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Introduction:Melanoma is a highly aggressive and recurrent form of skin cancer,

posing challenges in prognosis and therapy prediction.

Methods: In this study, we developed a novel TIPRGPI consisting of 20 genes

using Univariate Cox regression and the LASSO algorithm. The high and low-risk

groups based on TIPRGPI exhibited distinct mutation profiles, hallmark pathways,

and immune cell infiltration in the tumor microenvironment.

Results: Notably, significant differences in tumor immunogenicity and TIDE were

observed between the risk groups, suggesting a better response to immune

checkpoint blockade therapy in the low-TIPRGPI group. Additionally, molecular

docking predicted 10 potential drugs that bind to the core target, PTPRC, of the

TIPRGPI signature.

Discussion: Our findings highlight the reliability of TIPRGPI as a prognostic

signature and its potential application in risk classification, immunotherapy

response prediction, and drug candidate identification for melanoma

treatment. The "TIP genes" guided strategy presented in this study may have

implications beyond melanoma and could be applied to other cancer types.
KEYWORDS
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Introduction

Melanoma is a type of skin cancer that arise from melanocytes,

the pigment-producing cells found in the epidermis, hair follicles,

and iris, among other tissues (1). Melanoma only accounts for only

1% of skin cancers, but it is the most aggressive and dangerous one

and accounts for 90% of all skin cancer deaths, melanoma patients

with distant metastases show a 5-year survival rate of 23% (2, 3).

Melanoma is one of the most immunological malignancies

(4, 5)., immunotherapy is one of the most effective therapeutic

strategies in melanoma due to the high immunogenicity of this

tumor (6). Immune checkpoint blockade (ICB) immunotherapy,

which reverses the inactivation of immune cells to eliminate tumor

cells, has emerged as a promising therapy for melanoma (7). In

recent years, the immunologic origin of melanoma has led to

the discovery of antibodies directed against specific targets such

as anti-programmed cell death 1 (PD-1) and anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) (8). Since then,

additional agents targeting novel immune checkpoints, such as T-

cell immunoglobulin and mucin domain containing 3 (TIM-3),

lymphocyte activation gene-3 (LAG-3), and ITIM domain (TIGIT),

are being investigated to expand the scope of immunotherapy for

melanoma (9–11).

Overall, these blockades have dramatically increased and

prolonged overall survival (OS) in advanced melanoma. However,

even in the most optimal scenarios with a combination ICB,

approximately half of the patients do not achieve a long-term

benefit (12). While elevated tumor PD-L1 expression and TMB

have been shown to correlate with clinical response to ICB in

melanoma, these biomarkers may not accurately predict outcome in

all cases (13). This highlights the need for better predictive

biomarkers of response and new rational targets for more

effective combination therapies to overcome immune resistance.

How to choose available and suitable targets for personalized

therapy is still a challenging question.

Tumor microenvironment (TME) encompasses a wide range of

stromal, vascular, and immune cell types that are impacted by

therapy. The TME is considered one of the primary indicators of

treatment response in cancer due to its high level of heterogeneity

(14). Tumor immune phenotype (TIP) is an emerging concept to

evaluate immunologic heterogeneity depending on the relative

infiltration of immune cells, and tumors are generally classified

into two TIPs: “hot” (inflamed) and “cold” (non-inflamed),

respectively (15). Oncogenic genetic and epigenetic pathways

simultaneously define TIPs, influence tumor progression, and

alter spontaneous and therapy-induced tumor-specific T cell

immunity. Manipulation of these tumor intrinsic pathways can

promote T cell infiltration into tumors, alter the tumor immune

phenotype and ultimately lead to tumor regression. Thus, these

“TIP genes” offer significant potential for clinical application,

particularly in the areas of postoperative risk stratification and
Abbreviations: TIPRGPI, tumor immunological phenotype-related gene index;

LASSO, least absolute shrinkage and selection operator; TIDE, tumor immune

dysfunction and exclusion; PTPRC, protein tyrosine phosphatase receptor type C;

TME, Tumor microenvironment; TIP, tumor immune phenotype.
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identification of immunotherapeutic predictors in cancers. The

immunotherapy prediction model established based on TIP has

been validated in hepatocellular carcinoma (16), but has not been

investigated in melanoma.

To fill the gap between TIP-based prediction model and

immunotherapy response in melanoma, in this study, a “TIP genes”

guided strategy was utilized with various statistical algorithms to create

a TIP-related gene prognostic index (TIPRGPI), which is a novel

melanoma signature. It is predicted that individuals in the low-risk

TIPRGPI group will respond more favorably to immunotherapies, as

compared to those in the high-risk TIPRGPI group. Furthermore,

based on our molecular docking analysis, we have identified 10

potential drugs that successfully bind to the core target of TIPRGPI.

The workflow for this study is shown in Figure 1.
Materials and methods

Data source

Download RNA sequencing, phenotype, and survival data

for skin melanoma (SKCM) from the TCGA database at https://

xenabrowser.net/datapages/. Obtain skin melanoma gene

expression RNA sequencing and survival information data

from GSE65904 at https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE65904, and melanoma gene expression RNA

sequencing, survival, and immunotherapy information data from

GSE91061 at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE91061. Hot and cold tumor genes were acquired
FIGURE 1

The workflow for this study.
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fromprevious literature (16). The Gencode annotation files

were acquired from the EBI website ftp://ftp.ebi.ac.uk/pub/

databases/gencode/Gencode_human/release_38/gencode.v38.chr_

patch_hapl_scaff.annotation.gtf.gz. The gene set for the hallmark

pathway, h.all.v7.5.symbols.gmt, was acquired from the MsigDB

database found at http://www.gsea-msigdb.org/gsea/msigdb/. The

TCGA and GEO datasets are shown in Tables 1–3.
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Correlations of TIP score with prognosis
and TME of melanoma
1. TIP score was calculated as previously reported (17). The

study analyzed the expression levels of genes associated with

hot tumors (CXCR3, CXCR4, CXCL9, CXCL10, CXCL11,

CCL5, CD3E, CD4, CD8A, CD8B, CD274, and PDCD1) and

cold tumors (CXCL1, CXCL2, and CCL20). Each gene’s z-

value was calculated in its respective dimension, and all z-

values were summed up in the sample dimension, resulting

in the TIP score for each sample. Subsequently, the samples

were grouped into high and low TIP score categories, with

the median acting as the dividing line.

2. Analysis of TIP score and immune-related indicators.

Calculated Immune Score, Stromal Score, ESTIMATE

Score, and Tumor Purity using the estimate package

(version 1.0.13). Also calculated CD4/CD8+ T cell score

using the xCell package (version 1.1.0). Furthermore, the

correlation between TIP score, Immune Score, Stromal

Score, ESTIMATE Score, Tumor Purity, CD4/CD8+ T

cell score, and PD-1/CTLA-4 expression was computed

and visualized using the ggpubr package (version 0.4.0).

3. Analysis of TIP score correlation with other immunotherapy

signatures. TIDE values were determined via the TIDE

algorithm (http://tide.dfci.harvard.edu/). TIP score was

computed and mapped against TMD and TIDE

correlations utilizing the ggpubr package.
TIPRGPI establishment
1. Screening of Key Modules Associated with TIP score Traits

Based on Expression Profiling and Weighted Gene Co-

Expression Network Analysis (WGCNA). The WGCNA
TABLE 1 Clinical information on TCGA-SKCM.

Variable Classic No.

Sample type
Metastatic 361

Primary Tumor 99

Age
≥60 217

<60 246

Stage

Stage 0 6

Stage I 78

Stage II 136

Stage III 174

Stage IV 23

Pathologic T

T0 23

T1 32

T2 77

T3 91

T4 150

Tis 7

Tx 45

Pathologic N

N0 227

N1 75

N2 50

N3 57

Nx 34

Pathologic M
M0 411

M1 24

Mutational Subtype

BRAF 147

NF1 27

RAS 91

Triple Wild Type 48

Gender
Male 289

Female 174

Breslow depth
<1.5 99

1.5-3 68

(Continued)
TABLE 1 Continued

Variable Classic No.

3-4.5 64

>4.5 124

Melanoma clark level

I 5

II 18

III 77

IV 164

V 54

BMI* exposures

<18.5 3

18.5-23.9 60

>23.9 178
frontier
*BMI, body mass index.
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package, version 1.69, screened for key modules that were

significantly associated with TIP score, using TCGA-SKCM

expression profiles (RsquaredCut=0.8, power=6, MM>0.5,

GS>0.05). The resulting set of concatenated genes was then

taken as the key module genes for subsequent analysis.

2. Gene Ontology (GO) enrichment and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analysis were

performed on the most significant module using the

“clusterProfiler” R package. Plotting using the ggplot2

package (v3.3.5) and the enrichplot software (v1.14.2).
tiers in Immunology 04
3. Survival package was utilized in performing Cox regression

analysis on critical modular genes to identify genes related

to prognosis. Additionally, glmnet package (version 4.1-1)

was utilized in the LASSO regression analysis of prognosis-

associated genes to eliminate redundant genes and to model

them. Then, utilizing the survival package, K-M survival

curves were generated for the modeled genes.
TIPRGPI and outcome analysis
1. The clinical outcome in this study was overall survival

(OS). The OS-predictive effectiveness of TIPRGPI was

assessed in both the training set and an independent

external dataset. Based on the median TIPRGPI in the

training and validation sets, the samples were divided into

two categories: high TIPRGPI and how TIPRGPI. Scatter

plots depicting the variation in survival/death based on

TIPRGPI score were generated utilizing the ggplot2

package, while heat maps illustrating the modeled gene

expression differences between high and low TIPRGPI

groups were generated utilizing the pheatmap package

(version 1.0). 12) We generated survival curves for the

high and low TIPRGPI groups using the survival package.

Additionally, we plotted 1-3 years modeled ROC curves

for these groups using the time-ROC (version

0.4) package.

2. To examine the predictive potential of TIPRGPI

characteristics among various clinicopathological subgroups,

survival variation diagrams comparing high and low TIPRGPI

groups were generated for different age groups (<60 years, ≥60

years), genders, and stages (stage 0/I/II, stage III/IV) using the

survival package.

3. Based on TCGA data, immune cell infiltration was

determined using three algorithms, namely CIBERSORT,

XCELL, and SSGSEA. The CIBERSORT (https://

cibersortx.stanford.edu/), SSGSEA, and XCELL algorithms

were utilized to assess the differences in cellular infiltration

within the immune microenvironment and graphed using

the ggplot2 package to compare the variances in cellular

infiltration among various pyroptosis subtypes.

4. Heatmap displaying the variation in immune checkpoint

expression among distinct pyroptosis subtypes, using the

“pheatmap” software package.
TIPRGPI-integrated predictive nomogram
1. The differences in the distribution of clinical variables such

as age (<60 years, ≥60 years), gender, stage, TNM staging,

TCGA molecular typing, primary/metastasis, and Clark

level between high and low TIPRGPI groups were
TABLE 3 Clinical information on dataset GSE91061.

Variable Classic No.

Mutational Subtype

BRAF 28

NF1 5

RAS 18

Triple Wild Type 41

Default 17

M Stage

M0 2

M1a 21

M1b 17

M1c 44

Default 25

Treatment Response

CR 6

NE 3

PD 44

PR 14

SD 34

Default 8
TABLE 2 Clinical information on dataset GSE65904.

Variable Classic No.

Gender

Male 124

Female 89

Default 1

Age

≥60 130

<60 80

Default 4

Tissue

Cutaneous 22

Lymph node 130

Subcutaneous 33

Visceral 10

Other 1

Default 18
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compared. Differences in the distribution of Breslow depth

and BMI between the high and low TIPRGPI groups were

also compared. The “complexHeatmap” package (version

2.6.2) was utilized for plotting purposes.

2. Various clinical factors were examined to evaluate disparities

in TIPRGPI scores. The distinctions in TIPRGPI scores

among subcategories of age, gender, stage, TNM staging,

TCGA molecular typing, primary/metastasis, Clark level,

Breslow depth, and BMI were compared and illustrated

utilizing the ggpubr software package.

3. The single-factor cox regression utilized the survival

package with variables such as age, gender, NM staging,

and high/low TIPRGPI groupings. The relationship

between variables such as age, gender, NM staging, and

high/low TIPRGPI groupings were evaluated to reveal the

independence of TIPRGPI as a prognostic factor for

cutaneous melanoma. The analysis was visualized using

forestplot (version 1.10.1). The results are presented in

the forestplot.

4. Integrating clinical factors, the TIPRGPI is utilized to

construct nomograms with column-line graphs for

clinical analysis and predictive significance. The regplot

package (version 1.1) is employed to plot age grouping and

TIPRGPI grouping column line plots, while the rms

package (version 6.1-0) is utilized to plot calibration

curves. The rmda package (version 1.6) is used to plot

decision curves, categorizing samples into high- and low-

risk groups based on composite model scores. Finally, the

survival package is deployed to compare and plot km

curves between groups.
Potential molecular mechanisms
for TIPRGPI
1. Mutated gene analysis is performed to display co-mutation

patterns in both high and low TIPRGPI groups. The

maftools package (version 2.6.0) is utilized to generate

SNV waterfall maps for both groups. The Hmisc package

(version 4.4-2) calculates the top differential gene

autocorrelation, and a heatmap is produced using the

pheatmap package. Lastly, the maftools package is used to

create differential gene lollipop plots.

2. CNV Differences Between High and Low TIPRGPI Groups,

The CNV profiles of the samples in the high and low

TIPRGPI groups were calculated on each chromosome

using GISTIC from https://cloud.genepattern.org and

plotted using the ggpubr package. Comparison of CNV

differential genes between the groups was obtained and

plotted using the ggplot2 package. Differences in the

expression of CNV differential genes were compared and

plotted using the ggpubr package, across CNV status,

including amplification, normal, and deletion. The results

were visualized in a violin plot.
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3. Enrichment scores of hallmark pathways (h.all.v7.5.symbols)

were computed for samples belonging to the high and low

TIPRGPI groups employing the GSVA (version 1.38.0) and

GSEABase (version 1.52.1) software packages. Differential

genes were compared between the high and low TIPRGPI

groups using the limma package. These genes were included in

the GSEA analysis to obtain differentially enriched hallmark

pathways, and the resulting pathways were compared with the

GSVA results to obtain concordant result pathways. Finally,

GSEA enrichment plots were plotted using the enrichplot

package. The samples were categorized into high and low

score groups based on the GSVA score of each consistent

result pathway. Subsequently, survival curves were plotted for

each pathway by using the survival package.
Exploration of immune infiltration
1. Differences in tumor microenvironment cellular infiltration

between high and low TIPRGPI groups. The infiltration

scores of 24 cell types in the tumor microenvironment for

samples from the high and low TIPRGPI groups were

calculated using the ssGSEA algorithm and compared and

plotted using the ggpubr package and the ggplot2 package.

2. The Hmisc package was used to calculate the differential

correlation between TME cells and TIPRGPI.

3. TIPRGPI screening of cells most associated with TME.

TME cells significantly associated with prognosis were

screened. The ggvenn package (version 0.1.9) was used to

plot Wayne plots of significant cells in the analysis of

variance, correlation, and survival, and the cells that were

significant in all 3 were taken as the cells most associated

with TME by TIPRGPI. The number of cells in the 3

analyses was plotted using the ggplot2 package for bar

graph display.

4. Correlations between the 20 model genes and the 21 most

relevant TME cells were calculated using the Hmisc package,

and heat maps were generated using the pheatmap package.

5. Differences in the expression of several immune gene sets

were analyzed between the high and low TIPRGPI groups.

Enrichment scores for samples in the high and low

TIPRGPI groups on the immune-related 7 gene set were

calculated using GSVA, and differences between groups

were compared. Heatmaps of gene expression in the 7 gene

sets were generated using pheatmap.
Estimating TIPRGPI to predict
immunotherapeutic response
1. According to previous publications, the correlations

between TIPRGPI and potential immunotherapeutic
frontiersin.org
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markers including IFN-gamma pathway markers, m6A

regulators, Immunophenoscore (IPS) scores and Tumor

Immune Dysfunction and Exclusion (TIDE) values were

explored. Differential box plots of expression differences of

immune checkpoints, IFN-gamma pathway marker genes,

and m6A regulators between high and low TIPRGPI groups

were compared and plotted using the ggplot2 and ggpubr

packages. TCGA-SKCM sample data were downloaded

from https://tcia.at/patients using the ggdist (version

3.2.0), gghalves (version 0.1.3), ggsci (version 2.9),

ggplot2, and ggplubr packages to plot various IPS

differences between high and low TIPRGPI groups in the

IPS subgroups in a cloud rain plot. TIDE values were

calculated for the TCGA-SKCM samples using the TIDE

algorithm (http://tide.dfci.harvard.edu/), and TIDE

differences between the high and low TIPRGPI groups

were compared and plotted using the ggplot2 and

ggpubr packages.

2. TIPRGPI differences between groups were compared and

plotted using the ggplot2 and ggpubr packages. ROC curves

were plotted with the time-ROC package.
TIPRGPI-related core target identification
and candidate molecule prediction

To identify the core target of the TIPRGPI signature, all genes were

uploaded to the online database of the Search Tool for the Retrieval of

Interacting Genes (STRING) (version 11.0; http://string-db.org/) for

protein-protein interaction (PPI) network construction with default

settings (interaction score ≥0.4). Cytoscape (version 3.2.1; http://

www.cytoscape.org) was used for visualization. Next, we calculated

the topological parameters using the Network Analyzer plugin and

obtained the degrees of all nodes in the network. The core target was

identified as the node with the highest degree.
Molecular docking

The structural information of the corresponding compounds

was downloaded from the DrugBank database and screened

according to Lipinski’s rule (hydrogen bond acceptor≤ 10,

hydrogen bond donor ≤ 5, rotatable bond ≤ 10, logarithmic value

of lipid-water partition coefficient ≤ 5, molecular weights of 180-

480, and polar surface area ≤ 140), and finally 5462 small molecule

compounds were obtained. Retrieve the spatial structure

information of the key gene-encoded proteins in the PDB

database, find the corresponding data from protein tyrosine

phosphatase receptor type C (PTPRC), and download the

corresponding PDB files.5FN7. Determine the approximate

docking box range and set the other relevant parameters of

autodock-vina, and dock with small molecule compounds using

autodock-vina, and perform interaction force analysis using Pymol

and Ligplus for interaction force analysis.
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Statistical analysis

All analyses and plotting in this study were conducted using R

version 4.2.1. In detail, the R script can be downloaded from the

GitHub (https://github.com/Myth1313/Melanoma-immunotherpy-

prediction-model-based-on-TIP-.git). A significance level of P<0.05

was employed, with two-tailed Wilcoxon rank-sum tests for

between-group differences comparisons, chi-square tests for

frequency differences comparisons among multiple groups, and

log2 fold change≥1.5 as the criteria for differential gene selection in

Gene Set Enrichment Analysis (GSEA). COX survival analysis was

performed using the R packages survival and survminer, with

survival curves plotted using the Kaplan-Meier (K-M) method.

LASSO analysis was employed to identify the most advantageous

gene combinations for constructing TIPRGPI to present K-M

curves. The receiver operating characteristic (ROC) curve was

used and a larger area under the ROC curve (AUC) indicated a

better predictive performance. An AUC of 0.9–1.0 is considered

excellent, 0.8–0.9 very good, 0.7–0.8 good, 0.6–0.7 sufficient, 0.5–0.6

bad, and less than 0.5 considered not useful. (ns: p>0.05; *: p<=0.05;

**: p<=0.01; ***: p<=0.001; ****: p<=0.0001).
Results

TIP score was associated with the
prognosis and the immune state
of melanoma

To determine whether TIP score is effective in melanoma, we

performed a series of survival analyses using Kaplan-Meier (K-M)

survival curves and log-rank tests to examine the discrepancy between

low and high TIP score groups. High and low TIP score groups were

formed based on the median TIP score (median = -1.304159) with 229

samples in the high TIP score group and 228 samples in the low TIP

score group (TIP score and grouping detailed in Supplementary

Table 1). As shown in Figure 2, melanoma patients with higher TIP

scores had a better prognosis. We then analyzed the correlations

among TIP score, immune score, stromal score, estimate score, and
FIGURE 2

TIP score correlates with the prognosis and the immune state of
melanoma. Kaplan–Meier survival plots of TIP score for OS.
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tumor purity. The TIP score correlated positively with immune,

stromal, and estimation scores, but negatively with tumor purity.

Additionally, as effective T cells - including activated CD4 and CD8

T cells - are crucial in the tumormicroenvironment, we computed their

positive correlations with the TIP score. Furthermore, since PD-1 or

CTLA-4 serve as essential immune checkpoints, we confirmed their

positive correlation with the TIP score. The TIP score had strong linear

correlations with Immunity score, ESTIMATE score, tumor purity,

CD8+ T cell, and PD-1 checkpoints. TIP score correlations with TMB

and TIDE were all statistically significant but weak (Supplementary

Figures 1, 2).
Construction of TIPRGPI

WGCNA was used for the identification of the gene module

associated with TIP scores. The resulting co-expression network

revealed that genes were clustered into 13 modules, which we used

to analyze the data (Figure 3A). We analyzed the correlation and

significance of each module eigengenes (ME) with TIP score, age,

gender, and Breslow depth using Pearson correlation coefficient

(Figure 3B). We chose the blue, pink, and brown modules that

exhibit the strongest and most significant correlation with TIP

score. The scatter plots for the GS-MM of the three modules are

shown in (Figures 3C–E). The genes in the upper right red grids of

the three plots were selected to create a concatenation set as the key

module genes related to TIP score (934), which can be found in

Supplementary Table 2. The genes in blue, pink, and brown

modules are primarily involved in biological process (BP) of T

cell activation, cellular component (CC) of mononuclear cell

proliferation, and molecular function (MF) of immune receptor
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activity. KEGG analysis indicates a predominant involvement in the

cytokine-cytokine receptor interaction pathway (Supplementary

Figure 3). The genes from the blue, pink, and brown modules

were then inserted in a UniCox regression analysis and identified

641 significant genes (listed in Supplementary Table 3) with a P

value lower than 0.05. We then performed LASSO regression using

the 128 genes and obtained 20 robust genes. The penalty function

for the LASSO algorithm was chosen as lambda.min=0.04591217 to

eliminate extraneous genes. Figures 4A, B shown the process of

removing redundant genes by LASSO to get the optimal

combination of genes, and Figure 4C shown the 20 genes and

their coefficients in the model, which is modeled as.

TIPRGPI = -0.0176318658536308×LAP3 + 0.181442498785852×

NOTCH3-0.0160031827383823×PSME1 + 0.013328065983228×TU

BB4A-0.0275390143073945×TSPAN13-0.126145101349642×CCL8 +

0.0414697345452162×COL1A1-0.063751548357349×PARP11-0.0

010811360894315×SOD2-0.134743050717298×DOK1-0.26

1361794333436×ADORA2A-0.247626113868466×KCNMB1-0.03

66480831303996×TXNDC11-0.0325307756953961×CLIC2-

0.0227464875810033×UBE2L6-0.181697447499612×SSTR2-0.25

3663685898908×NXPH3-0.012429025784462×TRIM69-

0.0365676747211779×KIR2DL4-0.026482536599118×CFB

Figures 4D–F shows the positive correlations of ADORA2A,

CCL8 and CFB with OS, respectively.
Evaluation and validation of the
TIPRGPI signature

The TIPRGPI score for each patient was calculated. Based on

the median value from the training set, melanoma patients from
A B

D E

C

FIGURE 3

WGCNA analysis. (A) Cluster dendrogram of MAD top 5000 genes. (B) Table cells show Pearson correlation coefficients and corresponding P-values
between module eigengenes (ME) and the variables in 13 modules. (C) Scatter plot depicting the correlation between gene significance (GS) for TIP
score and module membership (MM) in the blue module. (D) Scatter plot depicting the correlation between GS for TIP score and MM in the pink
module. (E) Scatter plot depicting the correlation between GS for TIP score and MM in the brown module.
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TCGA-SKCM (training dataset, Figure 5A) and GSE65904

(validation dataset, Figure 5H) were classified into low- and high-

risk groups. The survival time decreases as the score increases in the

training (Figure 5B) and validation (Figure 5I) sets. Figures 5C, J

shown 20 TIPRGPI genes on the high and low TIPRGPI groups.

The group with lower TIPRGPI exhibited a lower mortality rate

compared to the high TIPRGPI group across the training

(Figures 5D, E) and validation (Figures 5K, L) datasets.

Subsequently, Kaplan-Meier analysis revealed statistically

significant differences in overall survival probability between the

high- and low- TIPRGPI groups across the training (Figure 5F) and

validation (Figure 5M) datasets. Further, we used a time-dependent

receiver operating characteristic curve analysis to assess the

precision of the TIPRGPI signature. On the TCGA-SKCM

training dataset, the area under the ROC curve (AUC) was 0.728,

0.744, 0.714 in 1-year, 2-year, and 3-year survival, respectively

(Figure 5G). On the GSE65904 validation dataset, the AUC was

0.621, 0.668, 0.686 in 1-, 2-, and 3-year survival, respectively

(Figure 5N). A stratified analysis demonstrated that TIPRGPI has

added predictive value within subgroups categorized by age, gender,

and stage (Supplementary Figure 4).
Establishment of the
prognostic nomogram

Figure 6; Supplementary Figure 5 showed the differences in

TIPRGPI scores between different clinical subgroups, as evidenced

by significant differences in TIPRGPI scores between stage, T stage,

metastatic, Clark level, and Breslow depth subgroups. To further

determine whether the TIPRGPI predictive model served as an

independent prognostic indicator in melanoma, both univariate

and multivariate analyses were conducted. The HR of the TIPRGPI

risk level was 0.34 (95%CI: 0.26-0.45) and 0.36 (95%CI: 0.27-0.47)

in the univariate and multivariate analysis, respectively (Figure 7).

Multivariate analysis shown TIPRGPI and age were independent
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prognostic factors in melanoma. To provide a quantitative

instrument for physicians, a nomogram was built by age and

TIPRGPI (Figure 8A). The calibration plot, which compares

observed and predicted rates of 1-, 2- and 3-year overall survival,

demonstrates the nomogram’s optimal consistency on OS in 2-year

(Figure 8B). The survival curves of the high and low TIPRGPI

groups in the composite model exhibit significant differences after

incorporating the age variables (Figure 8C). Figure 8D showed

TIPRGPI-age integrated nomogram achieved a better net benefit

than TIPRGPI nomogram and age nomogram in predicting

melanoma OS.
Potential molecular mechanisms
of TIPRGPI

We downloaded the available somatic mutation profiles and

analyzed the mutational landscape of high- and low- TIPRGPI

patients from the TCGA-SKCM dataset to explore the potential

mechanisms underlying the risk level defined by TIPRGPI in

melanoma. The top 20 genes with mutations were presented in

two distinct groups. TTN (69%) and MUC16 (61%) exhibited the

greatest frequency of mutation in both high- and low-TIPRGPI

groups (Figures 9A, B). The significant differentially mutated genes

between the high- and low- TIPRGPI groups were detected by

Fisher’s exact test (Figure 9C), and the TENM1 were found with a

much higher mutation rate in the high-TIPRGPI group compared

with the low-TIPRGPI group (P<0.01). The mutation information

summary with statistical calculations is presented in Supplementary

Table 4. Meanwhile, the co-occurrence and exclusive associations of

the top 20 mutated genes from the high- and low-TIPRGPI groups

were also analyzed, where blue represents co-occurrence and red

represents mutual exclusion (Figure 9D). A Lollipop plot has been

used to show the different mutation sites of TENM1 (Figure 9E).

The CNV alteration landscapes of the high- and low-TIPRGPI

groups were generated after removing the germline features
A B
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C

FIGURE 4

The construction of TIPRGPI for melanoma. (A) The penalty function for the LASSO algorithm was chosen as lambda.min = 0.04591217. (B) LASSO
regression using the 128 genes. (C) Twenty robust genes were and their coefficients in the model. (D) ADORA2A positively correlated with OS. (E) CCL8
positively correlated with OS. (F) CFB positively correlated with OS.
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FIGURE 5

Validation of the TIPRGPI predicting model in melanoma. (A–F) Risk score distribution, survival status, the expression of 20 TIPRGPI genes, mortality
rate Kaplan-Meier survival curves for patients in low- and high-TIPRGPI groups from training dataset TCGA-SKCM. (G) Time-dependent receiver
operating characteristic (ROC) curves of training dataset. (H–M) Risk score distribution, survival status, the expression of 20 TIPRGPI genes, mortality
rate Kaplan-Meier survival curves for patients in low- and high-TIPRGPI groups from validation dataset GSE65904. (N) Time-dependent receiver
operating characteristic (ROC) curves of validation dataset.
FIGURE 6

Differences in the distribution of various clinical factors in high- and low-TIPRGPI groups. There were significant differences in stage, T-stage,
primary/metastasis, and Breslow depth.
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(Figures 10A, B). CLIC2, CFB and UBE2L6 were three genes that

showed the positive correlations of gene expression in the high-

TIPRGPI group (Figures 10C–F).

We performed GSVA in high- and low-TIPRGPI groups.

According to the predefined cutoff, 36 hallmark pathways were

significantly increased in the high-TIPRGPI group compared to the

low-TIPRGPI group (Figure 11A). GSEA confirmed that 2 of these

genes were up-regulated in the high-TIPRGPI group of patients

(Figure 11B). Kaplan-Meier survival analysis was utilized to assess

the prognostic significance of the elevated hallmark pathways.

Between the high- and low- TIPRGPI groups for these pathways,

varying OS probabilities were noted (Figures 11C, D).

HALLMARK_ALLOGRAFT_REJECTION is a pathway that is
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linked to organ transplant rejection, patients who underwent

immunosuppression at the time of transplantation rejection

displayed a better response to anti-PD1 therapy (18). The

HALLMARK_IL6_JAK_STAT3_SIGNALING can lead to tumor

cell proliferation, invasion, and metastasis (19).
TIPRGPI was associated with
melanoma TME

Figure 12 illustrates the variance in infiltration between the high

and low TIPRGPI groups across 24 cell types. It is shown that there is

a significant difference in infiltration between the 23 cell types except
FIGURE 7

Univariate and multivariate analyses of the clinical traits and TIPRGPI for the OS in melanoma.
A

B DC

FIGURE 8

Evaluation of the TIPRGPI-integrated nomogram in melanoma. (A) Nomogram for predicting the probability of 1-, 2-, and 3-year OS. (B) The calibration
plots of the nomogram predicting the probability of 1-, 2-, and 3-year OS. (C) Kaplan-Meier survival analysis of the age-TIPRGPI integrated nomogram
for OS. (D) Decision curves showing the comparison of net benefits of the age, TIPRGPI, and age-TIPRGPI integrated for 2-year OS.
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fibroblasts. Then, we investigated the potential correlation between

TIPRGPI and the TME cell infiltration. The significant correlation

between the TIPRGPI score and infiltration scores of 23 TME cells,

except for endothelial cells, which show a negative correlation

(Supplementary Figure 6). The results of the one-way Cox

regression demonstrate significant correlation between infiltration

scores of 21 cells and survival, except for resting mast cells,

endothelial cells, and fibroblasts. The 21 cells present in survival

analysis were the most crucial factors in the correlation between

TIPRGPI and TME cells (Supplementary Figure 7). TIPRGPI

constituent genes correlation with TME-associated cells between

high- and low- TIPRGPI groups and revealed that the infiltration

of most TME cell types including naive B cells, memory B cells,

memory CD4 T cells, naïve CD4 T cells, CD8 T cells, follicular helper

T cells, gamma delta T cells, and regulatory T cells (P<0.05) were

significantly associated with TIPRGPI (Supplementary Figure 8).

There was a significant difference in the immune cell
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recruitment、immune suppression、innate immunity、adaptive

immunity、antigen presentation and processing、cytotoxicity/

killing of cancer cells、inflammation gene sets between the high

and low TIPRGPI groups (Supplementary Figure 9).
TIPRGPI may be a sensitive predictor
of immunotherapy

To evaluate the potential of TIPRGPI to predict how melanoma

patients respond to immunotherapy, we first determined the

expression of 61 immunomodulators in high- and low- TIPRGPI

groups. Figure 13A showed that the high- and low- TIPRGPI groups

were significantly different in 58 of 61 immune checkpoints.

Figure 13B shows that the high- and low- TIPRGPI groups were

significantly different in 11 of 12 interferon-g pathway marker genes.

Figure 13C shows that the high- and low- TIPRGPI groups were
A B
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C

FIGURE 9

Genetic variations of the high- and low-TIPRGPI groups. (A, B) Waterfall plots showing the mutation landscapes of the high- (A) and low-TIPRGPI
(B) groups, TTN and MUC16 mutations were obtained; (C) Forest plot showing significantly different mutated genes between high- and low-TIPRGPI
groups; (D) The coincident and exclusive associations across the top mutated genes in high- and low-TIPRGPI groups; (E) Lollipop plot indicating
the distribution of mutation spots in the high- and low-TIPRGPI groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1343425
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1343425
significantly different in 8 of 20 m6A regulators. Figures 13D–G show

the differences between the high- and low- TIPRGPI groups in the

IPS subgroups, as shown by the significant differences in all 4

subgroups. Figure 13H shows the TIDE-TIPRGPI correlation,

which is significantly negatively correlated, with lower TIDE scores

in the high-TIPRGPI group. We also predict the immunotherapeutic

efficacy for immune checkpoint blockade in GSE91061, the high-

TIPRGPI group had a better OS, and the AUC was 0.604,0.578,0.712

in 1-, 2-, and 3-year survival, respectively. (Figure 14).
Core target identification and candidate
molecules prediction

To identify the core target in relation to TIPRGPI, a PPI network

was constructed using the STRING database (confidence score>0.4).

There were 87 differential genes between the high- and low- TIPRGP
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groups (Supplementary Table 5). The PPI interaction network

constructed using the 87 differential genes, in which the protein

tyrosine phosphatase receptor type C (PTPRC), which has the most

connections to the other nodes, is shown as a core factor in red in the

center of the figure (Supplementary Figure 10). Thus, PTPRC was

considered as core target. PTPRC is a member of the protein tyrosine

phosphatase (PTP) family, which is mainly involved in the regulation

of cell growth, differentiation, mitosis, and oncogenic transformation.

We also analyzed potential molecules that might interact with

PTPRC through molecular docking. The corresponding compound

structure information was downloaded from the DrugBank

database and screened according to Lipinski’s rule (hydrogen

bond acceptor ≤10, hydrogen bond donor ≤ 5, rotatable bond≤

10, logarithmic value of lipid-water partition coefficient≤ 5,

molecular weight of 180-480, and polar surface area≤ 140), and

finally 5462 small molecule compounds were obtained. The spatial

structure information of the key gene-encoded proteins was
A

B

D

E F

C

FIGURE 10

The distribution of CNV features across all chromosomes for the high- (A) and low- (B) TIPRGPI groups; (C) CLIC2, CFB and UBE2L6 showed
significant differences at the CNV level; (D) Violin plots indicating the positive correlation of gene expression and copy number of CLIC2 in the high-
TIPRGPI group; (E) Violin plots indicating the positive correlation of gene expression and copy number of CFB in the high- TIPRGPI group; (F) Violin
plots indicating the positive correlation of gene expression and copy number of UBE2L6 in the high-TIPRGPI group.
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searched in the PDB database to find the corresponding data of

PTPRC, and the corresponding PDB (5FN7) file were downloaded.

Docking with the small molecule compounds was performed using

Autodock-Vina, and interaction force analysis was performed using

Pymol and Ligplus, and the top 10 small molecule compounds that

had the best scores for binding to the PTPRC are as showed in

Table 4. Figure 15 showed the docking conformation and

interaction of PTPRC with DB08676, DB05608, and DB12369.
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Discussion

The tumor immune-microenvironment is intricately linked to the

tumorigenesis and the progression of cancer. The clinical success with

ICB in melanoma has confirmed the therapeutic impact of re-

invigorating the immune system to effectively target melanoma.

However, even with combination ICB in optimal scenarios,

approximately half of patients do not experience durable benefit.
A B

DC

FIGURE 11

Determination of the distinct hallmark pathways of the high- and low TIPRGPI groups. (A) Differences in cancer hallmark pathway activities between
the between the high- and low-TIPRGPI groups as assessed by GSVA; (B) The GSEA results for the 2 overlapping upregulated hallmark pathways in
terms of the TIPRGPI groups; (C) Kaplan-Meier survival plots showing the significant correlations between the OS and GSVA scores of
HALLMARK_ALLOGRAFT_REJECTION; (D) Kaplan-Meier survival plots showing the significant correlations between the OS and GSVA scores
of HALLMARK_IL6_JAK_STAT3_SIGNALING.
FIGURE 12

The differences of 23 TME cells infiltration between high- and low- TIPRGPI groups.
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Therefore, a effective prediction model for melanoma immunotherapy

is important for the clinical management of this disease.

The TIP genes guided strategy, utilizing multiple statistical

approaches, has resulted in the development of a novel and

effective immune-relevant predictive model-TIPRGPI, which

showed promising results for prognosis and immunotherapy in

certain cancer (16). For the first time, we conducted WGCNA to

uncover the specific gene expression pattern associated with TIP

score in melanoma. We identified a melanoma TIPRGPI module

which generated a 22-gene signature for predicting melanoma
Frontiers in Immunology 14
prognosis, and our results suggest that lower TIPRGPI indicates

better prognosis.

In this study, there are 20 genes and their coefficients in the

TIPRGPI model, offer valuable insights into the distribution of

immune factors and potential immunotherapeutic biomarkers

associated with melanoma. In 2018, a review concluded that

Notch3 signaling may play an important role in oncogenesis,

tumor maintenance, and resistance to chemotherapy (20). In

2022, Serge Fuchs and colleagues reported that targeting PARP11

may avert immunosuppression and improve CAR-T therapy in
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FIGURE 13

Application of the TIPRGPI model for immunotherapy prediction in melanoma. (A) The high- and low-TIPRGPI groups were significantly different in
58 out of 61 immune checkpoints; (B) The high- and low-TIPRGPI groups were significantly different in 11 of the 12 interferon-g pathway marker
genes; (C) The high- and low-TIPRGPI groups were significantly different in 8 of the 20 m6A regulators; (D–G) The relationship between TIPRGPI
and IPS, significant difference in all 4 subgroups; (H) TIDE correlated with TIPRGPI, which showed a significant negative correlation.
A B C

FIGURE 14

Applying TIPRGPI to assess immunotherapy prognosis in the GSE91061 melanoma immunotherapy dataset. (A) Significant difference in survival
between high- and low-TIPRGPI groups in the GSE91061 dataset; (B) Significant difference in TIPRGPI scores between immunotherapy CR, PR, SD
and PD groups; (C) ROC curve.
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solid tumors. In 2023, Yan Cao and colleagues reported that

TUBB4A was enriched in pathways related to melanoma, and in

vitro experiments indicated that TUBB4A promoted proliferation

and migration of melanoma cells A375 and B16-F10 (21). In the

same year, Hui-Min He and colleagues performed in vitro

experiments and found that TRIM69 maybe a potential sensitizer

to PD-1 blockers (22). In our study, the coefficient of TRIM69 was

negative, implying that high TRIM69 expression, low TIPRGPI

scores and good prognosis, consistent with the results of the in vitro

study. The same negative coefficient was found for CLIC2, a

dimorphic protein present in both soluble and membrane

fractions. CLIC2 was found to be expressed at higher levels in

benign tumors than in malignant tumors, most likely preventing

tumor cell invasion into surrounding tissues. CLIC2 was also
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expressed in vascular endothelial cells of normal tissues and

maintains their intercellular adhesive junctions, presumably

suppressing hematogenous metastasis of malignant tumor cells

(23). A significant difference was identified in the distribution of

immune factors between the high- and low-TIPRGPI groups,

suggesting that TIPRGPI may assist in the risk stratification of

melanoma patients, providing further evidence of the heterogeneity

of melanoma and its potential impact on treatment outcomes.

Additionally, key gene modules associated with TIPRGPI were

identified. Among these modules, the protein PTPRC was identified

as a core target. The identification of PTPRC as a core target suggests

its potential role in the development and progression of melanoma.

PTPRC, belongs to the PTP family, also known as CD45,

is a transmembrane glycoprotein, expressed on almost all
TABLE 4 Top 10 small molecule compounds had the best scores for binding to the PTPRC.

DrugBank ID Hydrogen
Acceptors

Hydrogen
Donors

Rotatable
Bonds

LogP Molecular
Weight

TPSA Affinity
(kcal/mol)

DB08676 5 1 0 2.5 453.5 83.2 -8.2

DB05608 4 1 2 2.6 400.4 102 -8

DB12369 6 2 3 2.6 438.5 94.2 -7.9

DB14773 8 2 3 3.7 478.4 89.1 -7.9

DB15345 8 1 5 1.1 451.5 79.8 -7.9

DB12134 7 1 5 0.1 448.5 90.4 -7.8

DB01395 3 0 0 3.5 366.5 43.4 -7.7

DB15442 7 2 3 2.6 446.5 91.2 -7.7

DB12368 7 1 4 3.2 431.4 77 -7.7

DB12690 9 1 3 3.6 445.4 75.5 -7.7
A B

D E F

C

FIGURE 15

Docking conformation and interaction force analysis. (A) Pymol 3D structures and binding modes showing the formed hydrogen bonds between the
predicted pocket of PTPRC and DB08676 (A), DB05608 (B) and DB12369 (C); Ligplus interaction force analysis showing hydrogen bonds formed by
DB08676 (D), DB05608 (E) and DB12369 (F) with amino acid residues of proteins.
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hematopoietic cells except for mature erythrocytes, and is an essential

regulator of T and B cell antigen receptor-mediated activation.

Imbalance between the activity of protein tyrosine kinase and

phosphatase, due to CD45 and other factors, can lead to

immunodeficiency, autoimmunity, or malignancy (24). PTPRC

participates in a range of cellular processes, including cell growth,

differentiation, and oncogenic transformation. Our previous study

demonstrated that PTP1B promotes the progression of melanoma

cells in vitro and in vivo (25). In 2021, a pan-cancer study highlighted

the significance of PARP1 alterations as cancer predictive biomarkers

for immunotherapy, and its expression levels were correlated with the

status of immunotherapy-associated signatures in several tumors

(26). Further bioinformatics investigations have indicated the

pivotal function of PTPRC in melanoma. In 2021, Thomas F

Gajewski and colleagues reported that up to 90% of PTPRC+ cells

produced CXCL10 transcripts, which played a critical role in

recruiting effector CD8+ T cells to the tumor site (27). In 2022,

Xiaobo Xia and colleagues reported that the OIP5-AS1-PTPRC/

IL7R/CD69 axis in ceRNA as a clinical prognostic model (28).

The study employed molecular docking analysis to identify

potential small molecule compounds that may interact with

PTPRC. This approach allows for the identification of potential

therapeutic targets and the development of novel treatment

strategies. The screening of small molecule compounds based on

specific criteria, such as Lipinski’s rule, ensures the selection of

compounds with favorable drug-like properties.

The TIPRGPI model demonstrated significant differences in OS

between the high and low groups in both the TCGA training set, the

GSE65904 validation set, and the GSE91061 immunotherapy

dataset, with no intersection of survival curves among subgroups.

Our model also demonstrates a higher AUC than most previous

studies aimed at developing effective risk classifiers for melanoma.

For instance, in 2022, Song et al. reported a necroptosis-related gene

signature in cutaneous melanoma that achieved a 2-year AUC of

0.700 in the training dataset and 0.634 in the validation dataset (29).

In contrast, TIPRGPI model achieved a 2-year AUC of 0.744 in the

training dataset and 0.668 in the validation dataset. Previously, our

team presented a G protein-coupled receptor-based prediction

model that predicted 1-, 3-, and 5-year overall survival with

AUCs ranging from 0.672 to 0.703 (30). Chuang et al. reported

an AUC of 0.623 on breast cancer outcome prediction (31). In 2023,

a pan-cancer immunotherapy response study built a predictive

model based on endothelial senescence and showed that the

machine learning algorithm “KKNN” had the highest AUC for

response at 0.75 in the anti-PD-1/PD-L1 treated melanoma cohort

(PUCH SKCM, 2021), while in other melanoma immunotherapy

cohorts the AUC decreased to around 0.5, and the AUC for OS was

even lower (32). Generally, the AUC of existing OS prediction

models ranges from 0.6 to 0.7, and our model demonstrates similar

predictive performance compared to the existing models.

Particularly, our TIPRGPI predicts the immunotherapeutic

efficacy of immune checkpoint blockade in GSE91061, with an

AUC of 0.712 for the 3-year survival rate, which is considered

relatively high within existing prognostic models for melanoma.
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Despite the improved AUC for OS of our model compared to

previous models, we emphasize that it still needs improvement. The

model demonstrates strong predictive capability on the training set,

with all AUC values exceeding 0.7. Moreover, on the validation set,

the AUC values for 2 and 3 years are both greater than 0.65,

indicating a certain level of predictive ability. However, further

improvement is still needed in predicting 1-year survival.

Although the recently studies reported better predictive validity of

their models compared to ours, these were studies based on single-cell

sequencing data (32) or imaging data (33), whereas ours was based on

bulk-seq. It is impossible to compare predictive validity between

models based on different types of data. Meanwhile, these recently

emerged technologies are not without flaws. Single-cell sequencing

requires a trade-off between breadth (sequencing more cells) and depth

(sequencing more transcripts per cell) and is subject to experimental

cost pressures (34). Certain studies have introduced models employing

deep learning (DL), a branch primarily applied in image recognition.

Within the realm ofmedical image analysis, the task of label annotation

poses persistent challenges during the development of DL models. The

inherent opacity of DL algorithms often renders their inner workings

inscrutable, colloquially termed as a “black box.” In contrast, our

models are primarily constructed using clustering trees and logistic

regression. This approach ensures a higher level of interpretability and

transparency, avoiding “black box”.

Our study presents several advances over previous literature

(35). Firstly, a series of related marker genes were clearly identified.

Furthermore, the model constructed in this study has significance in

predicting immunotherapy response and screening therapeutic

drug candidates in addition to its prognostic significance.

This study is limited by its bioinformatics approach. Further

research, such as flow cytometry and immunohistochemistry, is

warranted to validate these findings and explore their clinical

implication. Second, to enhance the robustness of our conclusions,

we recommend utilizing an internal cohort that includes gene

expression data, survival data, and immunotherapy response data

to further assess the performance of the TIPRGPI in melanoma. The

findings from this study contribute to our understanding of the

molecular mechanisms underlying melanoma and provide insights

into potential biomarkers and therapeutic targets. The identification

of specific clinical factors, gene modules, and immune markers

associated with TIPRGPI may aid in the development of

personalized treatment strategies for melanoma patients.
Conclusion

In conclusion, melanoma patients with lower TIPRGPI indicate

better prognosis and better immunotherapy response. As the TIPRGPI

increases, infiltration of almost all types of immune cells (21 types

except endothelial cells) decreases, resulting in a poorer prognosis and a

greater likelihood of progression even after immunotherapy. The

analysis of high- and low- TIPRGPI groups provides valuable

information regarding the distribution of clinical factors, gene

modules, and immune markers associated with melanoma.
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SUPPLEMENTARY FIGURE 1

Correlations between TIP score and immune score (A), stromal score (B),
estimate score (C), tumor purity (D), activated CD4/CD8 (E, F) and PD-1/

CTLA-4 (G, H). Tumor purity was negatively correlated with TIP score and the
rest were positively correlated.

SUPPLEMENTARY FIGURE 2

TIP score correlations with TMB and TIDE were all significant but not strong.

SUPPLEMENTARY FIGURE 3

GO and KEGG enrichment analysis. (A) GO enrichment analysis. (B)
KEGG analysis.

SUPPLEMENTARY FIGURE 4

Survival curves for different clinical subgroups of high- and low- TIPRGPI
groups. (A) age <60 years; (B): age ≥60 years; (C) female; (D)male; (E) stage 0/

I/II; (F): stage III/IV.

SUPPLEMENTARY FIGURE 5

Analysis in TIPRGPI scores across clinical factors. (A) age; (B) gender; (C)
stage; (D) T stage; (E) N stage; (F) M stage; (G) primary/metastasis; (H) Clark
level; (I) BMI; (J) Breslow depth; (K): TCGAmolecular staging. (ns: p>0.05; *: p
≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).

SUPPLEMENTARY FIGURE 6

The correlation between the infiltration scores of the 23 different TME cells and

the TIPRGPI score was found to be significantly correlated, except for endothelial
cells, which were negatively correlated with the TIPRGPI score. (adaptive

immunity in red, intrinsic immune cells in green, and stromal cells in blue).

SUPPLEMENTARY FIGURE 7

TIPRGPI cells most relevant to TME. (A) Venn diagram revealing 21 types of

most relevant TME cells contributing to the risk stratification of melanoma

patients by TIPRGPI; (B) The bar graphs show the number of cells in the
differential analysis, correlation analysis and survival analysis.

SUPPLEMENTARY FIGURE 8

Cellular relevance of TIPRGPI constituent genes most relevant to TME. (ns:
p>0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).

SUPPLEMENTARY FIGURE 9

Differences in expression of seven immune-related gene sets (immune cell

recruitment, immune suppression, innate immunity, adaptive immunity,
antigen presentation and processing, cytotoxicity/killing of cancer cells,

inflammation) between high- and low-TIPRGPI groups. There were
significantly different in enrichment in all 7 gene sets (ns: p>0.05; *: p ≤

0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001).

SUPPLEMENTARY FIGURE 10

The total number of differential genes between the high- and low-TIPRGP
groups was 87, and the PPI interaction network constructed using the 87

differential genes, in which the protein PTPRC with the most connections to
other nodes in red at the right center of the figure was used as a core factor.
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