case basis.
History of infection or aspiration

Assessment for airway injury, pneumonia, and aspiration is

assessed during the donor operation by bronchoscopy. The ISHLT

identifies aspiration events in the donor prior to explantation as a

probable risk factor for PGD (53). A recent study used bile acid

levels within donor bronchoalveolar lavage as a correlate for

aspiration. Their data demonstrated increased rates of PGD,

longer time to extubation, and shorter time to CLAD (54).
Donor type

Donation after brain death (DBD) donors comprise the

majority of pulmonary allografts in the donor pool. However,

only approximately 20% of brain-dead donor lungs have been

suitable for transplantation due to the many mechanisms of lung

injury. In addition, brain dead donors experience a catecholamine

surge following brain death that can contribute to myocardial

stunning and pulmonary edema prior to donation that may

contribute to the high proportion of rejected lung allografts. To

expand the donor pool further, donation after circulatory death

(DCD) pulmonary allografts have gained popularity over recent

years (55). These comprised approximately 2% of LTx in the US in

2018, but upwards of 20% in Australia and the United Kingdom

(56, 57). The lack of utilization of DCD lung donors in the United

States may be attributed to concern over warm ischemia, resource

waste due to uncertainty of death criteria being met upon

withdrawal of support, and public scrutiny which may limit the

centers that can utilize DCD donors (56). A 2018 analysis of the

UNOS database was one of the first large studies examining

outcomes following DCD LTx in the United States (56). There

was no difference of incidence of PGD at 72 hours using DCD

allografts. In addition, receipt of DCD lungs was not associated with

increased hazard of death on Cox regression analysis (56, 57).

Subsequent studies echoed the same sentiments of safety and

feasibility (55, 57, 58). Less-than-average rates of PGD3 at 72

hours post-transplant when compared to DBD recipients (8% vs
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20%) were observed as well as superior survival at both 1 and 5 years

post-transplant (97% and 90% vs 90% and 61%) (57). The growing

body of evidence suggests that use of DCD pulmonary allografts is

safe and has acceptable incidence of PGD when compared to DBD

donors. Though this has been a relatively new frontier in

transplantation, this has the potential to widely expand the donor

pool and decrease wait list times safely.
Size matching of the donor allograft

Sizing of the donor allograft is important when selecting an optimal

donor for a recipient. There are various methods that are employed to

evaluate size matching, namely height matching, chest x ray

comparison, CT volumetric analysis, and pulmonary function tests,

each with their own limitations (59). This process is more complicated

in Idiopathic Pulmonary Fibrosis (IPF) where lungs are often shrunken

and fibrotic, requiring surgeons to estimate the size of a patient’s

would-be healthy lung size. Size mismatch has been shown to correlate

with negative overall outcomes and the risk of developing PGD (60).

There have been several studies examining this relationship, and

oversized allografts have been shown to have better overall survival

and decreased incidence of PGD3 in bilateral LTx (60–64). However,

oversized allografts carry their own set of challenges such as arriving to

the ICU with an open chest, which itself can be a risk factor for PGD

(65). A 2021 study investigated the perceived benefit of oversized

allografts and found that it was not necessarily oversized lungs that

conferred a benefit. Their data suggested an optimal ratio between the

total lung capacity (TLC) of the donor to the TLC of the recipient

between 0.8-1.2 resulted in better patient outcomes and lower rates of

PGD than ratios either above or below those cutoff values (59).

A summary of donor risk factors for the development of PGD

can be found in Table 2.
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Recipient risk factors for development
of PGD

Demographics

Demographic characteristics of recipients historically implicated

in the development of PGD have been thoroughly investigated and

have included elevated BMI (>25, increasingly so for >30), female sex,

and African American ethnicity (45, 66, 67). Recipient age has not

been shown to correlate with development of PGD (45).
Surgical history

Previous thoracic surgery has been shown to be a risk factor

for adverse events postoperatively following LTx (68). Specifically,

pleurodesis (either chemical or mechanical) was associated with

increased postoperative morbidity and incidence of PGD; other

cardiac and thoracic procedures were not independently

associated with PGD development (68, 69). A more recent 2016

analysis did not identify an effect of pleurodesis on development of

PGD, but only had a sample size of 10 patients and may have been

too underpowered to detect a difference (70). Lung Volume

Reduction Surgery (LVRS) has been considered a viable bridge

to transplantation in patients with end-stage COPD. However, a

study by Shigemura and colleagues demonstrated that

transplantation following LVRS is technically challenging, and

can impart higher perioperative morbidity and mortality, but did

not confer an increased risk of PGD development (71).
Patient conditioning

Frailty is very common in patients with end-stage pulmonary

disease and is a risk factor for many perioperative complications

(72). A recent study examined outcomes following LTx stratified

by frailty index and found increased risk of death, but there was no

increased risk of PGD in frail patients (73). Though it has not been

demonstrated to be associated with PGD, frailty remains an

important prognostic characteristic that portends worse

outcomes following LTx.
Diagnosis

Specific recipient diagnoses portend more risk of developing

PGD postoperatively. Pulmonary hypertension, IPF, diastolic

dysfunction, and sarcoidosis have been shown to be associated

with development of PGD (45, 67, 74–76).

Pulmonary hypertension has historically been considered a

strong prognostic indicator for the development of PGD,

identified by the ISHLT consensus group in 2005 and 2016 as a

risk factor (12, 53). This is likely due to the complex

pathophysiology and sequelae of pulmonary hypertension in the
TABLE 2 Donor risk factors for PGD, ranked according to level of
evidence with select corresponding references.

Donor
Risk Factor

Likelihood of
Contribution

to PGD
References

Smoking
Definite (Current
Smoker), Probable
(Former Smoker)

(13, 45, 47–52)

Aspiration/Infection Probable (53, 54)

Alcohol Use Probable (46)

Size Mismatch Probable (59–65)

Vaping Possible (52)

Illicit Drugs Possible (50)

Donation After
Cardiac Death

Unlikely (56–58)

Donor Sex Unlikely (38–43)

Trauma/
Pulmonary Contusions

Unlikely (32–34)

Donor Age Unlikely (22–30)
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perioperative period. Upon implantation of the donor allograft,

numerous cardiopulmonary physiologic parameters change. The

decreased pulmonary vascular resistance increases right ventricular

output; thus, increased shear stress due to elevated compensatory

cardiac output may cause injury to the underlying pulmonary

vasculature. Increased right ventricular output has a cascading

effect on the left ventricle; the increased volume of blood returned

to the left heart may manifest as immediate diastolic dysfunction,

which can potentially deliver another blow to an already sensitive

pulmonary capillary bed.

Though considered a strong risk factor, the degree of impact

that pulmonary hypertension has on the likelihood of developing

PGD has been recently debated. A recent study found no

association between pre-transplant pulmonary hypertension and

PGD3 (77). However, in this single institution study, the authors

only included 49 patients with a pulmonary arterial pressure

>25mmHg. The small sample size and limited sample catchment

area were significant limitations of this study that were identified by

the authors, warranting further investigation. Recognition of the

heterogeneity within patients with pulmonary hypertension may

also play a role in predicting PGD development. Porteous and

colleagues found that risk of PGD within this population was

increased with BMI >30, female sex, degree of pulmonary artery/

right atrial pressure elevation, elevated creatinine at transplant, and

receipt of lungs from a smoking donor (76). Their model had high

negative predictive value, but low positive predictive value. They

also included both patients with primary and secondary pulmonary

hypertension, which may serve as a confounder. The 2005 and 2016

ISHLT consensus statements on PGD highlight secondary

pulmonary hypertension as a possible risk factor, after two

studies published conflicting data on secondary pulmonary

hypertension being associated with the development of PGD

(12, 78).

Patients with end-stage silicosis can also be treated successfully

with LTx (79). However, as this condition is quite rare, there are

limited numbers of studies examining this in the literature. As

patients with silicosis have been identified to have a relatively high

operative risk profile due to risk of hemorrhage and significant

adhesions, their overall complexity and increased time on

cardiopulmonary bypass may portend more risk of developing

PGD (80). The advent of robust national and international

databases may give us the opportunity to examine silicosis and

other pneumoconioses in more depth to examine incidence of PGD

and how it differs from more common restrictive lung diseases.

Most recently, COVID-19 as well as new viral respiratory causes

of ARDS have emerged as a growing public health threat. COVID-

19 related interstitial lung disease has been identified in some

patients after acute illness (81, 82). There have been a small

number of case series published on LTx due to COVID-19 (83).

In a study by Roach et al., the small sample of 183 patients with both

COVID-19 ARDS and ILD collected from the UNOS database did

not demonstrate any incidence of PGD (84). This was in contrast to

the study by Kurihara et al. that demonstrated a 70% rate of PGD in

the COVID-19 related ARDS cohort (83). A multicenter experience

in LTx in other causes of ARDS demonstrated comparable short-

term outcomes to those who were transplanted due to COVID-19
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in ARDS in general, is the paucity of literature evaluating short- and

long-term studies outside of a handful of case reports and series.

Future studies will have to be undertaken as the impact and breadth

of COVID-19 related ILD evolves to better understand the impact

on COVID-19 related lung disease on the development of PGD.
Single vs double lung transplant

The most recent data suggests that transplantation of a single

lung carries a two-fold increased risk of developing PGD

postoperatively (45). However, this is becoming less relevant as

the number of single LTx performed has stagnated and is being

quickly eclipsed by the steadily growing number of bilateral lung

transplants performed per year, which carry better long-term

survival and less incidence of PGD.
Anastomosis time

Anastomosis time has been implicated as another risk factor for

PGD. A 2022 retrospective analysis of 427 patients examined this

relationship and found a 20% increased risk of developing PGD3

per 10 minutes of anastomosis time (86). 96% of patients in this

study were supported with ECMO intraoperatively, minimizing the

possible impact of other forms of intraoperative cardiopulmonary

support. Thus, it is critical for the transplant surgeon to operate as

efficiently as possible to minimize warm ischemic time resulting

from a prolonged anastomosis, in order to prevent PGD.

A summary of recipient risk factors for the development of

PGD can be found in Table 3.
Methods used to mitigate PGD and
its effects

There are many strategies used to attenuate, mitigate, or even

prevent PGD during donation, organ transportation, and during/

after transplantation. Below, we will discuss some of the methods

and recent pharmacotherapies in the transplant physician’s arsenal

to combat PGD.
Allograft preservation strategies/
ischemic time

Organ preservation is another important aspect to consider

when minimizing the risk of PGD. The gold standard of lung

preservation is cold static preservation between 4-10 degrees Celsius

using a low potassium solution (Perfadex) via the pulmonary artery

followed by a retrograde flow in each pulmonary vein (87). Lungs

are retrieved in a semi-inflated state. Cooling of the organ is

provided by the perfusate solution, and direct contact of ice with

the lung surface should be avoided. This method continues to be the

mainstay of lung allograft transportation, although there have been
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numerous advances in organ preservation that are becoming

increasingly used in practice.

Investigation in the 1980s demonstrated that 10 degrees Celsius

was the optimal lung preservation temperature. The feasibility and

implications of keeping allografts consistently at 10 degrees were

not clearly understood at that time. This was partly due to the

paucity of information yet to be discovered regarding cell signaling

pathways and their effects on preservation (88). Since then,

technology and understanding of this process have evolved.

Mitochondrial injury has been implicated in limiting the extent of

time organs can maintain viability. The investigators found that

porcine allografts stored for up to 36 hours at 10 degrees Celsius had

better pulmonary physiology when compared to lungs stored at 4

degrees Celsius. This was applied to human donors/recipients,

which resulted in no incidence of PGD3 at 72 hours post-

transplant, and a 100% 30-day survival for their five-patient

cohort (89). This has already been implemented into clinical

practice, as the LUNGguard (Paragonix) has been FDA-cleared

for lung preservation, allowing precise temperature control between

4-8 degrees Celsius (90–92). Preliminary investigations have

demonstrated no significant difference in rates of PGD

development when compared to traditional cold storage (92).

Further investigation may solidify this strategy that can not only

reduce incidence of PGD, but also help to transform LTx into a

semi-elective procedure. However, at this moment, the 1-year

results of a clinical trial comparing this strategy to conventional

cold storage has yet to be reported.

In addition to storage temperature, the duration of cold

ischemic time has been implicated as a possible risk factor for

PGD in previous studies (93). However, Diamond and colleagues

did not find an association between ischemic time and incidence of

PGD (45). Moreover, additional data echo these results, where

length of cold ischemic time was not associated with development

of PGD (94, 95). Interestingly, Hasenauer and colleagues reported

that cold ischemic time was not significantly associated with the

development of PGD in an animal model, but warm ischemic time
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was indeed correlated with PGD development (94). Based on the

data reported, though cold ischemic time has recently been

demonstrated to have no association with PGD, it is still

important to minimize ischemic time, both warm and cold, to

slow the metabolic rate of each allograft to minimize any free radical

and accumulation of toxic metabolites that may contribute to PGD.
Ex-vivo lung perfusion

Over the last decade, normothermic ex-vivo lung perfusion

(EVLP) has been increasingly utilized to expand the donor pool,

minimize cold ischemic time, and preserve donor allografts until

transplantation. The INSPIRE study, a phase 3 clinical trial

examining patients whose allografts were preserved using the

Organ Care System (OCS) device (Transmedics) showed

comparable short- and long-term survival to patients whose

allografts were stored on ice (96). The authors reported

significantly better rates of PGD3 relative to cold storage at 4

degrees celsius. Subsequently, the EXPAND study examined the

OCS device with extended donor criteria and DCD donors (97).

This study found rates of PGD3 of 44% within the initial 72 hours

post-transplant, which improved to only 6% at 72 hours, had an

increased proportion of donor lungs utilized, and excellent early

and 1-year survival. The authors cited a large proportion of DCD

allografts and transplants performed on CBP as possible

explanations for the high initial rates of PGD. The OCS system,

based on the EXPAND and INSPIRE trials, has had promising

results, and appear to be more protective against PGD relative to

static EVLP. The DEVELOP UK trial demonstrated an 88% initial

PGD3 rate, and 27% of their sample had PGD3 at 72 hours for static

EVLP, compared to 6% PGD3 at 72 hours observed in the EXPAND

trial (97–99).

There have been several systematic reviews and meta-analyses

regarding normothermic ex-vivo lung perfusion for allograft

preservation, which did not find a significant difference in PGD3

or overall outcomes versus cold storage (100, 101). Importantly,

EVLP has been performed with lungs that that would have been

deemed not suitable for clinical transplantation with acceptable

rates of PGD, hence these results represent an important message:

EVLP to expand the donor pool safely provides more donor

allografts for patients in need. Though the data is mixed

regarding incidence of PGD with utilization of normothermic ex-

vivo perfusion, short-and long-term outcomes support its use for

expansion of the donor pool.
In-situ thoracoabdominal normothermic
regional perfusion

EVLP, as described above, is becoming a more widely used

method of ex-vivo lung preservation. In-situ Thoracoabdominal

Normothermic Regional Perfusion (TA-NRP) has been gaining

popularity for abdominal organ preservation and has just begun

to be described in small series in DCD LTx (102). The initial data on

the use of TA-NRP in lung donation is mixed, extremely limited to a
TABLE 3 Recipient risk factors for PGD, ranked according to level of
evidence with select corresponding references.

Recipient
Risk Factor

Likelihood of
Contribution

to PGD
References

Pulmonary Hypertension Probable (12, 53, 76–78)

African American Race Probable (45, 66, 67)

History of Pleurodesis Probable (68, 69)

Female Sex Probable (45, 66, 67)

Obesity Probable (45, 66, 67)

COVID-19 Lung Disease Possible (81–85)

Frailty Unlikely (73)

COPD Unlikely (45, 67)

ILD Unlikely (45, 67, 74–76)

Age Unlikely (45)
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small number of case studies and series, which note development of

PGD ranging from grades 0-3. In an 8-patient single center

experience, the authors noted 7 out of 8 patients had PGD1 or

less at 24 hours, and there was no observed short term pulmonary-

related mortality, identifying TA-NRP as a potential strategy to

increase the donor pool and protect DCD lungs from PGD (103).

Further research is needed, as these studies are too small to identify

an effect of TA-NRP on PGD. Of note, there is an ethical debate

surrounding the use of TA-NRP. The controversy surrounds the

“dead donor rule” and the argument that once circulation is

restarted with TA-NRP, the patient may not be dead. The

counter-argument is that TA-NRP is not started until after

patients are dead, and that its initiation is not with the intent to

resuscitate, rather the intent to honor their wish to donate (104).

Though there is considerable ethical debate regarding this process

and considerable logistical challenges with coordination between

perfusionists, donor/recipient centers, and organ procurement

organizations TA-NRP has the potential to expand the donor

pool, and must be validated with larger, multi-center studies to

better evaluate its efficacy and relationship to PGD once there is

ethical consensus (105).
Intraoperative support

The method of intra-operative mechanical circulatory support

(MCS) may also play a role in protection against the development of

PGD. Many patients can become hemodynamically unstable during

LTx necessitating initiation of MCS. Common indications include pre-

operative MCS use warranting continued use in the operative setting,

hemodynamic instability immediately before transplantation, or a high

risk of decompensation upon induction of anesthesia. Additionally,

patients that have refractory hypoxia during transplantation (most

notably after implantation of the first graft), refractory pulmonary

hypertension >50mmHg (typically just before implantation, examined

via occlusion of the pulmonary artery), and hemorrhagemay also result

in acute necessity for MCS (106). Historically, cardiopulmonary bypass

(CPB) has been the method of choice used for this purpose. However,

use of intra-operative cardiopulmonary bypass in LTx has been

implicated in numerous studies as portending worse overall

outcomes and increased risk of developing PGD (45, 67). In

addition, CPB is associated with high likelihood of blood product

utilization, which itself has been implicated in carrying increased risk

for PGD development, especially FFP and platelets (2, 34, 107, 108). A

recent study postulated that it may not be CPB itself that contributes to

the development of PGD, but the amount of time spent on CPB. In an

analysis of 1,039 LTx recipients, 67% of which utilized CPB at the time

of their transplant, demonstrated that >3 hours of CPB is associated

with severe PGD. Rates of severe PGD with <3 hours of CPB were

comparable to patients who did not receive support with CPB (109).

Venoarterial Extracorporeal Membrane Oxidation (VA-

ECMO) has continued to gain popularity as an alternative

method of MCS and is now widely used for perioperative

hemodynamic support around the time of LTx (106, 110–112). In

addition, benefits of ECMO over CPB include avoidance of full

heparinization which reduces the risk of hemorrhagic
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complications, the ability to extend ECMO into the ICU for

continued circulatory support if needed, and reduction of trauma

to the allograft to allow for controlled reperfusion and lung

parenchyma-protecting ventilation strategies. The use of VA-

ECMO routinely may help to blunt the harsh physiologic changes

that occur upon implantation of the non-diseased allograft. VA-

ECMO gives the transplant surgeon a high degree of control of

physiologic parameters to prevent ischemia-reperfusion injury and

factors contributing to PGD development.

Numerous studies continue to identify VA-ECMO as being

superior to CPB in terms of risk of developing PGD postoperatively

and overall outcomes (45, 113–115). A 2020 prospective study of

mandatory intraoperative VA-ECMO during LTx reported

excellent primary graft function with a PGD rate of 1.2% after 72

hours (116). The data are comparable with a previous retrospective

study demonstrating survival benefit and low incidence of PGD

postoperatively (117). The authors concluded that this strategy

allowed for optimal graft handling, minimizing first-lung

syndrome, improving hemodynamic stability with VA-ECMO,

and reducing reperfusion injury and fluid extravasation through a

controlled environment for lung implantation and reperfusion. The

versatility of VA-ECMO has become a valuable tool in the LTx

surgeon’s armamentarium to prevent PGD and optimize outcomes

following LTx.
Immunologic and pharmacologic strategies

Numerous induction immunosuppression agents are used in LTx,

including anti-thymocyte globulin (ATG), IL2 antagonists such as

basiliximab (Simulect), and alemtuzumab (Campath), an anti-CD52

monoclonal antibody (118). However, the standard of care regarding

optimal induction immunosuppression has not been established, nor

has a possible protective effect against PGD of varying regimens. The

relationship between immunotherapy and PGD prevention has

recently begun to be investigated. A retrospective single-center

analysis sought to compare outcomes following induction therapy of

basiliximab or alemtuzumab. Alemtuzumab was found to significantly

decrease the incidence of PGD, delayed chest closure, postoperative

liver dysfunction, and acute cellular rejection (ACR) within the first

year as well as improved overall survival (119). Further investigation is

needed to standardize immunosuppression strategies that optimize

perioperative outcomes and protect against PGD.

Donor-recipient HLA status and virtual crossmatching have

been very important principles in organ transplantation as

matching has been demonstrated to maximize overall survival

and graft function and has recently been identified as a new

potential technique to prevent PGD (120–122). A recent study

implicated HLA class II eplet mismatch as a negative prognostic

factor in lung transplantation, associated with poor outcomes and

increased risk of PGD (121, 122). As sites of eplet mismatches

increase, so did the severity of PGD seen postoperatively (121).

However, eplet mismatch is not routinely screened for, as it can only

be detected using high-resolution HLA matching, highlighting a

potential role for high-resolution HLA matching in the prevention

of PGD as this technology becomes more widely available.
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The use of plasmapheresis has been considered as a tool that may

mitigate the development and effects of PGD. In the setting of a positive

virtual cross match or in patients with donor specific antibodies (DSA)

at the time of transplant, plasmapheresis has been used as

desensitization treatment. Early evidence of success of desensitizing

DSA+ recipients preoperatively was reported in 2011 in renal

transplantation (123). A previous study examined the utility of

desensitization of DSA+ recipients in LTx (124). Recipients were

desensitized with plasmapheresis, intravenous immune globulin,

antithymocyte globulin, and mycophenolate mofetil if they had

positive pre-transplant DSA, panel reactive antibody (PRA)>30%, or

medically urgent. They found no difference in PGD incidence, survival

at 30 days and 1 year, FEV1, and forced vital capacity between patients

who were DSA-/PRA+ and DSA+ patients who were desensitized

(124). However, a 3-year prospective randomized controlled trial

identified desensitization as a risk factor for developing PGD. A high

percentage of PGD3 was seen in patients with high DSA levels despite

desensitization. Interestingly, increased incidence of CLAD was not

seen in the desensitized high DSA group which implied a protective

effect on graft survival despite of the high proportion of PGD3 seen in

this population (125). This field of study will play an important role in

expanding the donor pool and allowing for higher access to LTx for

patients who are DSA+, but the impact of desensitization on PGDmust

be thoroughly investigated as well (126).

There are also several recent clinical and preclinical trials

investigating therapies that may mitigate ischemia-reperfusion injury

and PGD following LTx. Hashimoto and colleagues observed a

reduction in ischemia-reperfusion injury following LTx in a rat

model with administration of a homodimer of Annexin V, which

prevents cell adhesion by shielding phosphatidyl serine motifs (127).

Iskender and colleagues examined the effect of intravenous alpha-1

antitrypsin (A1AT), previously shown to have a protective effect

against ischemia-reperfusion injury in rat models, in a large animal

model. They demonstrated decreased stigmata of ischemia-reperfusion

injury and improved post-transplant lung function in a porcine model

(128). Another large-animal study by LaPar demonstrated improved

lung function post LTx with administration of an adenosine A2a
receptor agonist, a known mediator of a potent anti-inflammatory

cascade (129).

The complement cascade has been previously identified as playing

a role in the development of ischemia-reperfusion injury and PGD

(130). Numerous anti-complement therapies have been demonstrated

to show potential in reducing the extent of ischemia-reperfusion injury

(131, 132).

Interleukin-10 (IL-10) has been identified previously as an anti-

inflammatory cytokine, inhibiting cellular adhesion, free radical

formation, and production of pro-inflammatory cytokines (133).

Immunomodulation and increased expression of IL-10 has been

shown in a handful of studies to be protective against ischemia-

reperfusion injury (133, 134).

H19, a long-noncoding RNA, has been demonstrated to play a role

in numerous pulmonary disease processes, and a 2023 study sought to

examine a possible role in the development of PGD (135). They

identified H19 within a signaling axis of PGD via transcriptome

analysis, and when silenced in a murine model, found reduced
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inflammatory cell infiltration and secretion of CCL28, which itself

stimulates inflammatory chemokine secretion, and decreased incidence

of PGD (135). Identification of this signaling axis in PGDmay allow for

targeting of H19 and similar genomic pathways in the prevention of

PGD. Collagen V (Col(V)) has also been identified as a possible target

for immune modulation, as previous studies have implicated anti-Col

(V) T cell immune activity as being involved in the development of

airway injury and PGD following LTx (136). Another targeted therapy

of recent interest is that of the protein kinase C (PKC) pathway. The

PKC cascade has previously been associated with ischemia-reperfusion

injury in the heart and brain (137). Kim and colleagues demonstrated

that in LTx, knockdown of the PKC cascade via small interference

RNA (siRNA) resulted in decreased expression of inflammatory

mediators and changed the main mode of cell death from necrosis to

apoptosis in rat models (137). There are many opportunities on the

horizon to mitigate ischemia-reperfusion injury and PGD as these

therapies begin to make their way from bench to bedside.

A summary of strategies/trials aimed at mitigating PGD can be

summarized in Table 4.
Perspectives/conclusion

PGD is a major cause of morbidity and mortality following LTx.

We have effectively summarized donor and recipient risk factors, as

well as those pertaining to operative technique, for developing post-

transplant PGD. In addition, we have compiled numerous strategies

that have been used to mitigate PGD such as gene therapy,

preclinical pharmacologic therapies, desensitization, and advances

in mechanical circulatory support and ex-vivo lung perfusion. This

remains a major area of opportunity for research with much

potential to continue to improve outcomes following LTx.
TABLE 4 Strategies and clinical/preclinical trials aiming to mitigate PGD,
listed in order of presentation with select corresponding references.

PGD Mitigation Strategies/Trials References

Ex-Vivo Lung Perfusion (96–101)

In situ Thoracoabdominal Normothermic Regional Perfusion (102–104)

Venoarterial Extracorporeal Membrane Oxidation (106, 110–117)

Immunosuppression (118, 119)

High-Resolution HLA Matching (120–122)

Plasmapheresis/Desensitization in Setting of +Donor
Specific Antibodies

(124–126)

Annexin V Homodimer Therapy (127)

Alpha-1-Antitrypsin Infusion Therapy (128)

Adenosine A2a Receptor Agonist Therapy (129)

Anti-Complement Therapy (133, 134)

IL-10 Immunomodulation (133, 134)

H19 Long-Noncoding RNA Silencing (135)

Protein Kinase C Knockdown (137)
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