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Exosomes play a crucial role in facilitating intercellular communication within

organisms. Emerging evidence indicates that a distinct variant of programmed

cell death ligand-1 (PD-L1), found on the surface of exosomes, may be

responsible for orchestrating systemic immunosuppression that counteracts

the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy.

Specifically, the presence of PD-L1 on exosomes enables them to selectively

target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and

impeding T cell activation or proliferation. This mechanism allows tumor cells to

evade immune pressure during the effector stage. Furthermore, the

quantification of exosomal PD-L1 has the potential to serve as an indicator of

the dynamic interplay between tumors and immune cells, thereby suggesting the

promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/

PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable

approach for anti-tumor treatment has garnered significant attention. Depleting

exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic

immunosuppression. This review aims to elucidate recent insights into the role of

exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a

diagnostic, prognostic, and therapeutic tool in lung cancer.
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Introduction

The utilization of immune checkpoint inhibitors (ICIs) presents a hopeful strategy for

managing advanced lung cancer due to their ability to enhance the CD8+ T cell-mediated

response, which includes direct cytotoxic activity against tumor cells (1). Tumor cells express

programmed cell death ligand-1 (PD-L1), which interacts with programmed death-1 (PD-1)
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on the T cell, counteracting the T cell receptor (TCR) signaling

cascade by Src homology-2 domain-containing phosphatase 2

(SHP2) (2). This interaction effectively inhibits the T cell activation

signaling pathway, including the rat sarcoma (Ras)/mitogen-activated

extracellular signal-regulated kinase (MEK)/extracellular regulated

protein kinases (ERK) pathway and the phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT)/mammalian target of rapamycin

(mTOR) pathway. It dampens the tumor’s immune response (3).

The current study predominantly attributes this immunosuppression

to membrane PD-L1 (mPD-L1) (4).

Beyond the mPD-L1, more forms of PD-L1 have been

identified, encompassing nuclear PD-L1 (nPD-L1), cytoplasmic

PD-L1 (cPD-L1), soluble PD-L1 (sPD-L1), and exosomal PD-L1.

This diversity underscores the intricate roles of PD-L1 in

tumorigenesis, spanning both immune and non-immune

functionalities (5) (Figure 1). nPD-L1 markedly escalates the

expression of genes pertinent to immune and pro-inflammatory

pathways within tumor cells, thereby catalyzing tumor progression

(6). cPD-L1 predominantly modulates tumor cell proliferation,

apoptosis, and resistance to chemotherapeutic and radiological

interventions (7). cPD-L1 was found to inhibit the degradation of

mRNA molecules associated with DNA damage, thereby

attenuating DNA damage induced apoptosis. sPD-L1, paralleling

the function of mPD-L1, predominantly binds to PD-1 to propagate

inhibitory signaling, the exact mechanism needs to be further
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elucidated (8). Exosomal PD-L1 significantly impedes lymphocyte

activity and migrates to PD-L1-negative tumor cells and immune

cells, instigating both localized and systemic immunosuppression,

thereby facilitating tumor growth and proliferation (9).

Intriguingly, there are dynamic interactions between these

different PD-L1 forms. cPD-L1 can be transported to the cell

surface by trafficking protein particle complex (TRAPPC4) cycle

to replenish mPD-L1 recognized by antibodies, while mPD-L1 can

internalize into the cytoplasm and transform into cPD-L1 (10, 11).

This dynamic exchange might elucidate the partial ineffectiveness of

antibody blockade therapies because when blocking antibodies are

degraded and eliminated by protein hydrolysis or systemic

clearance, intracellular PD-L1 has the potential to migrate to the

cell surface and regain its immune evasive capacity.

A growing number of researchers consider that exosomal PD-

L1 plays a role in a novel mechanism that helps tumors evade the

immune system, and it has been recognized as a developing field of

immunotherapy for lung cancer. Blocking exosomal secretion and

immune checkpoint proteins may augment the efficacy of anti-

cancer immune reactions and open up new prospects in tumor

immunotherapy (12, 13). It is worth noting that exosomes obtained

from healthy cells and cancer cells exhibit significant variations in

quantity and composition, indicating the presence of specificity to

some degree (14). Consequently, the detection of exosomes holds

potential value for the early diagnosis and prognostic assessment of
FIGURE 1

PD-1/PD-L1 signaling pathways. (A) Nuclear PD-L1 (nPD-L1): nPD-L1 is located in the nucleus and may be associated with enhanced chemotherapy
resistance. (B) Cytoplasmic PD-L1 (cPD-L1): cPD-L1 is located in cytoplasm, and potentiates to transfer to mPD-L1. (C) Membrane PD-L1 (mPD-L1):
the classical function of PD-L1, which is mainly mediated by mPD-L1. mPD-L1 is located on tumor cell membranes and can bind to PD-1 on T cells,
recruiting the Src homology 2 domain containing phosphatases 2 (SHP2) to the PD-1 cytoplasmic domain, which dephosphorylates signaling
molecules of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and mitogen activated protein kinases (MAPK) pathways, thereby restricting
T cell proliferation, activation, and survival. (D) Exosomal PD-L1: exosomal PD-L1 has the same membrane topology as mPD-L1, which causes tumor
progression mainly by inhibiting T cell activation. (E) Soluble PD-L1 (sPD-L1): sPD-L1 generated from either endogenous secretion or cleaved
fraction of mPD-L1. sPD-L1, like mPD-L1, binds to PD-1 to transmit negative regulatory signals. Different forms of PD-L1 can be recycled between
the cytoplasm and the membrane. mPD-L1 enters the cell membrane via huntingtin interacting protein 1-related (HIP1R), whereas cPD-L1 is
recycled to the cell membrane via transporter protein particle subunit 4 (TRAPPC4). Figure created with BioRender.com.
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lung cancer. Exploring the potential clinical uses of exosomal PD-

L1 as both a biomarker for tumors and a target for therapy is of

great importance.

In this review, we focus attention on the role of exosomal PD-L1

in the modulation of the immune system. In addition, we emphasize

the potential application of exosomal PD-L1 in lung

cancer immunotherapy.
What are exosomes and
exosomal PD-L1?

Extracellular vesicles (EVs) are the term for particles that are

delimited by a lipid bilayer and cannot replicate on their own

(vesicular component of extracellular particles) (15). EVs carry

various biological macromolecule ingredients including DNA,

RNA, proteins, and lipids, which are released into the

extracellular environment, transfer cargo to recipient cells, and

thus play important roles in cell-to-cell communication. EVs are

generally split into three subtypes based on their mechanism of

biogenesis: exosomes, microvesicles (MVs), and apoptotic bodies

(16). Almost all kinds of normal or tumor cells secrete exosomes,

which are nanovesicles with a lipid bilayer and are biologically

active (17–20). Exosomes originate from the endocytosis pathway

and bud inward from vesicles in the late endosome to form a

multivesicular body (MVB). The MVBs merge with the cell

membrane and the vesicles are ultimately released through

exocytosis as exosomes measuring 30-150 nm (21). Exosome

secre t ion i s regula ted by Rab prote ins and neutra l

sphingomyelinase 2 (nSMase2), while the endosomal sorting

complex required for transport (ESCRT) participates in the

packaging of biomolecules into exosomes (22). Several researchers

have discovered that exosomes transport immune checkpoint

proteins like PD-L1, cytotoxic T lymphocyte associated protein 4

(CTLA-4), and T cell immunoglobulin domain and mucin domain-

3 (TIM-3) (17, 23–26). The presence of PD-L1 on the surface of

tumor-derived exosomes (TEX) contributes to tumor infiltration,

metastasis, and immune evasion (27) (Figures 2A–C). Several

cytokines, such as transforming growth factor-b (TGF-b) and

interferon-g (IFN-g), have also been found to promote exosomal

PD-L1 production (28, 29).

Exosomal PD-L1 can also be produced by other types of cells. In

melanoma, macrophages inside tumor tissues, induced by the

tumor microenvironment, turn into tumor-associated

macrophages (TAM) and produce exosomes bearing PD-L1,

which act on activated CD8+ T cells to inhibit T cell proliferation

and tumor-killing effect (30). In addition to exosomal PD-L1, Chen

et al. have shown that MVs from tumor cells also contained

membrane-associated PD-L1 and could compete with tumor cells

to bind anti-PD-L1 drugs (31). Glioblastoma (GBM)-associated

regulatory B cells (Breg) were characterized by immunosuppressive

activity toward activated CD8+ T cells. Lee-Chang et al. found that

GBM-associated myeloid-derived suppressor cells (MDSCs)

promoted Bregs function by delivering MVs transporting

membrane-bound PD-L1 (32). These studies demonstrate the
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heterogeneity of EV types carrying PD-L1. Although MVs and

exosomes are structurally similar, they differ in size, lipid

composition, content, and cellular origin (33). Those PD-L1-

bearing extracellular vesicles play an integral role in the

formation of the immunosuppressive microenvironment, and

their specific biological functions need to be further explored.

According to the conventional wisdom, PD-L1-mediated

immunosuppression was mostly based on the direct physical

contact between tumor cells and tumor-infiltrating T cells. The

mechanism of tumor immunosuppression mediated by the

interaction of exosomal PD-L1 secreted by tumor cells with PD-1

expressed on the surface of activated T cells is of wide interest to

researchers (34, 35). Activation of anti-tumor immune responses

occurs when exosomal PD-L1 is blocked using antibodies against

PD-L1. Therefore, targeting exosomal PD-L1 presents a new

opportunity for enhancing existing immunotherapy.
What important role does exosomal
PD-L1 play in tumor immunity?

The role of exosomal PD-L1 in facilitating immune evasion in

lung cancer is of paramount importance, as it impacts the immune

system through various mechanisms. These encompass the

suppression of T cell activity, modulation of other immune cell

populations, and facilitation of an immunosuppressive

microenvironment. Comprehending these intricate mechanisms is

imperative for the advancement of novel therapeutic approaches

aimed at counteracting immune evasion in lung cancer.
Inhibition of T cell function

Tumor cells employ a strategy to evade immune surveillance by

increasing the presence of PD-L1 on their surface. This protein

interacts with PD-1 on T cells responsible for fighting against

tumors, leading to the suppression of the anti-tumor response of

T cells. Experiments conducted on cells revealed that exosomal PD-

L1 exhibits identical membrane topology to cell surface PD-L1 and

exerts comparable inhibition on T cells (36–38). Exosomal PD-L1

impedes the stimulation of T cells facilitated by the TCR. The

binding of exosomal PD-L1 to PD-1 leads to a structural alteration

in PD-1, initiating the phosphorylation of the immunoreceptor

tyrosine inhibitory motif (ITIM) and the immunoreceptor tyrosine

motif (ITSM). The phosphorylation subsequently results in the

enlistment of cytoplasmic protein tyrosine phosphatases SHP-1 and

SHP-2. As a result, SHP-1/2 hinders the internal phosphorylation of

PI3K/AKT/mTOR, leading to the eventual cessation of T cell

activation (Figure 2D). PD-1 functions by suppressing T cell

activation through the inhibition of TCR signaling, which

necessitates the engagement of TCR and co-stimulatory receptors

with major histocompatibility complex (MHC) molecules, the

interaction between MHC-I and TCR enhances the inhibitory

function of exosomal PD-L1 on T cell (39, 40). Additionally,

studies have shown that exosomal PD-L1 can effectively impede
frontiersin.org
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the phosphorylation of ERK and activation of nuclear factor kappa-

B (NF-kB) in T cells induced by CD3/CD28 in a dose-dependent

fashion, thus exhibiting immunosuppressive characteristics (41).

Significantly, in clinical data, the immunosuppressive impacts

of exosomal PD-L1 often show a correlation with the levels of

exosomes (42, 43). Kim et al. discovered that solely PD-L1++++high

exosomes suppressed the generation of pro-inflammatory

cytokines, including Interleukin 2 (IL-2) and IFN-g, in patients

with non-small cell lung cancer (NSCLC) (12). Prolonged exposure

to elevated levels of exosomal PD-L1 can result in the T cells

experiencing a state of ‘functional exhaustion’. This depleted state

affects the long-term response of the immune system and reduces its

ability to respond to tumors. Nonetheless, the immunosuppressive
Frontiers in Immunology 04
phenotype cannot be definitively attributed to TEX alone due to the

presence of a mixture of TEX and exosomes derived from non-

malignant cells. Further onwards, a method based on

immunoaffinity was employed to differentiate between exosomes

derived from melanoma cells (MTEX) and exosomes derived from

normal cells (non-MTEX) (21). Whiteside et al. found that MTEX

itself was able to downregulate CD69 expression and inhibit CD8+

T cell proliferation in a PD-1 dependent manner. This discovery

additionally indicates that exosomes originating from tumors

predominantly contribute to the suppression of the immune

system. In general, the quantities of exosomal PD-L1 might

indicate a constantly changing relationship between cancerous

and immune cells. Exosomes are capable of inducing an
FIGURE 2

Biological characteristics of tumor-derived exosomes (TEXs) and mechanisms of exosomal PD-L1 to inhibit T cell activity. (A) Tumor cells contain
TEXs. The process begins with membrane invagination, followed by the production of endosomes, the formation of intraluminal vesicles (ILVs), and
the accumulation of multivesicular bodies (MVBs). These MVBs either bind to the plasma membrane and become exosomes or are degraded by
lysosomes. Neutral sphingomyelinase 2 (nSMase2) and Rab27A proteins regulate exosomes secretion. (B) The exosomes contain specific payloads,
such as proteins, DNAs, lipids, miRNAs, and others. Specific membrane proteins that act as biomarkers, such as PD-L1, major histocompatibility
complex (MHC) I and II, as well as some cytoskeletal proteins, are present on the surface of exosomes. (C) The exosomes ultimately release their
contents into recipient cells through different mechanisms, including endocytosis/phagocytosis, direct membrane fusion, and receptor-ligand
interactions. (D) Mechanisms of exosomal PD-L1 to inhibit T cell activity. The interaction between PD-L1 and PD-1 induces phosphorylation of the
cytoplasmic immunoreceptor tyrosine based inhibitory motif (ITIM) and the immunoreceptor tyrosine based switch motif (ITSM). Phosphorylated
ITIM and ITSM recruit SHP-1 and SHP-2 protein tyrosine phosphatases to attenuate T cell activation signals. Granzyme B (GzmB) is an effector
molecule with cytotoxic activity in T cells, whereas interleukin-2 (IL-2) enhances the activation and survival of cytotoxic T lymphocytes (CTL)
through the janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Exosomal PD-L1 inhibits CD8+ T cell proliferation,
cytokine production, and cytotoxicity by suppressing GzmB expression and inhibiting IL-2 production. Figure created with BioRender.com.
frontiersin.org
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immunosuppressive phenotype by directly linking to PD-1, to

inhibit the function of cytotoxic T cells and enable tumor

immune escape.
Impact on other immune cell types

Exosomes have been discovered to induce the expression of PD-

L1 on secondary cells, such as macrophages and dendritic cells (DCs).

This leads to the transfer of functional PD-L1 between cells and the

creation of systemic immunosuppressive microenvironments,

ultimately aiding in the facilitation of metastasis (44, 45). Liu et al.

discovered that stress in the endoplasmic reticulum generates

exosomes derived from hepatocellular carcinoma cells. These

exosomes contain abundant microRNA (miRNA/miR)-23a-3p,

which has the ability to enhance PD-L1 expression in macrophages

via the phosphatase and tensin homolog (PTEN)/AKT pathway.

Consequently, this leads to the inhibition of T cell immune function

(46). Anti-PD-L1 antibodies rescue the immunosuppressive effect

caused by exosomes from Lewis lung carcinoma cancer cells, which

upregulate PD-L1 expression on DCs to hinder the proliferation of

CD4+ T cells (47). In addition, Wei et al. discovered that exosomal

PD-L1 derived from squamous cell carcinoma of the head and neck

stimulates the development of activated regulatory T cells and M2

type macrophages. This, in turn, strengthens the creation of a positive

feedback loop, hinders T cell growth, and fosters the development of a

tumor immunosuppressive micro-environment (48). MDSCs are a

heterogeneous group of cells known for their potent

immunosuppressive functions. Exosomal PD-L1 may promote the

proliferation and activation of MDSCs, enhancing their ability to

suppress immune responses. Activated MDSCs inhibit T and natural

killer cell (NK) cell functions by producing immunosuppressive

molecules like arginase and nitric oxide synthase, further

weakening the immune attack on tumor cells (49, 50). Interaction

between exosomal PD-L1 and various immune cell types reduces the

activity of these cells, thereby diminishing the overall anti-tumor

immune response.
Promotion of an immunosuppressive
microenvironment

Exosomal PD-L1 plays a significant role in promoting an

immunosuppressive microenvironment, a key factor in cancer

progression and immune evasion, particularly in lung cancer.

Exosomal PD-L1 promotion of the tumor immunosuppressive

microenvironment is a complex process involving multiple

immune cell types and signaling molecules. The promotion of

immunosuppressive tumor microenvironment (TME) formation

by exosomal PD-L1 through termination of T cell activation and

maintenance of T cell depletion has been confirmed by numerous

studies. In addition, exosomal PD-L1 has the ability to greatly

impact the TME and facilitate immune evasion and tumor

advancement by controlling the generation and release of

cytokines and chemokines. The release of exosomal PD-L1 was

increased in melanoma and glioblastoma cells, possibly due to the
Frontiers in Immunology 05
induction of cytokines such as IFN-a, IFN-g, and tumor necrosis

factor-a (TNF-a) (51, 52). In the xenograft mouse model of oral

squamous cell carcinoma, mitochondrial Lon-induced exosomal

PD-L1 promotes T cell dysfunction and tumor progression by

inducing IFN and IL-6 production in M2 macrophages (53).

Exosomal PD-L1 modifies the equilibrium of cytokines and

chemokines, thereby establishing a milieu that inhibits the

immune response against tumors, consequently promoting the

survival and growth of tumor cells during immune surveillance.

In conclusion, exosomal PD-L1 plays an important role in

promoting immune evasion in lung cancer by impeding effective

responses to antitumor therapy. Exosomal PD-L1 exhibits increased

resistance to protein hydrolase degradation, potentially leading to a

heightened immunomodulatory function within the bloodstream

and tumor microenvironment (54). Increasing evidence has shown

that exosomes play a crucial role in promoting immune evasion

through PD-L1, with a specific emphasis on the connection between

exosomal PD-L1 and treatment response. Furthermore, this implies

that the identification of exosomal PD-L1 holds promise in the early

detection of diseases and the assessment of tumor prognosis.
What is the novel discovery of
exosomal PD-L1 in the diagnostic
and prognostic applications of
lung cancer?

Lung cancer consists of different cell populations with varying

molecular alterations, leading to heterogeneity of the tumor and

microenvironment (55). Indeed, the targeted alterations that

initially predominate become less abundant during the course of

the disease due to the selection of drug resistant sub-clones. In

pursuit of finding biomarkers with sufficient sensitivity and

specificity for early diagnosis and close monitoring of diseases, to

help select optimal therapies and enable personalized medicine, it is

crucial to identify these molecular signatures during the evolution

of the disease.

Exosomes have the ability to serve as non-intrusive biomarkers

that can enhance or add to the conventional biopsy, as they carry

the characteristics of their parent cells. The membrane of exosomes

protects their contents, which are present in different physiological

fluids, from oxidation during transport (56). Akbar et al. have

shown that exosomal PD-L1 is present in every individual

diagnosed with NSCLC, while tissue PD-L1 is expressed in only

71% of patients. This implies that exosomal PD-L1 serves as a

stronger indicator for diagnosis (57). Simultaneously, Ricklefs et al.

investigated the relationship between exosomal PD-L1

immunohistochemical traits and clinicopathological aspects. They

found that exosomal PD-L1 levels were elevated in NSCLC patients,

especially in advanced stages, compared to healthy controls (51).

Hence, the presence of exosomal PD-L1 in the bloodstream could

serve as a promising indicator for the detection of tumors.

Concurrently, exosomal PD-L1 has been extensively investigated

as a marker for forecasting the efficacy of immunotherapy and

tracking the advancement of cancer in patients. The primary tumor
frontiersin.org
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load in mice with tumors was significantly reduced when treated with

GW4869, an inhibitor of exosome secretion, and PD-L1 antibody.

This indicates a synergistic connection between diminishing

exosomes and immune checkpoint therapy in BALB/c 4T-1 tumor-

bearing mice (41). Chen et al. discovered that the initial levels of

exosomal PD-L1 were notably reduced in melanoma patients who

exhibited a positive response to treatment using an anti-PD-1

medication (pembrolizumab) compared to those who did not

respond (58). Clinicians can assess exosomal PD-L1 levels prior to

treatment to identify patients who are likely to benefit from PD-1/

PD-L1 inhibitor therapy and modify treatment approaches

accordingly. A different research team investigating the correlation

between exosomal PD-L1 and the effectiveness of immunotherapy

discovered that treatment responsive patients had significantly

reduced levels of PD-L1 in plasma-derived exosomes, while

patients with disease progression had higher levels. However, no

notable alterations were observed in patients with stable disease (SD)

(59). Among patients with NSCLC, a study with comparable findings

revealed that the expression of PD-L1 in exosomes was linked to the

size of the tumor, the status of lymph nodes, the occurrence of

metastasis, and the progression of the tumor (60). All the

aforementioned discoveries indicate the possibility of identifying

exosomal PD-L1 and its correlation with the effectiveness

of immunotherapy.

In general, the growing body of evidence indicates that

exosomal PD-L1 has the potential to be a new and reliable

biomarker suitable for disease diagnosis as well as prognostic

assessment (Table 1) (12, 25, 60–66).
How to target exosomal PD-L1 to
optimize anti-tumor therapy strategies
in lung cancer?

Exosome secretion relies heavily on nSMase2 and Rab27a,

which play crucial roles in the budding of intravesicular vesicles

and the fusion of multivesicular bodies with the plasma membrane.

The release of exosomal PD-L1 was inhibited in cancer cell lines

when nSMase2 and Rab27a were experimentally knocked down

(17). As previously stated, blocking the release of PD-L1 through

exosomes partially reestablishes the immune system’s ability to fight

against tumors. In this particular situation, hindrance of exosomal

PD-L1 secretion or obstruction of exosomal activity appears to be a

promising treatment objective that may improve traditional

therapeutic strategies.

Confirmation has been received that the removal of nSMase2

leads to a reduction in levels of PD-L1 in exosomes by hindering the

synthesis of exosomes containing PD-L1. Compared with nSMase2

deletion, Rab27a deletion had a greater inhibitory effect on exosome

secretion. Blocking Rab27a or nSMase2 can inhibit tumor growth

(67). Both the deletion of Rab27a and the inhibition of nSMase2

(using GW4869) in the mouse model of drug-resistant breast cancer

can effectively suppress tumor growth, surpassing the inhibitory

impact of the anti-PD-L1 antibody at 30 and 60 units (41, 68).

Interestingly, when mice were injected with mutant cancer cells that
Frontiers in Immunology 06
TABLE 1 Clinical evidence of exosomal PD-L1 serving as a biomarker in
lung cancer.

Exosome
source

Detection methods Clinical
significance

References

Plasma Flow cytometry
and
Immunohistochemistry

PD‐L1 abundance in
exosomes correlated
with PD‐L1
positivity in
tumor tissues

(12)

Serum Total exosome isolation
kit, Western blot, TEM
analysis, NTA

Higher exosomal
PD‐L1, presented in
patients with
advanced tumor
stage, larger tumor
size, positive lymph
node status and
distant metastasis.
Higher exosomal
PD‐L1 presented in
patients than
normal controls

(25)

Serum Western blot, TEM
analysis, NTA,
ELISA,
Immunohistochemistry

Exosomal PD-L1
levels were higher in
NSCLC patients with
advanced tumor
stage, larger tumor
size (> 2.5 cm),
positive lymph node
status and
distant metastasis

(60)

Serum Surface
plasmon resonance

Higher exosomal
PD‐L1 presented in
patients than
normal controls

(61)

Plasma Exosome isolation kit,
Immunohistochemistry,
NTA, TEM analysis,
Western blot

The combination of
blood PD-L1 mRNA
and exosomal PD‐L1
could better
determine NSCLC
patients who may
benefit from
ICIs treatment

(62)

Plasma NTA, TEM analysis,
Western blot

Patients with
exosomal PD‐L1
decrease tend to
experience longer
PFS than those with
increasing levels

(63)

Plasma Western blot, TEM
analysis,
ELISA,
Immunohistochemistry

Lung cancer patients
had much expression
of PD-L1 in blood
exosomes and high
exosomal PD‐L1
content was linked to
positive lymph node
status in lung
cancer patients

(64)

Plasma TEM analysis, NFCM,
Confocal fluorescence
microscopy,
Western blot

SCLC patients with
tumor progression
exhibited an increase
in circulating
exosomal PD‐L1
levels
during treatment

(65)

Plasma NTA, TEM analysis,
Flow cytometry

Increased PD-L1+

exosomes are
associated with a six-

(66)

(Continued)
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did not have Rab27a, nSMase2, or PD-L1, not only did the local

tumor tissue fail to grow, but it also prevented the growth of wild-

type tumor cells that were injected at the same time or 92 days later.

In addition, when comparing wild-type cancer cells alone, there was

a notable increase in both the quantity and functionality of

exosomal PD-L1 in the tumor tissue of mice co-injected with

tumor infiltrating lymphocytes (TILs) deletion mutant cells. This

suggests that blocking the exosomal PD-L1 gene can effectively

trigger a persistent systemic immune response (17). Clearly, the

suppression of exosomal PD-L1 generation and release has arisen as

a fresh and important strategy for the advancement of

anticancer medication.

Several studies have demonstrated that the release of exosomes

can be hindered through the use of antibodies, chemical inhibitors,

or genetic manipulation, thereby enhancing the effectiveness of

metastatic cancer treatment (69–71). Dimethyl amphotericin

(DMA) hinders the release of exosomes by specifically targeting

H/Na and Na/Ca+++2+ channels. This action eliminates exosome-

induced immunosuppression and boosts the body’s ability to fight

against tumors, making it an effective chemotherapeutic treatment

(72, 73). The process of exosome formation, cargo allocation, and

secretion is largely dependent on the ESCRT mechanism. Several

pharmacologically active substances, including tipifarnib,

combazole, triademenol, manumycin A, and nexinhibs, have been

found to decrease the expression of proteins that are crucial in

ESCRT dependent exosome biogenesis and transport, thereby

exhibiting inhibitory effects on exosomes (74–76). Furthermore,

the secretion of exosomes is blocked by GW4869 and spiro epoxide,

which are inhibitors of nSMase independent of ESCTR (77, 78).

Researchers have explored the extraction of exosomes from the

bloodstream using in vitro ultrafiltration as a means to impede the

proliferation of cancer cells. One benefit of this method compared

to chemical medications is the ability to prevent harmful effects on

healthy cells and potential drug interactions (79, 80). Overall,

exosomal PD-L1 depletion may be an efficient adjunct therapy to

alleviate systemic immunosuppression.

Nevertheless, caution should be exercised in the progress of

exosomal PD-L1 inhibitors for anti-cancer treatment, as exosomes

have a significant impact on numerous physiological processes

within the human body, and disrupting their release could lead to

potential negative consequences. In addition, similar to ICIs, the

recovery of T cell activation mediated by exosomal PD-L1 is non-

specific and may lead to immune related adverse effects (irAEs). To

optimize the immune response against tumors and minimize
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potential side effects from inhibiting the release of exosomal PD-

L1, it is crucial to create specific inhibitors of exosomes that

selectively target cancer cells (81, 82). The exploitation of

exosomes inhibitors as novel anticancer therapeutic agents has

important implications for immunotherapeutic approaches to

cancer treatment.

Besides serving as a crucial medium for intercellular

communication, exosomes play a vital role in identifying

responsive cancer patients and predicting treatment outcomes, in

addition to indicating treatment response through targeted exosomal

PD-L1 levels. Exosomes have been extensively investigated as a liquid

biopsy and a reliable substitute for tumor tissue biopsy. However, the

possibility of using exosomes as predictive screening tools for clinical

applications is limited by the lack of harmonized exosome isolation

procedures, appropriate quality control, and storage methods.

Methods such as ultracentrifugation, precipitation, and size

exclusion chromatography are some of the traditional methods,

while microfluidic-based separation technologies, including

nanoplatforms, have recently been investigated for the development

of next-generation efficient separation methods (Table 2) (83–96).

There is no doubt that when these challenges are addressed, exosomes

are likely to be instrumental in the treatment of lung cancer.
Future perspectives, challenges,
and conclusion

Exosomes, being the main vehicles for cellular content transfer,

have garnered interest due to their ability to modulate the immune

system. Current research focuses on investigating the function of

exosomes in cancer immunity and the response to immunotherapy,

stemming from the established link between TEX and decreased

immune function and immunotherapeutic efficacy.

In summary, the exosomal PD-L1 expression level shows a

positive association with tumor stage and disease advancement,

while exhibiting a negative correlation with survival. PD-L1,

sourced from TEX, has the capability to directly interact with and

impede the functional activity of T cells. Furthermore, the utilization

of both anti-PD-1 treatment and exosome elimination resulted in a

decrease in tumor load and enhanced overall survival. The results

provide strong evidence that exosomal PD-L1 plays a crucial role in

facilitating tumor development and spread, as well as suppressing the

immune system. Current immunotherapeutic approaches solely

focus on inhibiting PD-1/PD-L1 present on the outer layer of

cancerous cells. However, cancerous cells additionally secrete

exosomal PD-L1, which avoids the immune system’s reaction by

attaching to PD-1 on T lymphocytes and impeding the activation of

CD8+ T cells. Hence, the utilization of exosomal PD-L1 inhibitors in

anti-exosomal PD-L1 therapies can induce robust systemic anti-

cancer immunity and conquer the resistance to current anti-PD-1/

PD-L1 treatments. Nevertheless, there is an inadequate number of

preclinical investigations and/or clinical trials assessing the

therapeutic capacity of exosomes in lung cancer, and the majority

of these studies are retrospective with limited cohort sizes. Hence,
TABLE 1 Continued

Exosome
source

Detection methods Clinical
significance

References

fold increased risk of
disease progression
in NSCLC patients.
TEM, transmission electron microscope; NTA, nanoparticle tracking analysis; PD-L1,
programmed cell death ligand-1; ELISA, enzyme-linked immunosorbent assay; NSCLC,
non-small cell lung cancer; ICIs, immune checkpoint inhibitors; PFS, progression-free
survival; NFCM, nano-flow cytometer; SCLC, small cell lung cancer.
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further extensive investigations are required to validate if

supplementary treatments that hinder the release of exosomes can

enhance existing immunotherapy approaches.

A growing body of research is concentrating on the utilization

of exosomal PD-L1 as an indicator for predicting the effectiveness of

immunotherapy. Exosomes derived from tumors carry substances

that induce cell release and can be detected in the blood, making

them valuable non-invasive biomarkers that can enhance or

supplement traditional biopsy procedures. Equally important is

the need for improved methods of exosomes isolation and

purification to study exosomes composition, characterization, and

cellular interactions, which will set the foundations for their

therapeutic applications.

This paper provides a summary of the suppressive effects of

exosomal PD-L1 in lung cancer and its potential as a marker for

early cancer detection, tumor advancement, and immunotherapy

targeted at tumors. However, many questions are still unanswered.

The complexity of the immune escape mechanisms of tumor cells

involves multiple cell types and signaling pathways, including

exosomal PD-L1, which poses a challenge to develop and improve

therapies specifically targeting exosomal PD-L1. Moreover,

although exosomal PD-L1 is considered a significant biomarker

for tumor diagnosis and prognosis, there are still challenges in its

detection accuracy and clinical relevance. How to develop uniform

isolation and assay standards to identify exosomes to differentiate

between TEX and non-malignant cell sources for better clinical

application is an urgent issue. Immunotherapy targeting the PD-1/
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PD-L1 pathway may be resistant in some cases, which limits the

efficacy of treatment. Clinicians are also concerned about the

anxiety caused by the negative impacts of non-discriminatory

exosomal PD-L1 inhibitors on individuals with cancer.

Addressing these inquiries will aid in the swift enhancement and

advancement of exosomal PD-L1 as a prognostic screening

instrument for medical application, thereby augmenting the

probability of cancer patients achieving a more efficacious and

enduring reaction to immunotherapy. Further research should

delve deeper into comprehending the precise function of

exosomal PD-L1 in evading the immune system by tumors. By

combining immunotherapy that targets exosomal PD-L1 with

conventional treatments like chemotherapy and radiotherapy, it is

possible to achieve a synergistic outcome and enhance the

treatment’s success rate. Enhancing the identification technique of

exosomal PD-L1, augmenting its accuracy and precision, and

customizing individualized treatment plans according to patient

specific tumor attributes and exosomal PD-L1 expression may

enable a more precise evaluation of tumor characteristics and

therapeutic effectiveness. By gaining a deeper comprehension of

tumor biology, it becomes possible to create new medications and

treatments, particularly specialized inhibitors or antagonists that

focus on exosomal PD-L1.

To summarize, exosomal PD-L1 holds immense promise for its

clinical utility as a novel focal point and biomarker in immunotherapy.

However, it encounters various obstacles that necessitate resolution

through ongoing research and inventive approaches.
TABLE 2 The advantages and disadvantages of techniques being used for the isolation of exosomes.

Iisolation
method

Isolation
techniques

Working principle Advantages Disadvantages References

Centrifuge Ultracentrifugation The sedimentation coefficients of particles in
the samples are different, which causes them
to precipitate in different layers that can be
collected separately

Easy to use, easy to
operate and does not
require complex
sample pretreatment

Time-consuming and low purity
of exocrine body

(83, 84)

Precipitate Precipitation Exosomes are added to the solvent to change
the solubility of exosomes, causing them to
precipitate from the solution

Large amounts of
samples can be
processed, easy to use

Pre- and post-cleanup are
required, lower efficiency
of isolation

(85, 86)

Capture Immunoaffinity-
based capture

Extraction of exocrine bodies according to
the interaction between surface biomarkers
(antigens) and immobilized antibodies

High recovery rate and
high purity

Complex, special equipment,
high cost

(87, 88)

Size-
based
isolation

Size
exclusion
chromatography

Polymer chromatographic column filled with
anisotropic porosity

Isolation without the
presence of albumin in
purified exosomes

Low recovery and purity (89, 90)

Ultrafiltration Size difference Many samples can be
processed
simultaneously

Sample loss, vesicle deformation (91, 92)

Microfluidics Microfluidics-
based

Isolation with miniaturized devices in various
approaches such as acoustic,
dielectrophoresis, filtration

Large amounts of
samples can be
processed, easy to use

Low isolation capacity, lack of
global protocols and
standardization, and high
technical expertise are required

(93, 94)

Charge-
based
isolation

Charge-
based isolation

The exocrine with a negative charge on the
surface and carrying charge in electrophoresis
can be separated under an electric field.

High efficiency
and purity

There are higher requirements
for sample types.

(95, 96)
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