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Antioxidant network-based
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1Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU
Leuven, Leuven, Belgium, 2Laboratory of Cell Death Research & Therapy, Department of Cellular and
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for Cancer Biology Research, Leuven, Belgium, 4Department of Imaging and Pathology, KU Leuven,
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Introduction: Aberrant reactive oxygen species (ROS) production is one of the

hallmarks of cancer. During their growth and dissemination, cancer cells control

redox signaling to support protumorigenic pathways. As a consequence, cancer

cells become reliant on major antioxidant systems to maintain a balanced redox

tone, while avoiding excessive oxidative stress and cell death. This concept

appears especially relevant in the context of glioblastoma multiforme (GBM), the

most aggressive form of brain tumor characterized by significant heterogeneity,

which contributes to treatment resistance and tumor recurrence. From this

viewpoint, this study aims to investigate whether gene regulatory networks can

effectively capture the diverse redox states associated with the primary

phenotypes of GBM.

Methods: In this study, we utilized publicly available GBM datasets along with

proprietary bulk sequencing data. Employing computational analysis and

bioinformatics tools, we stratified GBM based on their antioxidant capacities

and evaluated the distinctive functionalities and prognostic values of distinct

transcriptional networks in silico.

Results: We established three distinct transcriptional co-expression networks

and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential

in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits

strong antioxidant properties, C2 is marked with a discrepant inflammatory trait

and C3 was identified as the cluster with the weakest antioxidant capacity.

Intriguingly, C2 exhibited a strong correlation with the highly aggressive

mesenchymal subtype of GBM. Furthermore, this cluster holds substantial

prognostic importance: patients with higher gene set variation analysis (GSVA)
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scores of the C2 signature exhibited adverse outcomes in overall and

progression-free survival.

Conclusion: In summary, we provide a set of transcriptional signatures that unveil

the antioxidant potential of GBM, offering a promising prognostic application and

a guide for therapeutic strategies in GBM therapy.
KEYWORDS

oxidative stress, GBM, bioinformatics, antioxidant phenotype, signatures, canonical
GBM classification, transcription factors, prognosis
Introduction

Reactive oxygen species (ROS) are the by-products of multiple

cellular and metabolic processes. It is widely acknowledged that low

levels of ROS promote cell growth and differentiation (1), whereas

higher levels of ROS can impart fatal damage to cellular

components and trigger cell death (2). Cancer cells display basally

high levels of ROS as compared to their normal counterparts.

Several intrinsic genetic and metabolic alterations driving the

malignant state, including oncogene expression and rewiring of

major metabolic pathways, cause an imbalance in the cellular redox

tone shifting the balance in favor of a pro-oxidant state, a condition

known as “oxidative stress”. To withstand oxidative stress and avoid

irreparable damage to vital entities, malignant cells increase their

capacity to detoxify the excessive production of ROS. As a

consequence, failure to maintain a functional cellular antioxidant

defense system causes inevitably ROS-driven cellular damage that

results in cell demise which can occur through different regulated

cell death (RCD) modalities (3–7). Efforts to maintain redox

homeostasis in cancer cells can be challenged by the local tumor

microenvironment, upon invasion of malignant cells in the

bloodstream, which is notoriously more oxidizing, or colonization

to a secondary site (8). Emerging data indicate that non-genetic

mechanisms that contribute to tumor cell heterogeneity and drug

resistance, involve transcriptional reprogramming of antioxidant

response networks, which endorse cancer cells with an increased

ability to cope with intrinsic and extrinsic oxidative stress (9–11).

However, given the double-edged function of ROS, it remains

unclear which changes in the intracellular redox tone are

associated with various stages of malignancy, and when and how

they contribute to the maintenance of cancer cell’s plasticity.

This concept seems particularly applicable to glioblastoma

multiforme (GBM), the most aggressive brain neoplasm

hallmarked by high heterogeneity, which drives treatment

resistance and tumor recurrence (12). The high metabolic rate of

GBM leads to the generation of excessive amounts of ROS and

metabolic adaptation in these cells plays an essential role in resistance

to oxidative stress-induced cell death. Congruently, in response to

chemo (temozolomide - TMZ) or radio-therapy GBM activates
02
redox-sensitive transcription factors, including nuclear factor-kB
(NF-kB), nuclear factor erythroid 2 p45-related factor 2 (NRF2), or

HIF-1 that cooperate to support cancer cell survival and progression

through cell-intrinsic and -extrinsic mechanisms (13, 14). Hence,

how GBM strives to maintain redox pathways promoting

tumorigenesis and resistance to anticancer therapies, while avoiding

oxidative stress-induced killing remains an outstanding question.

In this perspective, it would be valuable to explore whether gene

regulatory networks can capture different redox states are associated

with the main GBM phenotypes. If so, this could help in

understanding how glioma cell plasticity and redox signaling are co-

regulated. Furthermore, given that several clinically available

anticancer treatments kill cancer cells by directly or indirectly

inducing lethal levels of ROS (14), an ‘a priori’ knowledge of the

cancer cell’s antioxidant capacity based on the co-expression of redox-

regulating genes, may provide an indicator of the propensity of a ROS-

inducing drug/treatment to be effective and be therefore clinically

informative. Identifying such a gene signature redox-based classifier

could provide an additional tool to predict GBM patient responses to

therapies. Here we perform an in silico analysis to define a redox-gene

expression signature that could provide useful insights into the

propensity of a particular GBM state to undergo lethal oxidative stress.
Materials and methods

Software, signature of interest, datasets
and workflow

Unless stated otherwise, R 4.2.2 and RStudio were used to

perform our analysis based on the signature of redox controlling

transcription factor network reported in a recent paper (15). Cancer

cell line encyclopedia (CCLE) database, The Cancer Genome Atlas

Program (TCGA) database and The Genotype-Tissue Expression

(GTEx) portal were used. All the original data was transformed and

parsed with the R package tidyverse. We used GBM cell lines (n =

59) from the CCLE database and downloaded raw data from

weblink: https://sites.broadinstitute.org/ccle/. The background of

each cell line was screened manually to confirm the pathological
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diagnosis of GBM. Related information was extracted to build the

clinical profile of the cohort. We utilized the in-house RNA-seq data

of patient-derived GBM cell lines, which were isolated and

maintained primarily from clinical GBM samples (n = 41;

generated under study number S59804 and S61081), and the

GBM TCGA database (n = 168) as the validation cohorts for our

newly defined classifier and performed prognosis analysis with the

TCGA cohort. Expression of normal tissue from GTEx was used to

compensate for the lack of normal tissue data in the TCGA project.

The workflow of the study can be found in Figure 1.
Consensus clustering and expression
heatmap of the signature

We used CCLE GBM cohort for consensus clustering analysis. The

expression of genes from the signature of redox controlling transcription

factor network (15) was extracted as input matrix for clustering. With R

package ConsensusClusterPlus, consensus matrix was built and stability

assessment was performed to seek the optimal k value. We also

confirmed the optimal k value with the function embedded in the

package. In the end, k value of 3 was selected based on the stability of the

clusters (Figure 2A; Supplementary Figures 1B–J). We, thereafter, found

the three distinct groups of cell lines as the major clusters defined in our

classification system. R package ComplexHeatmap was used to derive

the heatmap for hierarchical clustering.
Functional annotation

Gene set variation analysis (GSVA) was first used to gain the score

of antioxidant pathways described in our input signature. The score
Frontiers in Immunology 03
was calculated with the R package GSVA. Then, all the databases in the

R package msigdbr were extracted for GSVA scoring to validate the

consistency of the results. The results from the database included

Hallmark, Gene Ontology (GO), Reactome, WikiPathways, BioCarta,

the Pathway Interaction Database (PID), and Cancer Module (CM),

which showed significant readout, were reported here. We built the

heatmap with above mentioned R package to assign the function to

each cluster. Next, we performed differential expression gene (DEG)

analysis with R package DESeq2 on counts data to find the up-

regulated and down-regulated genes in each cluster. Log2 fold-

change of 0.5 and adjusted p value, derived from Benjamin-

Hochberg correction, of 0.05 were set as the thresholds. R package

EnhanceVolcano was used to generate the Volcano plot presenting

differentially expressed genes. Gene set enrichment analysis (GSEA)

was performed to assign the functions to the clusters. We used the

function in R package clusterProfiler to obtain the result for this step.
Weighted gene co-expression network
analysis and protein-protein interaction
network construction

WGCNA was performed on the top 5000 expressed genes with R

package WGCNA. This is to maintain the performance of the

algorithm, in the meantime, to acquire the correlated modules with

higher accuracy. Soft power was calculated, and we selected 5 as the

optimal soft power to emphasize strong correlations and reduce the

weaker (Supplementary Figure 3D). A signed network type was used to

detect the co-expression gene modules. We took the three clusters as

one set of traits, bringing along with clinical features and canonical

GBM classification. A trait-module correlation was then produced. We

gathered the genes from the, either positively or negatively, significantly

correlated with each grouping as another bundle of gene lists to

distinguish the three newly defined clusters. Next, we extracted the

overlapped genes in the lists obtained from DEG analysis and the lists

from WGCNA analysis to elucidate the signatures of the antioxidant

GBM classification. STRING (https://string-db.org) was used as the

tool for PPI analysis. To maximize the findings, we have utilized the

default setting of active interaction sources from the webtool. These

sources of interactions include textmining, experiments, databases, co-

expression, neighborhood, gene fusion and co−occurrence. Results

were imported into Cytoscape for network presentation. Plug-ins,

cytoHubba and ClueGO of Cytoscape were used to search for the

hub genes and annotate the functions.
Survival analysis

Overall survival (OS) and progression-free interval (PFI) data of

GBM samples from the TCGA cohort was used as input for Kaplan-

Meier survival analysis with R package survival and survminer.

Categorically, we compared the samples with the different clusters

C1-C3. Quantitatively, we calculated the GSVA scores of each

signature in the whole cohort, and compared the prognostic values

between the high and the low scores. For the single gene analysis,

transcription factors in each signature were spotted by the
FIGURE 1

Workflow of the study. In general, we divided our analysis into three
parts: 1) set up of the classification using redox homeostasis
controlling transcription factor network; 2) function annotation and
signature establishment; 3) validation by in-house RNA-seq and
TCGA-GBM project, and prognosis analysis with TCGA GBM cohort.
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transcription factor database: http://humantfs.ccbr.utoronto.ca/

index.php and http://bioinfo.life.hust.edu.cn/AnimalTFDB4/#/.

Expression status was illustrated by violin plots derived from R

package ggplot2. Again, related R packages were used to examine

the prognostic values. Finally, the hazard ratio was evaluated with the

function from the same R packages.
Results and discussion

Establishment of a GBM classification
based on distinct antioxidant gene
network phenotypes

The canonical GBM classification system based on

transcriptomic differences fails to provide the fundamental

biological characteristics that can guide the therapeutic propensity

of the cellular states. Recently, in a study using an in silico pathway-

based classifier, GBM was clustered into four main biological

subtypes, characterized by divergent metabolic states (e.g.

mitochondrial, glycolytic, lipid) and neurodevelopmental axis

(16). Interestingly, the mitochondrial GBM phenotype, relying on

oxidative phosphorylation and associated with higher levels of

intracellular ROS, exhibited higher responses to radiation, a

clinically relevant, ROS-inducing therapy in GBM. These studies

further portrayed that GBM metabolic heterogeneity, possibly

linked to a differential redox-tone, is linked to clinical outcomes.

To define a classification system for GBM, based on the intrinsic

ability of cells to detoxify ROS and maintain redox homeostasis, we

initially explored the RNAseq dataset from the CCLE database. We

performed consensus clustering using the signature consisting of

genes regulated by members of the antioxidant transcription factor

network (15) (see Materials and Methods, and Supplementary

Figure 1A). GBM cell lines could be segregated into three main

clusters labeled C1, C2, and C3 (Figure 2A). Significant definers of

each cluster included members of the activator protein-1 (AP-1)

family of transcription factors, and genes involved in heme or iron

metabolism and the detoxification of xenobiotics (15). Analysis of

the expression of these genes across the GBM cell lines showed they

were expressed prevalently in the C1 cluster, whereas their

expression was low to very low in the C2 and C3 clusters,

respectively (Figure 2A; Supplementary Figure 1A). This suggests

that the C1 GBM cluster express a transcriptional network endowed

with more robust antioxidant ability, compared with C2 and C3

(Figure 2B). Hierarchical clustering analysis resulted in a similar

segregation of cell lines (Supplementary Figure 1). The clinical

background of the individual sample can be visualized in Figure 2B.

To gain further insight into the molecular signature of each cluster,

we performed GSVA utilizing different databases. We started the

analysis using the Hallmark 50 database, and identified the term

ROS pathway together with the terms Wnt/b-catenin signaling, and

xenobiotic metabolism differentiating the three clusters, thus validating

the signature (Figure 2C). Further GSVA analysis using literature-

driven annotation of genes (genes used in the signature) revealed that

all the terms related to antioxidant functions (e.g. scavenge ROS,

provide reduced thioredoxin (TXN), synthesis of glutathione (GSH),
Frontiers in Immunology 04
generate NADPH,metabolize heme/iron and detoxify xenobiotics) and

transcription factors (TF) regulating and antioxidant response were

highly enriched in C1 followed by C2 while poorly coexpressed in C3

(Figure 2D). To gain further insights into the molecular pathways

potentially contributing to the difference in redox signature across the

three clusters, we performed GSVA using gene ontology (GO) and

pathway analysis. The GO analysis identified terms, such as the

regulation of PERK-mediated UPR, glutamate homeostasis, and

response to fatty acids, enriched in C1 (Figure 2E; Supplementary

Figures 2A, B). Pathway analysis using different databases (Reactome,

WikiPathways, BioCarta, PID, and CM) identified PERK, NRF2,

ferroptosis, iron homeostasis, and cytokine pathways driving

inflammation, as dominant pathways differentiating the three clusters

(Figure 2F; Supplementary Figures 2C–F).

The co-existence of the PERK branch of UPR and NRF2 in C1 is

congruent with the relevant role of this ER stress sensor in the

resistance to oxidative stress in cancer cells (17). In line, PERK

mediates the phosphorylation of NRF2 on Thr-80, which unleashes

NRF2 from its inhibitory association with KEAP1 thereby favoring

NRF2 nuclear translocation and boosting the transcription of the anti-

oxidant response genes (18). These genes include heme-oxygenase-1

(HO-1), which generates the antioxidant bilirubin and glutamate-

cysteine ligase-catalytic subunit (GCLC), which is essential for the

synthesis of the major intracellular anti-oxidant glutathione (GSH)

(18). Furthermore, the PERK-eIF2a-ATF4 axis of the UPR also

contributes to the mitigation of oxidative stress in cancer cells by the

ATF4-mediated increase in amino acid transport and metabolism (19–

21). Among other targets of this pathway, the expression of the

glutamate transporter SLC7A11, which exchanges glutamate for the

import of cystine, increases the intracellular concentration of GSH. In

line with this, multiple studies have indicated that attenuation of

glutamate homeostasis leads to the accumulation of ROS (22). In

conjunction, the terms glutamate homeostasis, iron/heme homeostasis,

and ferroptosis are also enriched in C1. In line with this, recent studies

linked the PERK-NRF2-HO-1 axis of the ER stress pathway to the

modulation of ferroptosis (23). Additionally, the increased presence of

terms related to NADP activity within the molecular function (MF)

ontology and the pentose phosphate pathway (PPP) in C1 may also be

correlated with the increased activation of NRF2 (15). Several NADP-

related terms were highly enriched in C1 followed by C2 at the level of

MF in the GO analysis (Supplementary Figure 2A). Active NRF2 is

associated with increased glucose uptake, which is preferentially

metabolized through PPP resulting in increased reducing equivalent

capacity, via the production of NADPH (24). NADPH is required for

and consumed during fatty acid synthesis and the scavenging of ROS.

Of note, despite exhibiting a dominant antioxidant transcriptional

network, theGBMC1 cluster also showed an enrichment of several terms

related to the productionof protumorigenic/angiogenic cytokines, such as

IL-6, IL-7, IL-9 (25) and vascular endothelial growth factor (VEGF) (26)

(SupplementaryFigure2D).This couldbe linked toachronic activationof

the UPR, coupling the upregulation of the PERK-NRF2 antioxidant

response pathway, with the stimulation of NF-kB mediated

proinflammatory cytokines (27, 28), an interesting conjecture to be

explored in future functional studies. In GBM, b-catenin and

components of the Wnt pathway are commonly found to be

overexpressed, contributing to cancer initiation, proliferation and
frontiersin.org
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invasion (29). It’s worth noting that ROS, acting as signaling molecules,

also exert control over the Wnt–b-catenin signaling pathway (30).

Together, this suggests that the GBM C1 cluster deploys the ability to

detoxify potentially harmful ROS while maintaining a redox-tone

supporting protumorigenic cell intrinsic and extrinsic signaling pathways.

Taken together, this analysis portrays that compared with the

other two clusters, the C1 identifies a GBM entity hallmarked by a

heightened antioxidant and protumorigenic potential.
Frontiers in Immunology 05
Identification of transcriptional networks
governing differentiated
antioxidant potentials

With the aim of identifying transcriptional networks with hub

genes regulating the signature of each cluster, we integrated DEG

analysis with the WGCNA method. DEG analysis identified 173,

356 and 220 genes upregulated, while 410, 684 and 174 genes
B

C D E F

A

FIGURE 2

Consensus clustering of GBM CCLE cohort and function exploration. (A) Consensus matrix showing three distinct GBM clusters; (B) Major diversly
expressed genes in the input signature; (C) Significant pathways evaluated by GSVA scoring in Hallmark database; (D) GSVA scores of each
antioxidative pathways in the redox homeostasis transcription factor network; (E) Significant pathways evaluated by GSVA scoring in GO BP
database; (F) Significant pathways evaluated by GSVA scoring in Reactome database.
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downregulated in C1, C2 and C3, respectively (Figures 3A–C;

Supplementary Table 1). The results of GSEA on the upregulated

gene set across each cluster were in line with GSVA, identifying

genes involved in the NRF2 pathway, fatty acid metabolism and

suppressors of ferroptosis (Supplementary Figure 3B) as highly

expressed in C1 (Figure 3A; Supplementary Figure 3A). In

contrast, C2 clustered genes of several inflammatory pathways

such as response to LPS, cytokine active and IFN-a/g response
Frontiers in Immunology 06
(Figure 3B; Supplementary 3C). Interestingly C3, which exhibits a

limited ability to scavenge ROS, showed an enrichment for

apoptosis pathway (Figure 3C).

Next, we used WGCNA to build gene modules of significantly

correlating genes (Supplementary Figures 3E, F), and then

evaluated how these modules relate to the clustering pattern by

calculating Pearson correlations between each module and cluster

(Supplementary Figure 3G, Supplementary Table 2). We integrated
B C

D

E

F

A

FIGURE 3

DEG analysis, GSEA and redox-based signatures. (A–C) Volcano plots showing DEG among the clusters and the key GSEA results in each cluster;
(D) Feature panel of C1: positive and negative signatures, hub genes and function enriched; (E) Feature panel of C2: positive and negative signatures,
hub genes and function enriched; (F) Feature panel of C3: positive and negative signatures, hub genes and function enriched.
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the genes from modules correlating closely with each cluster and

their DEGs (Figures 3D–F). The integrated gene lists were used as

the input for STRING analysis to gain the protein-protein

interaction network (PPI network) of each cluster. The PPI

networks were incorporated into the Cytoscape software to

characterize the hub genes regulating this network. The top ten

hub genes were identified for each cluster, except C3, using the

cytoHubba plug-in in Cytoscape (Figures 3D, E). The low number

of input genes for C3 hindered this analysis (Figure 3F). We defined

the coexisting genes in both positively correlated genes from

WGCNA and up-regulated genes from DEG analysis as the

signatures of the three clusters (Supplementary Table 3). Further,

to identify the transcription factors in each signature, we utilized the

database as described in the method section (Supplementary

Figure 3H). We identified one [NFIX (31, 32)], six [ZBTB38 (33),

ARNTL2 (34), E2F7 (35), PBX3 (36), FOSL1 (37, 38), and DRAP1),

and one (LHX9 (39)] transcription factors in cluster C1, C2 and C3,

respectively, potentially regulating the cluster (Supplementary

Figure 3I). All these transcription factors are known to have a

role in the development and progression of GBM. Moreover, they

are either linked directly or indirectly in regulating ROS-mediated

signaling pathways. To characterize the functionality of these

integrated genesets, we used ClueGo which incorporates different

databases to identify pathways these genes are enriched in

(Figures 3D, E). The results of ClueGo were in line with GVSA

and GSEA analysis, further validating our observation that C1 has

the hallmark of an antioxidant phenotype, C2 is associated with an

inflammatory phenotype, while C3 is characterized by a propensity

to undergo ROS-mediated apoptosis.

We then tested whether the derived C1, C2 and C3 signatures

correlated with the canonical classification of classical,

mesenchymal and proneural GBM (40) (Supplementary Figure 4).

Of note, the classical subtype was distributed mainly across C1, C2

and C3, suggesting that classical GBM are heterogenous in their

redox homeostasis, likely depending on factors, such as the stage of

the disease, mutational status, etc. Remarkably, the mesenchymal

GBM subtype showed a major distribution in C2 (Supplementary

Figure 4A). This observation was further validated statistically using

a GSVA-based model of correlation (Supplementary Figure 4B). It

has been previously shown that mesenchymal cells are associated

with a high ROS index, which can lead to chronic inflammation

eventually promoting cell growth (41). The proneural subtypes

showed the highest distribution in C3 suggesting that proneural

cell types have the weakest ROS-defending potential and could be

targeted by ROS-inducing therapies. However the proneural

phenotype is known to switch to the mesenchymal phenotype as

an adaptive response in the presence of excess ROS (41, 42).

Next, we validated our signature with an in-house bulk RNAseq

dataset derived from GBM patient-derived cell lines (PDCLs).

Using the derived antioxidant network signatures, we could

cluster these PDCLs into three distinct groups (Supplementary

Figure 3J). Of note, analyzing the expression of the transcription

factors associated with clusters C1, C2, and C3, we could

demonstrate similar trends, with an expression of ZBTB38,

ARNTL2, E2F7, FOSL1, and DRAP1 high in C2 and LHX9 high

in C3 (Supplementary Figure 3K). Moreover, analyzing the
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correlation of C1, C2 and C3 signatures with the canonical

subtype showed similar trend with PDCLs in mesenchymal

subtypes showing major distribution in C2 (Supplementary

Figures 4C, D).

Hence, the transcription factors identified for each gene

network across different clusters may be predictive of GBM types

that can benefit from particular ROS-induced therapeutic

approaches. However, these observations require thorough

functional investigations both in vitro and in vivo settings to

confirm this assumption. The intriguing correlation between C2

with mesenchymal suggests that genomic-based classification of

GBM can be associated with a differential redox homeostasis and

antioxidant potential. This connection can be harnessed for targeted

therapeutic approaches.
Prognostic significance of the redox-based
classifier and the transcription
factors associated

We utilized the TCGA-GBM dataset to examine whether our

antioxidant transcription factor network-based classification system

has any prognostic value. First, based on the signatures, GSVA scores of

C1-C3 were calculated for each sample of TCGA-GBM study. Using

these scores, we could divide the patients into three different sub-

cohorts (Supplementary Figure 5A). Next, we characterized the

prognostic value of each cluster both at the levels of overall survival

(OS) (Figures 4A, C) and progression-free interval (PFI) (Figures 4B,

D). Interestingly, C2 showed significantly worse prognosis both at the

level of OS and PFI in both categorical and quantitative fashions

(Figures 4A, B). According to the multivariate analysis, C2 showed a

comparatively worse OS in GBM patients with a hazard ratio (HR) of

2.22 and a p-value of 0.010 (Figure 4C). Also, at the level of the PFI, C2

under-performed the other two phenotypes with an HR of 2.35 and a

p-value of 0.013 based on multivariate survival analysis (Figure 4D).

We then focused on the transcription factors in the signature

and wondered if they would provide more insights regarding GBM

prognosis. We analyzed their expression in the TCGA-GBM cohort

(Figures 4E–H; Supplementary Figure 5B–E). We found that all the

transcription factors herein are differentially expressed compared

with normal tissue. Except for ZBTB38 (Supplementary Figure 5B),

all the other transcription factors are up-regulated in GBM,

pointing to the re-design of redox-related mechanisms either due

to the intrinsic ability of cancer cells or driven by the tumor

microenvironment. We then checked the expression of each gene

among the three clusters, and their prognostic value at the single

gene level was underpinned (Figures 4I-N; Supplementary

Figures 5B–E). We found that FOSL1 is a potent predictor of

both OS and PFI prognosis (Figure 4K). Lower expression of

FOSL1 indicates a better prognosis in GBM patients. Our finding

shows that the patients stratifying in the C2 phenotype may have a

preferable OS and PFI, and FOLS1 can serve as a single gene

biomarker predicting the survival of GBM patients.

In summary, we report the prognostic value of the classification

of the redox homeostasis controlling network (Figure 5).

Interestingly, C2 defined by the new classifier is adequate to
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predict poor OS. Moreover, patients, who are classified as C2

phenotype, showed worsened PFI. Considering the function

discovered in the enrichment analysis, C1 is marked as a cluster

with a higher antioxidant potential compared with C2 and C3. In
Frontiers in Immunology 08
C2, a moderate level of ROS may function as a signaling molecule

promoting GBM progression. The C3 phenotype has the weakest

antioxidant potential and GBM clustered in this group may

succumb to ROS-induced cell death. Among the transcription
FIGURE 5

Figurative summary. GBM can be clustered into three groups, termed C1, C2 and C3, depending on the intrinsic antioxidative capacities. C1 is
characterized by the strongest antioxidative potential. C2 has be discovered with the inflammatory phenotype and a correlation with mesenchymal
GBM subtype. The antioxidation is dampened in C3, which, hypothetically, contributes to the vulnerability to ROS-triggered cell death in this cluster.
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FIGURE 4

Survival analysis of the classification in TCGA GBM cohort and analysis of transcription factor in the signature of each cluster. (A) K-M curves of OS;
(B) K-M curves of PFI; (C) Table of hazard ratio on OS; (D) Table of hazard ratio on PFI; (E) NFIX expression status and (F) its prognostic value; (G)
ARNTL2 expression status and (H) its prognostic value; (I) FOSL1 expression status and (J) its prognostic value; (K) LHX9 expression status and (L) its
prognostic value; (M) Table of hazard ratio on OS; (N) Table of hazard ratio on PFI. **** indicates a p-value < 0.0001.
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factors in the C2 signature, FOSL1 demonstrates a prognostic value

in both OS and PFI. This suggests that FOSL1 under-expression is

an independent factor linked to longer OS and delayed tumor

progression. Interestingly, FOSL1 has been shown to boost the

transition of proneural-to-mesenchymal via NF-kB signaling (37).

In pancreatic cancer, metastasis can be overcome by the

suppression of FOSL1 expression by SMAD4 (43). Of note,

FOSL1 expression has been functionally related to cancer

angiogenesis and vascularization, suggesting that reprogramming

of the redox tone in this GBM cluster may be associated with its

heightened neovascularization potential.

In conclusion, our analysis shows that the C2 cluster is closely

correlated with mesenchymal GBM. Due to the pervasive

angiogenic phenotype of the mesenchymal subtype of GBM,

FOSL1 could be an interesting target for future studies assessing

the biological and therapeutic function of this transcription factor

in GBM.
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(A) Multiple clustering algorithms underscore the robustness of antioxidative
network-based classification. Expression heatmap and hierarchical clustering

of antioxidative signature; (B–J) Consensus clustering with multiple k values.

SUPPLEMENTARY FIGURE 2

Heatmap of GSVA scoring biological function database. (A) GSVA score

heatmap of GO MF database; (B) GSVA score heatmap of GO CC database;

(C) GSVA score heatmap of WikiPathways database; (D) GSVA score heatmap
of BioCarta database; (E) GSVA score heatmap of PID database; (F) GSVA

score heatmap of CM database.

SUPPLEMENTARY FIGURE 3

(A) GSEA of C1; (B)Overlapping of ferroptosis signature with C1 signature; (C)
GSEA of C2; (D) Soft power selection in WGCNA; (E, F) WGCNA modules

presentation; (G) Module-trait correlations; (H) Transcription factors in each
cluster signature and (I) their expression status in CCLE cohort; (J) redox
clusters assignment of in-house GBM RNA-seq; (K) Expression of featured
transcription factors in in-house cohort. SIG: signature.

SUPPLEMENTARY FIGURE 4

Bridging antioxidative clusters with GBM canonical classification. (A) Alluvial plot
showing the cluster-subtype connection in CCLE cohort; (B) Correlation analysis
of GSVA scores of signatures of antioxidative cluster and GBM canonical subtypes

in CCLE cohort. (C) Alluvial plot showing the cluster-subtype connection in in-
house cohort; (D) Correlation analysis of GSVA scores of signatures of redox

cluster and GBM canonical subtypes in in-house cohort.

SUPPLEMENTARY FIGURE 4

(A) Subtype assignment in GBM samples from TCGA project; (B) ZBTB38
expression status and its prognostic value; (C) PBX3 expression status and its

prognostic value; (D) E2F7 expression status and its prognostic value; (E)
DRAP1 expression status and its prognostic value.

SUPPLEMENTARY FIGURE 5

(A) Subtype assignment in GBM samples from TCGA project; (B) ZBTB38

expression status and its prognostic value; (C) PBX3 expression status and its
prognostic value; (D) E2F7 expression status and its prognostic value; (E)

DRAP1 expression status and its prognostic value.
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