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2Key Laboratory of Nephrology, National Health Commission and Guangdong Province,
Guangzhou, China
Diabetic kidney disease (DKD) is becoming the leading cause of chronic kidney

disease, especially in the industrialized world. Despite mounting evidence has

demonstrated that immunity and inflammation are highly involved in the

pathogenesis and progression of DKD, the underlying mechanisms remain

incompletely understood. Substantial molecules, signaling pathways, and cell

types participate in DKD inflammation, by integrating into a complex regulatory

network. Most of the studies have focused on individual components, without

presenting their importance in the global or system-based processes, which

largely hinders clinical translation. Besides, conventional technologies failed to

monitor the different behaviors of resident renal cells and immune cells, making it

difficult to understand their contributions to inflammation in DKD. Recently, the

advancement of omics technologies including genomics, epigenomics,

transcriptomics, proteomics, and metabolomics has revolutionized biomedical

research, which allows an unbiased global analysis of changes in DNA, RNA,

proteins, and metabolites in disease settings, even at single-cell and spatial

resolutions. They help us to identify critical regulators of inflammation

processes and provide an overview of cell heterogeneity in DKD. This review

aims to summarize the application of multiple omics in the field of DKD and

emphasize the latest evidence on the interplay of inflammation and DKD

revealed by these technologies, which will provide new insights into the role of

inflammation in the pathogenesis of DKD and lead to the development of novel

therapeutic approaches and diagnostic biomarkers.
KEYWORDS

diabetic kidney disease, inflammation, genomics, epigenomics, transcriptomics,
proteomics, metabolomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1342837/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1342837/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1342837/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1342837/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1342837&domain=pdf&date_stamp=2024-02-29
mailto:chenwei99@mail.sysu.edu.cn
mailto:zhouyi39@mail.sysu.edu.cn
https://doi.org/10.3389/fimmu.2024.1342837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1342837
https://www.frontiersin.org/journals/immunology


Hu et al. 10.3389/fimmu.2024.1342837
Introduction

Diabetic kidney disease (DKD) encompasses the spectrum of

people with diabetes mellitus (DM) (both type 1 and type 2 [T1DM

and T2DM]) who manifest specific pathologic structural and

functional changes in kidneys that result from DM (1). Although

only 30% to 40% of DM patients develop DKD, it has become the

leading cause of chronic kidney disease (CKD) and accounts for up

to 50% of the end-stage renal disease (ESRD) population inWestern

countries (2). DKD is traditionally regarded as a microvascular

complication induced by hyperglycemia and hemodynamic

changes, mainly in glomeruli (3). Until recent decades, the

important role of chronic inflammation and immune cells has

been recognized in the pathogenesis and progression of DKD (4).

Elevated pro-inflammatory cytokines were detected in serum, urine,

and renal tissue from DM patients (5). Infiltrating immune cells are

commonly found in renal biopsy samples at all stages of DKD, both

in the glomeruli and interstitium (6). Macrophage occupies the

majority of these cells, which secretes various cytokines to promote

inflammation and fibrosis (7). T lymphocytes, recruited to the

diabetic kidney accompanying macrophages, further exacerbate

renal inflammation and dysfunction (8). Other cells, including B

lymphocytes (9), dendritic cells (10), natural killer cells (11), mast

cells (12), etc., are less explored and little is known about their roles

in DKD.

However, it remains a challenge to decipher the complex

interplay between immune cells and renal cells, as well as the

mechanism underlying the unresolved inflammation that involves

multiple signaling pathways and cytokines. The emergence of omics

technology has brought unprecedented resolution, breadth, and

depth to the inspection of biological systems, empowering research

on immune- or inflammation-related pathogenic mechanisms in

DKD (13, 14). Moreover, the integration of multi-omics (e.g.,

genome, epigenome, transcriptome, proteome, and metabolome),

which often have complementary and synergistic effects, holds the

key to acquiring a new and incomparable level of understanding of

the nephropathy, building predictive models of DKD, and finding

novel therapeutic targets taking advantage of the renal-

immune interplay.
The pathobiology of inflammation is
incompletely understood in DKD

Mounting evidence has indicated the involvement of

inflammation in the pathogenesis and progression of DKD (15).

Preclinical studies have demonstrated that multiple inflammatory

signaling pathways are activated in renal cells as responses to

hyperglycemic insults, such as Toll-like receptor (TLR),

nucleotide-binding oligomerization domain (NOD)-like receptor

(NLR), nuclear factor-kappa B (NF-kB), Janus kinase/signal

transducer and activator of transcription (JAK-STAT) signaling

pathway, etc (16). As a result, these cells robustly produce pro-

inflammatory molecules including cytokines (interleukin-6 [IL-6],

tumor necrosis factor [TNF-a], IL-17A, IL-1b), chemokines (C-C
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chemokine receptor 2 [CCR2], C-C motif chemokine ligand 2

[CCL2], C-X-C motif chemokine ligand 10 [CXCL10], CXCL12),

and adhesion molecules (aVb3 integrin, intercellular adhesion

molecule 1 [ICAM-1], galectin-3), which recruit several immune

cells into kidneys and amplify inflammation, ultimately damaging

renal function (17–20). Consistently, studies in diabetic patients

also observed histological evidence of kidney inflammation and

elevated levels of pro-inflammatory mediators (21, 22). Moreover,

agents targeting inflammatory responses and immune cells have

shown beneficial effects on diabetic animal models (23), which

prompts their application in DM patients to improve

renal outcomes.

However, many of the promising anti-inflammatory drugs have

failed to effectively treat DKD in clinical trials, reflecting an

inadequate understanding of how inflammation contributes to the

development of the disease (24). Current knowledge regarding the

pathobiology of inflammation cannot explain the heterogeneity in

kidney manifestations among patients (25). Moreover, since

inflammation might play divergent roles in different phenotypes

and at various stages of the disease, it remains a challenge to identify

effective anti-inflammatory targets for most DKD patients. Besides,

the differences in immune cell phenotypes of mice and humans also

partly contribute to the discrepancies between experimental models

and clinical trials, highlighting the need to incorporate human

samples in preclinical studies (26). The promise of the multiple

omics approach to decipher the underlying molecular mechanisms

of disease phenotypes has been well-described (27, 28). Thus,

research integrating omics layers (genomics, epigenomics,

transcriptomics, proteomics, metabolomics) in cohorts of DKD

patients will enable us to further understand the complexity of

this disease , as wel l as provide ins ights into novel

therapeutic strategies.
Genomics

The importance of genetic risk factors in DKD has been

established by pedigree studies showing familial aggregation of

nephropathies in DM patients (29). Diabetic individuals with

DKD parents or siblings have an increased risk of nephropathy

(30). Besides, the prevalence of DKD dramatically varies among

different ethnic groups (31). This evidence prompts the search for

specific genetic variants that confer susceptibility or progression for

DKD. Several consortia dedicated to addressing the genetic basis of

DKD have been initiated across the world, including Family

Investigation of Nephropathy and Diabetes (FIND), GEnetics of

Nephropathy — an International Effort (GENIE), and Genetics of

Kidneys in Diabetes Study (GoKIND), along with many individual

research groups (27). Benefiting from the advent of genome-wide

association studies (GWAS), the identification of plausible and

reproducible genetic associations can be based on an unbiased

systematic screen, enhancing the chances of discovering genuine

DKD risk variants.

The largest GWAS study of the risk loci for subjects with T1DM

was launched by GENIE, in which they found two single nucleotide

polymorphisms (SNPs) were associated with ESRD: one in AFF3
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gene (P = 1.2 × 10−8) and the other between the genes RGMA and

MCTP2 (P = 2.0 × 10−9) (32). The mRNA expression of AFF3 is

known to be relatively restricted to lymphocytes and brain tissues,

encoding the AFF3 protein that facilitates the class switch

recombination in B lymphocytes (33). AFF3 was also recognized

as a candidate gene for rheumatoid arthritis, suggesting its

modulatory effects on the immune system and inflammation that

may contribute to the development of DKD (34). While

polymorphisms of RGMA were associated with different

expression levels of interferon-g (IFN-g), TNF, and IL-21 receptor

(IL-21R) in other inflammatory diseases (35). Additionally, the

GWAS study involving the hugest sample size of T2DM patients

discovered GABRR1 (P = 4.5 × 10−8) as a novel locus associated with

microalbuminuria in European individuals (36). The major allele in

DKD patients is associated with decreased expression of GABRR1

which could exert anti-inflammatory actions in post-ischemic

brains (37). Winkler et al. identified 29 gene loci potentially

responsible for reduced estimated glomerular filtration rate

(eGFR) in diabetic patients, 27 of which were newly discovered

(38). Among them, UMOD (P < 5 × 10−8), encoding uromodulin

that was synthesized and secreted by renal tubular epithelial cells,

was reported to have immunomodulatory effects. A previous study

revealed that uromodulin triggered the activation of TLR4 signaling

in renal dendritic cells (38). Uromodulin also served as an NLRP3

agonist in innate immune cells and promoted the secretion of IL-1b
(39). However, the relationship between uromodulin and eGFR was

not confined to DKD. Higher UMOD levels were also associated

with smaller eGFR declines in CKD patients (40). Over the past

decades, substantial studies have constantly revealed new

inflammatory genes associated with DKD. A systematic review

and meta-analysis based on 103 GWAS studies summarized

multiple well-recognized inflammatory genes as risk variants for

DKD, including CCL2, CCR5, IL6, IL8, IL1A, IL1B, TNF,

TNFRSF19, etc (41).

Despite many successes with GWAS, the majority of identified

variants map to noncoding regions with unknown effects (42).

Moreover, these studies do not adequately interpret the disease-

causing genes and mechanisms, only highlighting the relevance of

inflammation in DKD. To address these challenges, transcriptome-

wide association studies (TWAS) have recently emerged as a

promising approach for prioritizing causal genes at GWAS loci

(43). TWAS integrates GWAS with expression quantitative trait loci

(eQTL) which informs the association between genetic variant and

gene expression (44). Therefore, TWAS is capable of detecting

functional gene expression regulated by DKD-associated variants,

thus providing insight into the mechanisms of the diseases.

Successful use of TWAS identified that the eGFR-associated SNP

rs626277 regulated the expression of DACH1, which was validated

in human and mouse kidney single-cell open chromatin data

(scATAC-seq) (45). The functional study illustrated that loss of

DACH1 was associated with the pro-inflammatory phenotype of

tubular cells, which released cytokines including CCL2 and

macrophage colony stimulating fator-1 (CSF-1), leading to

macrophage infiltration and severe fibrosis in diabetic kidneys.

Apart from eQTL, methylation quantitative trait locus (mQTL),

which conveys the relationships between DNA sequence variation
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and DNA methylation, can also be used to prioritize GWAS loci

(46, 47). A complete study that incorporated GWAS, eQTL, and

mQTL illustrated that the eGFR-associated GWAS SNP rs3757387

mediated methylation changes of cg0486179, which affects the

expression of IRF5, a central regulator of the inflammatory

response (48, 49). Indeed, 31 high-credibility protein-coding

genes associated with kidney function in DKD were identified

through this integration analysis, which showed significant

enrichment for immune response in gene ontology analysis.

These studies not only suggest the causal role of inflammation in

DKD but also implicate the value of genomics as a practical tool for

discovering risk variants (Table 1). Furthermore, they advance our

understanding of the associations between genotypes with

phenotypes, which helps to better understand DKD etiology and

identify potential drug targets.
Epigenetics

Though therapeutics targeting hyperglycemia have greatly

improved renal outcomes of DM patients, the correlation between

metabolic control and kidney disease is relatively poor (50, 51).

Patients who once had poor glycemic control exhibited an increased

risk for nephropathy even after decades of adequate glycemic

control. This phenomenon is termed metabolic memory, which is

primarily mediated by the epigenetic reprogramming of DKD-

related genes (52). Thereby, hyperglycemia results in long-lasting

transcriptional regulation of genes, many of which are involved in

the activation of immune and inflammatory responses (53).
TABLE 1 Immune or inflammation-related genes in DKD identified
by genomics.

Gene SNP Function References

AFF3 rs7583877 Lymphoid development
and oncogenesis.

Sandholm N
et al. (2012) (32)

GABRR1 rs9942471 Anti-inflammation van Zuydam
et al. (2018) (36)

UMOD rs77924615 Pro-inflammation Winkler et al.
(2022) (38)

CCL2 rs3917887 Chemokine Tziastoudi et al.
(2017) (41)

CCR5 rs1799987 Chemokine receptor

IL6 rs1800796 Pro-inflammatory cytokine

IL8 rs4073

IL1A rs1800587

IL1B rs16944

TNF rs1800629

TNFRSF19 rs9510795

DACH1 rs626277 Pro-inflammatory cytokine
transcriptional repressor

Doke et al.
(2021) (45)

IRF5 rs3757387 IFN-responsive
transcription factor

Sheng et al.
(2020) (48)
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A previous GWAS study has identified a strong association

between engulfment and cell motility 1 gene (EMOL1) and

susceptibility to DKD (54). Further methylome analysis revealed

differentially methylated CpG sites in the enhancer regions of

EMOL1, which may be responsible for the increase in expression

of EMOL1 in patients (48). In more recent research, the diabetic

mouse with different expression of EMOL1 ranging from ∼30% to

∼200% normal was utilized (55). They showed that the severity of

nephropathy was paralleled with the expression of EMOL1. Besides,

reduced EMOL1 expression blocked the development of diabetic

nephropathy. EMOL1 is critical for innate immunity since it is

indispensable for the clearance of apoptotic cells and pathogens as

well as for the control of inflammatory responses (56). It is reported

that loss of EMOL1 mitigated neutrophil recruitment and

inflammatory arthritis, indicating that the protective role of

Emol1 knock-down in DKD was partly due to its anti-

inflammatory effects (57). Park et al. generated whole-genome

DNA methylation maps for kidney samples from healthy and

DKD patients (58). Gene set enrichment analysis of RNA

sequencing data revealed that genes with differential methylation

in DKD samples were enriched in TNF signaling. Lower

methylation levels of TNF promoter led to higher expression of

TNF in DKD, highlighting the epigenetic regulation of

inflammation in the disease.

Given the essential role of immune cells regulating in DKD

inflammation, several research focused on the epigenetic

reprogramming of these cells. DNA methyltransferase 1 (DNMT1),

a key enzyme for DNA methylation, was found to increase along with

the inflammatory activity of peripheral blood mononuclear cells

(PBMC) in DKD patients (59). Methylome analysis identified the

differentially methylated cytosines in mammalian target of rapamycin

(mTOR) gene promoters in PBMC, suggesting the involvement of

epigenetic regulation of the pathogenic activation of the mTOR

pathway in immune cells. Moreover, the acetylation of histone H3

at TNF-a was elevated in macrophages cultured in high-glucose (HG)

conditions and PBMC from DM patients (60). The epigenetic

modifications by HG could persist for a long term and induce the

hyperglycemic memory immune cells, which is called trained

immunity (61). Edgar et al. discovered that HG promoted pro-

inflammatory gene expression in macrophages by increasing histone

3 Lys4 trimethylation and histone 3 Lys27 acetylation (62). These

epigenetic features were retained in macrophages even when cultured

in a normal glucose medium, denoting hyperglycemia-induced

trained immunity. Therefore, intensive glucose control is not

sufficient to suppress the pro-inflammatory phenotype of immune

cells. This finding promotes our mechanistic understanding of the

non-responders to glucose-lowering agents, also highlights that

alternative therapies targeting epigenetic modifications are critical

for this population. However, the involvement of trained immunity

in diabetic nephropathy needs further validation.

Integration of epigenomics with genomics and transcriptomics

facilitates the functional annotation of the identified differentially

methylated or acetylated sites, however, few studies have

accomplished it. Although massive epigenetic modifications have

been unearthed by the high-throughput method in cohorts of DKD

patients, their mechanistic regulation of the inflammation is
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inadequately researched. Suffering from this, the development of

anti-inflammatory therapeutics targeting epigenetic mechanisms

was largely limited in DKD.
Transcriptomics

Numerous single-cell studies have been done on DKD,

however, since single-cell transcriptome assays require a sufficient

number of cells for in-depth analysis, most studies have focused on

the alterations of renal resident cells, such as proximal tubules (PT),

mesangial cells, and endothelial cells (63). Nonetheless, single-cell

studies have explored the landscape of immune cells in DKD

tissues. Multiple single-cell RNA sequencing (scRNA-seq) studies

have demonstrated the elevated proportion of immune cells during

the progression of DKD (7, 64–69). Chen et al. (65) using a

combination of scRNA-seq and spatial transcriptomics found that

immune cells were predominantly enriched in areas of renal

fibrosis. Furthermore, a study that employed single-nucleus RNA

sequencing (snRNA-seq) in uninephrectomized (UNx) db/db

mouse models of early-stage (UNx only) and advanced DKD

(UNx-Renin), detected the gene expression changes associated

with metabolism were more prominent in early-stage DKD,

whereas immune responses were more conspicuous in advanced

DKD (66). These findings collectively point to the significant role of

the immune response in the progression of DKD.

The composition of immune cells in DKD varies among

datasets, which could be attributed to different dissociation

methods and types of tissues used. In datasets from DKD mouse

models, macrophages were identified as the predominant immune

cells. Further analysis demonstrated the number of macrophages

expressing M1 phenotypic markers increases as DKD progresses

(65, 66, 70). The limited number of immune cells in the whole

kidney has prevented in-depth analysis of immune cell functions

and mechanisms by single-cell transcriptomics, thus Fu et al. (7)

enriched CD45+ immune cells in mouse kidney tissues of the early

and advanced stages of DKD. This study further focused on

macrophages and revealed the dynamic changes of macrophage

subclusters during the progression of DKD (Table 2). During the

early stages of DKD, the increase of infiltrating macrophages, high-

interferon (IFN) signature macrophages, and macrophage subsets

with high expression of Mannose Receptor C-Type 1 (MRC1) or

Triggering Receptor Expressed on Myeloid Cells 2 (TREM2),

suggesting that both pro- and anti-inflammatory pathways are

concomitantly regulated in macrophages during the early stages

of DKD. In addition, a subset of macrophage called “M14” was

identified, showing increased proportion in 7-month-old OVE26

kidneys. The expression profile of M14 bears similarities to that of

Mrc1hi macrophages but is characterized by higher expression levels

of classic M2 macrophage markers. Furthermore, marker genes

associated with M14, namely FCN1, CD209, and FOLR2, were

found to be upregulated in human DKD through deconvolution

of bulk RNA-seq dataset. This discovery is particularly intriguing,

and the roles of this subset of macrophages need to be further

clarified. Meanwhile, a study of scRNA-seq in db/db mice treated

with angiotensin receptor blockers (ARBs) or sodium-glucose
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cotransporter 2 inhibitors (SGLT2i) demonstrated that treatment

with ARBs or SGLT2i restored the proportion of macrophages in

kidney tissues of DKD mice, especially ARBs (67). Overall, the

dynamics of macrophages in the progression of DKD were unveiled,

shedding light on the intricate regulation of pro- and anti-

inflammatory pathways in macrophages during the disease.
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The study of immune cells other than macrophages in DKD has

been relatively limited, possibly due to the small number of these

cells detected in scRNA-seq/snRNA-seq. Wilson et al. (68, 69)

conducted snRNA-seq based on cryopreserved human diabetic

kidney samples, and found that diabetics exhibited an increased

number of leukocytes, including T lymphocytes (49%), B

lymphocytes (21%), monocytes (23%), and plasma cells (7%).

Additionally, the presence of IgG+ B lymphocytes was found to

be heightened in the glomeruli of nonobese diabetic mice compared

to non-diabetic mice, suggesting the potential involvement of B

lymphocytes in the pathogenesis and prognosis of DKD.

Furthermore, elevated levels of activated dendritic cells were

observed in DKD and subsequently validated through flow

cytometric analysis (69). Nevertheless, the specific functions of

these immune cells, which are increased in DKD, necessitate

further investigation.

The crosstalk between cells is further elucidated by single-cell

transcriptomics, shedding light on the interactions between resident

cells and immune cells. The snRNA-seq and snATAC-seq datasets

(7) showed that an increase in VCAM1+ proximal tubular cells

(PT_VCAM1) and infiltrating leukocytes was associated with DKD.

PT injury leads to a PT_VCAM1 cellular state that exhibits a pro-

inflammatory phenotype characterized by enhanced NF-kB
signaling and failed repair. Wu et al. (67) found that diabetes

downregulates the spliceosome regulator serine/arginine-rich

splicing factor 7 (Srsf7) in the PT, and Srsf7 gene deletion in PT

induces a pro-inflammatory phenotype, characterized by highly

express genes related to interferon signaling. These studies add

evidence in support of the role of the PT in the inflammatory

response to DKD at the single-cell level. Lu et al. (71) and Zhang

et al. (72) reanalyzed the snRNA dataset by Wilson et al. (69) and

demonstrated a substantial increase in potential ligand-receptor

pairings between macrophages and endothelial cells and various

other cells in the context of DKD. Notably, macrophages

demonstrated high interaction scores with neutrophils and

epithelial cells in relation to the COL4A3_a1b1 complex, as well

as the COL4A4_a2b1 complex. Meanwhile, in a study conducted by

Chen et al. (64), differentially expressed genes (DEGs) analysis of

glomerular cells, tubular cells, and fibroblasts revealed that DEGs

associated with DKD were predominantly enriched in immune-

and inflammation-related pathways like TNF, IL-17, and NF-kB
pathways. This was further supported by ligand-receptor

interaction analyses, which highlighted strong cellular interactions

between immune cells and endothelial cells as well as fibroblasts.

For instance, T lymphocytes were found to interact with endothelial

cells through the CCL5_ACKR1 and PTPRC_MRC1 complexes.

Intriguingly, CCL5 and protein tyrosine phosphatase receptor type

C (PTPRC) have been identified as crucial immune genes regulating

the development and progression of DKD in a separate study (73).

Moreover, fibroblasts were found to express elevated levels of

chemokines such as CCL2, CCL21, and Lysosomal Associated

Membrane Protein 1 (LAMP1), which facilitate interactions with

B lymphocytes, T lymphocytes, mononuclear phagocytes, plasma

cells, and dendritic cells, ultimately promoting immune cell

recruitment and inflammation (Figure 1). This crosstalk between

immune cells and renal resident cells highlights processes such as
TABLE 2 Changes in macrophage subclusters and related gene markers
identified by Fu et al. (7) in the early- and late-stage of DKD.

Time
point

Cell type Proportion
fold change
to WT

Markers (top 10)

Early-
stage
DKD

IFNhi Mac 1.4
Cxcl9, Cxcl10, Isg15, Ccl12,
Gbp2b, Iigp1, Gbp2,
Serpina3g, Ifi47, Ifit2

Infiltrating
Mac

1.23
Retnla, S100a6, S100a4,
Plac8, Fn1, Msrb1, Chil3,
Itgal, Pglyrp1, Ear2

Trem2hi Mac 1.21
Fxyd2, Car2, Hpgd, Cyb5a,
Lyz2, Cd14, Capg, Plxdc2,
Ccl4, Pkm

Mrc1hi Mac 1.16
Pf4, Ccl12, Ms4a7, Apoe,
Ccl8, Selenop, Mrc1, Vcam1,
Slc40a1, Ms4a6b

Resident Mac 0.92
Mmp13, Tgfbr1, Mgl2, Lifr,
Lilra5, Maf, Selenop, Ctsh,
P2ry6, Cx3cr1

Inflammatory
Mac

0.88
Ccl4, Ccl3, Il1b, Cxcl2,
Hspa1a, Bcl2a1b, Marcksl1,
Ccl12, Cd72, Bcl2a1a

Proliferating
Mac

0.76
Stmn1, Mcm6, Tubb5, Mcm3,
Gmnn, Hmgb2, Hells, Dut,
Tuba1b, Ranbp1

Late-
stage
DKD

M14 2.85
Retnla, Fcna, F13a1, Ccl8,
Cd209f, Folr2, Lyve1, Hal,
C4b, Ccl24

Infiltrating
Mac (Ly6clo)

1.45
Ace, Itgal, Pglyrp1, Ear2,
Msrb1, Samsn1, Gngt2,
Cebpb, Ear1, Ceacam1

Trem2hi Mac 1.4
Fxyd2, Car2, Hpgd, Lyz2,
Plxdc2, Gas7, Cyb5a, Cd14,
Cst3, Pmepa1

Mrc1hi Mac 1.24
Vcam1, Mrc1, Selenop, Stab1,
Pf4, Maf, Wwp1, Ms4a7,
Apoe, Dab2

Infiltrating
Mac (Ly6chi)

1.08
Fn1, Chil3, Ahnak, F13a1,
S100a6, Ly6c2, Plac8, S100a4,
Vim, Ifitm6

Inflammatory
Mac

1.05
Ccl4, Lpl, Il1b, Mmp12, Cd83,
Cd72, Stap1, Wfdc17,
Tnfaip2, Slc15a3

IFNhi Mac 0.69
Cxcl9, Isg15, Ifit2, Iigp1,
Ccl12, Serpina3g, Gbp2,
Oasl2, Slfn5, Ifi202b

Resident Mac 0.65
Slamf9, C1qa, Tgfbr1, C1qb,
Aif1, Mgl2, C1qc, Ifi27l2a,
Gpr65, Tmem176b
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upregulation of inflammatory signaling pathways, release of

chemokines, and infiltration of immune cells, all contributing to

the onset and progression of DKD, particularly in the context of

renal fibrosis.

In summary, the predominant involvement of macrophages in

DKD is highlighted in current research, with implications of their

coexisting pro-inflammatory and anti-inflammatory states within

the diabetic milieu. This duality of states may contribute to the

underlying progression of the disease. However, the study of other

immune cells such as T lymphocytes, B lymphocytes, and dendritic

cells has been limited by the constraints of single-cell technology

due to their low numbers in the kidney. The existing single-cell

transcriptome data of DKD renal tissues, as presented in Table 3,

has generated a large amount of data. However, further data mining

is still pending. There is an expectation that the advancement of

algorithms may offer new insights into decoding the mechanisms of

immune cells and inflammation in DKD. Moreover, combining

advanced technologies such as co-indexed co-detection (CODEX)

and spatial histology with single-cell transcriptomics can facilitate a

deeper understanding of the roles and mechanisms of immunity

and inflammation in DKD.
Proteomics

Proteomics techniques possess the ability to unravel protein

profiles within intricate biological samples, thereby enhancing

comprehension of the pathogenic mechanisms underlying DKD.
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Consequently, this approach emerges as an optimal strategy for

identifying a multitude of potential biomarkers associated

with DKD.

CKD273, a classic urinary proteome-based classifier originally

discovered in 2010, is a panel containing 273 urinary peptides that

have been validated in multiple studies (both cross-sectional and

longitudinal studies) for early detection of CKD (78–80).

Interestingly, the CKD273 contains molecules that are closely

related to the pathogenesis of diabetes, including glycoproteins

and tubular proteins (81). Meanwhile, the diagnostic performance

of CKD273 in DKD has been shown in numerous studies over the

years, which may advance the diagnosis of DKD in the near future

(81–83). Roscioni et al. (81) analyzed the differential urinary

expression of these peptides from the CKD273 classifier, and they

found a-2-HS-glycoprotein was closely linked to the worsening of

albuminuria in diabetic patients. a-2-HS-glycoprotein is an

inflammation-related glycoprotein that is associated with tubular

damage in diabetes (81). Another research group revealed that

urinary a2-HS-glycoprotein precursor, a calcium-regulatory

glycoprotein, was upregulated 2.3-fold in DKD with

macroalbuminuria when compared with control subjects (84).

The precursor of a2-HS-glycoprotein is considered as a systemic

calcification inhibitor, which is associated with inflammation

(84). More specifically, inflammation may result in the

downregulation of circulating a2-HS-glycoprotein precursor in

DKD patients (85). The increased abundance of this glycoprotein

in the urine of DKD patients may be associated with more severe

inflammatory status.
FIGURE 1

Single-cell transcriptomics revealed the interaction between fibroblasts and various immune cells in DKD. Fibroblasts express chemokines such as
CCL2, CCL19, and CCL21, which interact with related receptors (e.g., CCR2, CCR7, and ACKR1) to recruit immune cells to the site of fibrosis.
Meanwhile, a variety of immune cells (including plasma cells, B lymphocytes, and T lymphocytes) express FAM3C, which interacts with LAMP1 in
fibroblasts and plays an important role in lysosomal biogenesis, autophagy, and cholesterol homeostasis. CCL2, Chemokine (C–C motif) ligand 2;
CCL19, Chemokine (C–C motif) ligand 19; CCL21, Chemokine (C–C motif) ligand 21; CCR2, C-C Motif Chemokine Receptor 2; CCR7, C-C Motif
Chemokine Receptor 7; ACKR1, Atypical Chemokine Receptor 1; LAMP1, Lysosomal Associated Membrane Protein 1; FAM3C, FAM3 Metabolism
Regulating Signaling Molecule C; GAS6, Growth Arrest Specific 6; MERTK, MER Proto-Oncogene, Tyrosine Kinase.
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TABLE 3 Single-cell transcriptomics studies in DKD.

References Techniques Model Tissue type Samples Data availability

Fu et al.
(2019) (70)

scRNA-seq STZ-diabetic eNOS−/− mice Glomerular cells 3 Controls GSE127235

3 Diabetic mice

Wilson et al.
(2019) (68)

snRNA-seq Human DKD samples kidney cortex 3 Controls GSE131882

3 early
DKD samples

Chung et al.
(2020) (74)

scRNA-seq Leptin-deficient BTBR ob/ob mice Glomerular cells 2 control (ob/
+) mice

GSE146912

2 ob/ob mice
(12 weeks)

2 ob/ob mice
(21 weeks)

Wu et al.
(2022) (75)

scRNA-seq Type 2 diabetic db/db mice Kidney 2 db/m mice GSE181382

8 vehicle

8 SGLT2i

6 ARBs

6 SGLT2i
+ ARBs

Wu et al.
(2022) (67)

snRNA-seq db/db mouse with uninephrectomy and
renin-induced hypertension mouse model

Kidney 10 db/m (control) GSE184652

10 db/
db (vehicle)

10 db/db + ACEi

10 db/db
+ Rosiglitazone

10 db/db
+ SGLT2i

10 db/db +
Rosiglitazone
+ ACEi

10 db/db +ACEi
+ SGLT2i

Wilson et al.
(2022) (69)

snRNA-seq Cryopreserved human diabetic
kidney samples

Kidney cortex 6 Controls GSE131882,
GSE195460,
GSE1513027 DKD samples

Fu et al.
(2022) (7)

scRNA-seq Type 1 diabetic OVE26 mice CD45-enriched
kidney
immune cells

3 Controls
(3 months)

GSE195799

3 OVE26 mice
(3 months)

3 Controls
(7 months)

3 OVE26 mice
(7 months)

Collins et al.
(2022) (76)

snRNA-seq db/db mice Kidney 3
Background
control

didn’t provide

5 db/db

Tsai et al.
(2023) (63)

scRNA-seq db/db mice Kidney 3 db/m mice
(14 weeks)

didn’t provide

(Continued)
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Fan et al. (86) conducted urinary proteomics and Reactome

pathway analysis, and they found that the up-regulated

differentially excreted proteins in the urine of DKD patients were

enriched in complement cascade, adaptive immune system, and

neutrophil degranulation. Using a targeted mass spectrometry

method to comprehensively quantify urinary complement protein

expression, recent evidence suggested that alteration in urinary

complement proteins may serve as a sign of increased inflammatory

activity in patients with DKD (87). Zhao et al. (87) conducted

targeted and untargeted proteomic analysis of urinary complement

proteins in healthy controls (HC), T2DM patients, and patients

with biopsy-proven DKD. They discovered that urinary abundance

of complement factor H (CFH) was significantly higher in patients

with DKD compared with HC participants or patients with T2DM.

Further Cox proportional hazards analysis revealed that a higher

abundance of urinary CFH was associated with a higher risk of

progression to ESRD in patients with DKD. CFH, a 155kDa serum

glycoprotein, is mainly synthesized in the liver and acts as the key

negative regulator of the alternative complement pathway (88, 89).

CFH can not only prevent the formation of the C3 convertase

(C3bBb), but also promote the C3bBb dissociation process, leading

to the proteolytic inactivation of C3b (90). It was reported that

downregulated CFH could lead to altered levels of complement

proteins and increased levels of inflammatory mediators including

IL-6, IL-8, CCL2, and granulocyte-macrophage colony-stimulating

factor (GM-CSF) in an NF-kB dependent way (91). Importantly,

recent evidence revealed that CFH plays an important role in

protecting the structure and function of renal endothelial cells

(92). Dysfunction of CFH potentiates numerous complement-

induced renal injuries (93). Targeted deletion of the Cfh gene in

mice resulted in the activation of alternative complement pathway

in the glomeruli, indicating that genetic impairments in Cfh are

associated with glomerular injury (89, 90). This series of studies

provide unprecedented insights into the complement-associated

mechanisms underlying the pathophysiology of DKD.

Using the SOMAscan proteomic platform, Kobayashi et al. (94)

determined concentrations of 25 TGF-b signaling family proteins in

four cohorts with a total of 754 diabetic patients. They discovered
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that elevated concentrations of neuroblastoma suppressor of

tumorigenicity 1 (NBL1), a 165 amino acid secretory protein, in

circulation and in urine were highly associated with risk of

progression to ESRD. Inflammation is thought to be involved in

the progression of DKD to ESRD, but the underlying mechanisms

remain largely unknown. Using flow cytometry analysis, Kobayashi

et al. discovered that NBL1 was highly expressed in immune cells,

such as monocytes, CD4 and CD8 T lymphocytes. Further

immunohistochemistry demonstrated that NBL1 was significantly

upregulated in proximal tubule epithelial cells in kidney biopsies

from patients with DKD. These findings suggest that circulating

immune cells under a hyperglycemic state may secrete a large

amount of NBL1 into the circulatory system. The secreted NBL1

is then deposited in renal tubules, causing substantial tubular

epithelial injury and inflammation, ultimately promoting the

progression of DKD. Niewczas et al. (95) conducted proteomics

studies aiming at identifying plasma inflammatory proteins

associated with the progression of ESRD in diabetic patients.

They identified a Kidney Risk Inflammatory Signature (KRIS),

comprised of 17 novel inflammatory proteins, significantly

associated with the 10-year risk of ESRD. Further prospective

study revealed that high concentrations of circulating KRIS

proteins potentiate the inflammation underlying ESRD

progression in both types of diabetes. Interestingly, the KRIS

contains molecules that are mainly involved in innate immune

responses, many of which are expressed by monocytes, suggesting

that monocytes play a significant role in generating circulating KRIS

proteins, and may serve as etiologic drivers of DKD. Additionally,

they discovered for the first time that interleukin-15 receptor alpha

(IL-15RA) included in the KRIS was involved in inflammation in

the context of DKD. IL-15RA was previously considered as a key

mediator of several pro-inflammatory signals involved in numerous

inflammatory diseases (95, 96). Furthermore, other proteomic

studies have also demonstrated that immunity and inflammation

are strongly involved in DKD pathogenesis (97, 98). The present

data confirmed that proteomics techniques shed light on the

important roles of immunity and inflammation in the

development and progression of DKD.
TABLE 3 Continued

References Techniques Model Tissue type Samples Data availability

3 db/db mice
(14 weeks)

Chen et al.
(2023) (64)

scRNA-seq &
spatial
transcriptomics

Human DKD samples Kidney specimens 3
Nondiabetic
control

Genome Sequence Archive in BIG
Data Center (PRJCA015521)

3 DM

3 DKD

2 DKD (spatial)

Liu et al.
(2023) (77)

scRNA-seq & Bulk-
RNA seq

BTBR ob/ob mice Kidney 8 BTBR WT (6
and 12 weeks)

GSE218563
GSE218086

8 BTBR ob/ob (6
and 12 weeks)
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Metabolomics

DM is characterized by heterogeneous metabolic disorders,

however, the links between dysregulated metabolism and

nephropathy remain elusive (99). Metabolomics is a high-

throughput profiling of small molecules (metabolites) that can be

the biomarkers for DKD and directly impact disease progression

(100). Metabolites derived from cells or gut microbiota are more

than just the substrates or products of biochemical processes, but

also function as signaling molecules and contribute to inflammation

either through effects on pro-inflammatory pathways or via

modulation of regulatory proteins (101–103). Thereby,

metabolomics, incorporated with microbiomics, transcriptomics,

or modification-specific proteomics, provides unprecedented tools

to investigate the metabolic regulation of inflammation in DKD.

Over the past decades, metabolomic studies have demonstrated

perturbations of metabolic homeostasis associated with or promoting

the development of nephropathy in DKD patients. Serum metabolic

profiling revealed increased g-butyrobetaine, symmetric

dimethylarginine (SDMA), and decreased azelaic acid in patients,

which were significantly correlated to urinary albumin-to-creatinine

ratio (104). When these metabolites were applied in the multiple logistic

regression model, the area under the curve value for diagnosing DKD

reached 0.927. It is reported that elevated SDMA correlates with

neutrophilic inflammation by impairing the functionality of

endothelial nitric oxide synthase (105). Whereas, the anti-

inflammatory property of azelaic acid is well-recognized and serves as

the first-line treatment in first-line treatment in acne vulgaris (106).

Moreover, urine metabolome found discriminating metabolites

included acyl-carnitines, acyl-glycines, and metabolites related to

tryptophan (Trp) metabolism that differentiate the progressive and

nonprogressive albuminuria in DKD patients (107). Trp metabolism

regulates various pathophysiological processes including inflammation,

which can be manipulated by gut microbiota, indicating that the

dysregulated Trp metabolism in DKD patients may involve dysbiosis

(108). Decreased plasma levels of very long-chain ceramide species were

observed to be associated with the development of nephropathy in

T1DM (109). Multiple studies perceive the very long-chain ceramides as

mediators of inflammation and they have protective effects in

cardiometabolic disease (110). Another metabolomic research led by

Kumar Sharma revealed elevated fumarate levels in the urine of diabetic

mice, resulting from the reduced fumarate hydratase (FH) in the

diabetic kidneys (both in mice and humans) (111). Recent RNA

sequencing and proteomic studies have illustrated that inhibition of

FH leads to cytosolic accumulation of fumarate and strong

inflammatory effects, by suppressing IL-10 and promoting TNF

secretion in macrophages (112). These data suggest a detrimental role

of fumarate in DKD via regulating inflammation.

In addition, the microbial metabolite profiling is altered in DKD

patients as well, which supports the crosstalk between microbiota and

the kidney (113). The microbiota structure is disrupted by the disorder

which causes shifts in microbial metabolism (114). The metabolites,

including trimethylamine-N-oxide (TMAO), short-chain fatty acids

(SCFAs), etc., translocate across the impaired intestinal barrier and

fuel metabolic inflammation in DKD (115, 116). The fecal

microbiome revealed diminished SCFA-producing strains in
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patients, which mainly generate butyrate, acetate, and propionate

(117). Serum concentration of TMAO increases as nephropathy

proceeds (118). TMAO can trigger the activation of inflammatory

pathways such as NLRP3, which may be the underlying mechanism of

its vicious role in kidney disease (119). SCFA restrains the production

of pro-inflammatory cytokines by inhibiting the NF-кB pathway in

myeloid cells and promoting the expansion of immunosuppressive

regulatory T lymphocytes (120, 121). Treatment with SCFA can

combat DKD in diabetic mice by suppressing inflammation and the

recruitment of inflammatory cells (122). These studies have provided

numerous hints on the potential biomarkers, and the metabolic

interactions of host-microbe axes in DKD.

Despite the growing metabolomic studies identifying numerous

discriminating metabolites for DKD, few elucidate the

pathophysiological mechanism behind these changes. It is unclear

whether the altered metabolite levels are the causes or consequences

of the amplified inflammation in DKD. Further metabolomic

research should be combined with multi-layer omics to address

the utility of these metabolites in clinical settings either as

therapeutic targets or biomarkers.
Multi-omics techniques in DKD
research: possibilities and limitations

Multi-omics techniques have revolutionized DKD research,

which enables us to better understand the pathogenesis of DKD,

especially in relation to immunity and inflammation. The application

of genomics and epigenetics techniques offers valuable insights into

the immune- and inflammation-related genetic factors that

contribute to the susceptibility of individuals to DKD (32, 34, 41,

45, 48, 49, 54, 58, 61, 62). Transcriptomics provides a comprehensive

perspective on the patterns of gene expression, thereby elucidating

the immune- and inflammation-related molecular pathways

implicated in DKD (64, 65, 73). Proteomics allows the

identification of proteins that are intricately linked with immune

responses and inflammation in DKD, shedding light on potential

biomarkers and therapeutic targets for DKD (87, 91, 94, 95).

Metabolomics facilitates the investigation of small molecules,

metabolites, and metabolic pathways associated with the

progression of DKD (104, 107, 109, 111, 118–122). The above

omics techniques are unbiased and hypothesis-free, allowing for the

discovery of novel immune- and inflammation-related factors and

pathways involved in DKD, which may not be discernible by using

conventional approaches. In addition, the integration of omics data

enables network-based analysis, revealing intricate relationships

between genes, proteins, and metabolites involved in DKD

pathogenesis. However, a major gap hindered the translation of

mechanistic insights into clinical breakthroughs. Most omics data

failed to be fully interpreted into disease-associated characteristics

with experimental validation in animal models or clinical trials. It can

be partly attributed to the lack of optimal DKD murine models to

recapitulate human nephropathy (26). More importantly, it results

from the discrepancy between the “discovery cohorts” that generate

the omics data and the “validation cohorts” involved in clinical trials.

In most cases, DKD is a clinical diagnosis of DM patients with CKD
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manifestations in the absence of a diagnostic biopsy (123). Thus, the

nephropathy of patients included in DKD cohorts may induced by

DM itself or its comorbidities such as hypertension and

hyperlipidemia, with distinct pathogenesis (124). Moreover, studies

are often compounded by the heterogeneity of disease phenotypes

arranged from non-albuminuria to rapid GFR decline (25). These

population divergences are also reflected in the different treatment

responses to approved drugs in clinical practice, such as SGLT2i

(125). Researchers must navigate the challenges associated with data

complexity, integration, and experimental validation to maximize the

benefits of these powerful omics techniques.

Although current omics techniques offer valuable insights into

the pathogenesis of DKD, especially in relation to immunity and

inflammation, here are some key questions that remain unanswered

in this area: 1) Can omics data be utilized to stratify DKD patients

based on their immune-inflammatory profiles to optimize

therapeutic strategies and improve patient outcomes? 2) How

does the temporal evolution of immune activation unfold in the

progression of DKD, and what are the pivotal events that initiate

inflammatory responses in diabetic kidneys? We believe that, in

future omics studies, integrating multi-omics data with detailed

clinical information may help identify patient subgroups with
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distinct immune and inflammation signatures, guiding

personalized treatment strategies for DKD patients. Furthermore,

future longitudinal transcriptomic and proteomic studies would

help capture dynamic changes in gene and protein expression,

helping to delineate the temporal evolution of immune responses in

the context of DKD.
Conclusions and perspectives

In this review, we have discussed the current state-of-the-art

omics approaches in DKD research and outlined the tremendous

progress in our knowledge of inflammation-related pathogenesis

benefiting from these cutting-edge technologies.

However, several significant barriers stand in the way of the

clinical translation of omics studies as mentioned above (lack of

suitable animal models and inappropriate interpretation of omics

data). Some technologies may help to address these challenges. For

example, kidney organoids that derive from DKD patients, which

more accurately mimic human kidney disease, can serve as powerful

tools to dissect omics data (126). Moreover, it also holds the

capacity to predict patients’ responses to certain therapies (127).
FIGURE 2

Clinical application of multi-omics in DKD. Kidney, blood, urine or fecal samples were collected from DKD patients and subjected to multi-omics
sequencing. The omics data, experimental results of patient-derived kidney organoids, and clinical information of the patient were integrated and
assessed by the artificial intelligence, which facilitate to stratify patients. Thereby, treatment that tailored to each patient can be provided and
reached the maximum therapeutic effects.
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Additionally, advanced algorithms such as machine learning and

artificial intelligence could be implemented in these omics studies to

make more valid inferences and identify the accessible population

(128). More importantly, researchers should carefully discriminate

genuine DKD patients from those comorbid with hyperglycemia

and other kidney diseases.

In summary, multi-omics studies improve our understanding of

inflammation- and immune-related pathophysiology in DKD with

unbiased analysis in a holistic landscape. The further transition of

multi-omics approaches from tools for scientific exploration to

pipelines for clinical diagnosis and prognosis could lead to the

development of precision medicine for DKD. It is expected that the

clinical management model for DKD patients will be revolutionized

by omics technologies in the future (Figure 2).
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