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Autoimmune diseases and their
genetic link to bronchiectasis:
insights from a genetic
correlation and Mendelian
randomization study
Yue Su1†, Youqian Zhang2†, Yanhua Chai1† and Jinfu Xu1*

1Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine,
Tongji University, Shanghai, China, 2Health Science Center, Yangtze University, Jingzhou, Hubei, China
Background: Previous studies have demonstrated that autoimmune diseases are

closely associated with bronchiectasis (BE). However, the causal effects between

autoimmune diseases and BE remain elusive.

Methods: All summary-level data were obtained from large-scale Genome-Wide

Association Studies (GWAS). The univariate Mendelian randomization (UVMR)

was utilized to investigate the genetic causal correlation (rg) of 12 autoimmune

diseases and bronchiectasis, TheMultivariable Mendelian Randomization (MVMR)

method was used to explore the effects of the confounding factors. Further

investigation was conducted to identify potential intermediate factors using

mediation analysis. Finally, the linkage disequilibrium score regression (LDSC)

method was used to identify genetic correlations among complex traits. A series

of sensitivity analyses was performed to validate the robustness of the results.

Results: The LDSC analysis revealed significant genetic correlations between BE and

Crohn’s disease (CD) (rg = 0.220, P = 0.037), rheumatoid arthritis (RA) (rg = 0.210, P =

0.021), and ulcerative colitis (UC) (rg = 0.247, P = 0.023). However, no genetic

correlation was found with other autoimmune diseases (P > 0.05). The results of the

primary IVW analysis suggested that for every SD increase in RA, there was a 10.3%

increase in the incidence of BE (odds ratio [OR] = 1.103, 95% confidence interval [CI]

1.055-1.154, P = 1.75×10-5, FDR = 5.25×10-5). Furthermore, for every standard

deviation (SD) increase in celiac disease (CeD), the incidence of BE reduced by

5.1% (OR = 0.949, 95% CI 0.902-0.999, P = 0.044, FDR = 0.044). We also observed

suggestive evidence corresponding to a 3% increase in BE incidence with T1DM (OR

= 1.033, 95% CI 1.001-1.066, P = 0.042, FDR = 0.063). Furthermore, MVMR analysis

showed that RAwas an independent risk factor for BE, whereasmediatorMR analysis

did not identify any mediating factors. The sensitivity analyses corroborated the

robustness of these findings.

Conclusion: LDSC analysis revealed significant genetic correlations between

several autoimmune diseases and BE, and further MVMR analysis showed that RA

is an independent risk factor for BE.
KEYWORDS

autoimmune diseases, bronchiectasis, rheumatoid arthritis, Mendelian randomization,

Crohn’s disease
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Introduction

Bronchiectasis (BE) is a chronic respiratory disease

characterized by the clinical symptoms of cough, sputum

production, and hemoptysis in the presence of abnormal,

irreversible dilatation of the bronchi that can be diagnosed using

high-resolution chest computed tomography (CT) (1, 2). There has

been a marked increase in the overall prevalence of bronchiectasis

worldwide. In China, the prevalence of bronchiectasis increased

2.31-fold between 2013 and 2017, from 75.48 to 174.45 per 100,000

(3). Moreover, the prevalence of BE in females is higher than in

males and also increases with age (4, 5). Importantly, BE is a

heterogeneous syndrome caused by several underlying factors, such

as pulmonary infections, cystic fibrosis (CF), primary ciliary

dyskinesia (PCD), immunodeficiency disorders, allergic

bronchopulmonary aspergillosis (ABPA), and autoimmune

diseases. Recently, the association between BE and autoimmune

diseases has been well recognized, and available studies have

suggested that the oral, lung, and gut microbiota may affect the

autoimmunity and structural integrity of the airways that contribute

to BE (6). Neel et al. suggested that BE is highly prevalent in anti-

myeloperoxidase (MPO) antineutrophil cytoplasmic autoantibody

(ANCA)-associated vasculitis, and anti-MPO patients with BE have

a higher risk of peripheral neuropathy (7). A systematic review and

meta-analysis by Martin et al. demonstrated that BE may be a

common extra-articular manifestation of rheumatoid arthritis (RA)

(8), and anti-cyclic citrullinated peptide (CCP) antibodies (ACPAs)

are associated with more severe RA-BE. However, the causal effects

between BE and autoimmune diseases remain unclear.

Mendelian Randomization (MR) represents a methodological

approach employing genetic variants as instrumental variables

(IVs) sourced from genome-wide association studies (GWAS) to

evaluate the causal relationship between a risk factor (exposure)

and a resultant outcome (9). Contrary to traditional observational

analyses, MR offers a more accurate estimation of the causal effect

by considerably reducing the impact of confounders (10). The

linkage disequilibrium score (LDSC) regression serves as a tool for

estimating trait heritability, reflecting the percentage of trait

variance ascribed to genetic determinants. Furthermore, LDSC

assesses the genetic correlation between various traits using

GWAS-derived summary statistics (11, 12). The objective of this

research was to explore the plausible causal linkage between BE

and autoimmune disorders.
Materials and methods

Study design

The foundational data for this investigation was retrieved from

publicly available summary-level datasets from GWAS. Univariate

Mendelian Randomization (UVMR), Multivariable Mendelian

Randomization (MVMR), genetic correlation, and colocalization

analyses were used to elucidate the causal interplay between

autoimmune disorders and outcome phenotypes.
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The selection of Instrumental Variables (IVs) for exposure was

grounded in a tripartite criterion: i) the nominated genetic

determinant, earmarked as the instrumental variable, must display

a robust affiliation with the exposure; ii) the genetic determinant must

not be intertwined with any potential confounders; and iii) the

influence of genetic determinants on the outcome is channeled

exclusively through its interaction with the exposure, thus

eliminating the prospect of secondary routes (13). The architectural

blueprint of the MR is illustrated in Figure 1 and Table 1, along with

Supplementary File 1, which provides a comprehensive exposition of

the summary statistics data repositories.

It is imperative to note that all encompassed GWAS investigation

procured endorsements from the relevant academic oversight

committees. Given that our study was based on a secondary

analysis of publicly disclosed datasets, further ethical vetting was

not required.

In order to preserve the integrity of our Mendelian Randomization

approximations, the chosen Single Nucleotide Polymorphisms (SNPs)

were obligated to align with the ensuing benchmarks:
Genetic instrument selection
(1) Each of the SNPs selected as IVs established a notable

resonance with stipulated exposure at a genome-wide

significance threshold (p< 5×10-8).

(2) Rigorous scrutiny ensured that the SNPs did not have

associations with possible confounders nor shared

interdependence, thereby mitigating biases originating

from linkage disequilibrium (r2 < 0.001, clumping

distance = 10,000 kb).
Genetic instrument validation
(3) We used F-statistics (where F = beta²/se², with beta

symbolizing the SNP-exposure nexus and variance

denoted by se) to assess the potency of the instrumental

variables (14). An elevated F-statistic indicates pronounced

instrumental vigor. Consequently, it was essential that all

integrated SNPs exhibit an F-statistic transcending 10.

(4) We used the MR-Steiger filtration method to enhance the

reliability of our conclusions, thereby ruling out variables

that are more related to the outcomes than exposures (15).

(5) In the event of an SNP’s absence from the outcome database,

we used the SNiPa digital repository (accessible at http://

snipa.helmholtz-muenchen.de/snipa3/) to locate a particular

SNP. This platform used genotype data from a European

cohort obtained from the 1000 Genomes Project Phase 3.

Therefore, a surrogate SNP, reflecting linkage disequilibrium

(r2 > 0.8) with the primary SNP was identified.

(6) The SNP’s footprint on exposure juxtaposed with its impact

on the outcome must mirror the identical allele. An SNP

found to be discordant in this regard was invariably excised.
frontiersin.org
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TABLE 1 Detailed information of data sources.

Explore or Outcome Ref Consortium Ancestry Participants

Phenotypes

CD 28067908 de Lange KM et al European 12,194 cases and 28,072 controls

CeD 22057235 Trynka et al European 12,041 cases and 12,228 controls

MS 24076602 IMSGC European 14,498 cases and 24,091 controls

RA 33310728 Ha E et al European 14,361 cases and 43,923 controls

SLE 26502338 Bentham J et al European 5,201 cases and 9,066 controls

UC 28067908 de Lange KM et al European 12,366 cases and 33,609 controls

T1D 32005708 Forgetta V et al European 9,266 cases and 15,574 controls

PsO 23143594 Tsoi LC et al European 10,588 cases and 22,806 controls

PSC 27992413 IPSCSG European 2,871 cases and 12,019 controls

PBC 34033851 Cordell HJ et al European 8,021 cases and 16,489 controls

AS 23749187 Cortes A et al European 9,069 cases and 1,550 controls

ViT 27723757 Jin Y et al European 2,853 cases and 37,405 controls

BE 36653562 FinnGen Consortium European 2,188 cases and 311,286 controls

Adjustment of the model

LDL-C 24097068 GLGC 96% European 173,082 individuals

HDL-C 24097068 GLGC 96% European 187,167 individuals

(Continued)
F
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FIGURE 1

Overview of research design and analysis strategy. Overview of the research design. The MR framework is based on three fundamental MR
assumptions, with MVMR analyses adjusting for six mediating factors for positive results. MR, Mendelian Randomization; MVMR: Multivariate
Mendelian Randomization; UVMR, Univariate Mendelian Randomization; BMI, Body Mass Index; SNP, Single Nucleotide Polymorphism; MR- PRESSO,
MR Pleiotropy Residual Sum and Outlier; LDL-C, Low Density Lipoprotein Cholesterol; HDL-C, High Density Lipoprotein Cholesterol; TG,
Triglyceride; 25OHD, 25-hydroxyvitamin D; CD, Crohn's disease; CeD, Celiac disease; MS, Multiple sclerosis; RA, Rheumatoid arthritis; SLE, Systemic
lupus erythematosus; UC, Ulcerative colitis; TID, Type 1 diabetes; PsO, Psoriasis; PSC, Primary sclerosing cholangitis; PBC, Primary biliary cirrhosis;
AS, Ankylosing spondylitis; VIT, Vitiligo; BE, Bronchiectasis; LDSC, linkage disequilibrium score regression.
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Source of exposure and
outcome phenotypes

For autoimmune diseases, all from large abstract-level GWAS

studies, ulcerative colitis (UC) and Crohn’s disease (CD) from de

Lange KM et al. (16), celiac disease (CeD) from Trynka et al. (17),

multiple sclerosis (MS) from International Multiple Sclerosis

Genetics Consortium (IMSGC) (18), RA from Ha E et al. (19),

systemic lupus erythematosus (SLE) from Bentham J et al. (20), type 1

diabetes (T1D) from Forgetta V et al. (21), psoriasis (PsO) from Tsoi

LC et al. (22), primary sclerosing cholangitis (PSC) from

International PSC Study Group (IPSCSG) (23), primary biliary

cirrhosis (PBC) from Cordell HJ et al. (24), ankylosing spondylitis

(AS) from Cortes A et al. (25), vitiligo (ViT) from Jin Y et al. (26), and

for the outcome phenotype BE from FinnGen (R9) Consortium (27).
Data sources for possible mediators

We further obtained genetic associations for Body Mass Index

(BMI) from the Genetic Investigation of Anthropometric Traits

(GIANT) consortium (28), smoking from GWAS and Sequencing

Consortium of Alcohol and Nicotine use (GSCAN) (29),

triglycerides (TG), Low Density Lipoprotein Cholesterol (LDL-C)

and High Density Lipoprotein Cholesterol (HDL-C) from Global

Lipids Genetics Consortium (GLGC) (30), 25-hydroxyvitamin D

(25OHD) levels from Manousaki D et al. (31).
Statistical analyses

Primary MR analysis

For the UVMR study, the Wald ratio test was used for exposure

with only one instrument, and the multiplicative random-effects

inverse-variance-weight (IVW) method was implemented for the

causative assessment of multiple IVs (comprising two or more). This

approach was further enhanced by incorporating both the MR-Egger

and weight median techniques. The weightage in IVW is directly

related to each SNP’s Wald ratio estimate and inversely correlated
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with the variance estimate of each SNP’s Wald ratio (32). When all

genetic markers are judged valid, IVW provides estimates that are

both consistent and efficient. Conversely, the weight median method

stands out when over half of the genetic markers are deemed

questionable, and the MR-Egger approach is adopted when all

genetic markers are refutable (33). Stringent adjustment for

multiple comparisons was performed using the False Discovery

Rate (FDR). Following this adjustment, a P-value < 0.05 was

considered indicative of a significant causal relationship. However,

instances where the raw P-value was below 0.05, but the FDR-

adjusted P-value exceeded this threshold were regarded as tentative.

Given the potential confounding effects of factors, such as BMI,

smoking habits, lipid profiles (LDL-C, HDL-C, and TG), and 25OHD

levels on the progression from exposure to outcome, subsequent

MVMR analyses were performed. This study aimed to accurately

quantify the direct causative effects of exposure on the results. When

juxtaposed with the UVMR paradigm, the primary supposition of

MVMR focus on genetic variability associated with one or more

exposures, whereas the succeeding assumptions harmonize with the

UVMR framework (34). A refined investigation was undertaken to

ascertain the magnitude of mediation by certain factors. The initial

step was to obtain the MR effect projections for exposure in relation

to the outcome phenotypes using the IVW approach. Thereafter,

multivariate MR analysis was performed to ascertain the impact of

nine mediating factors on the outcome while concurrently

considering exposure attributes. The indirect influence of the

exposure was determined by multiplying the resulting estimates for

each outcome. Finally, the division of the mediation effect by the

overarching effect provided insight into the relative contribution of

the mediators to the overall outcome.
Genetic correlation analysis

The LDSC regression, specifically tailored for GWAS summary

data, serves as a robust approach for dissecting genetic correlations

across complex diseases and traits. Notably, LDSC efficiently

differentiates genuine polygenic signals from potential

confounders such as cryptic relatedness and population

stratification (35). A consequential genetic correlation, both
TABLE 1 Continued

Explore or Outcome Ref Consortium Ancestry Participants

Adjustment of the model

TG 24097068 GLGC 96% European 177,861 individuals

25OHD levels 32059762 Manousaki D et al. European 441,291 individuals

Smoking 30643251 GSCAN European 1,200,000 individuals

BMI 30239722 GIANT European 694,649 individuals
BMI, body mass index; GWAS and Sequencing Consortium of Alcohol and Nicotine use; GIANT: Genetic Investigation of Anthropometric Traits; CD, Crohn's disease; CeD, Celiac disease; MS,
Multiple sclerosis; RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; UC, Ulcerative colitis; T1D, Type 1 diabetes; PsO, Psoriasis; PSC, Primary sclerosing cholangitis; PBC, Primary
biliary cirrhosis; AS, Ankylosing spondylitis; ViT, Vitiligo; BE, Bronchiectasis; LDL-C, Low Density Lipoprotein Cholesterol; HDL-C, High Density Lipoprotein Cholesterol; TG, Triglyceride;
25OHD, 25-hydroxyvitamin D; GLGC, Global Lipids Genetics Consortium; IMSGC, International Multiple Sclerosis Genetics Consortium; IPSCSG, International PSC Study Group; Ref,
reference (PUBMED ID).
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statistically and quantitatively robust, signifies that an overarching

phenotypic correlation is not merely attributable to environmental

confounders (35). The LDSC tool, accessible at (https://github.com/

bulik/ldsc), was used to scrutinize the genetic intersections between

exposure and an array of outcome phenotypes.
Sensitivity analysis

Within the framework of UVMR analysis, several tests were

conducted to validate its rigor and authenticity. The heterogeneity

of the selected genetic variants was assessed using Cochran’s Q test,

wherein a P-value of < 0.05 indicated pronounced discrepancies

among the scrutinized SNPs (36). Employing the MR-Egger

regression (37), this investigation discerned the potential for

directional pleiotropy within the MR context. MR-Egger’s

intercept, with a P-value < 0.05, signified the presence of

consequential directional pleiotropy despite the inherent

limitations of this methodology (38). The MR Pleiotropy Residual

Sum and Outlier (MR-PRESSO) approach was used to identify

probable outliers and delve into horizontal pleiotropy, which was

inferred when the global p-value was less than 0.05 (39). By

excluding such outliers, the data correction was refined. An

ensuing leave-one-out analysis elucidated the impact of singular

SNPs on collective outcomes (40).

R2 was calculated using the formula 2×MAF×(1-MAF) ×beta2,

where MAF denotes the minor allele frequency for each designated

SNP. The cumulative values provided a coefficient essential for

power computation (41). The determination of statistical potency

was anchored on the mRnd platform (42) and is accessible at

https://shiny.cnsgenomics.com/mRnd/.
Results

Genetic instrument selection and genetic
correlation between phenotypes

The SNPs of each autoimmune disease were screened according

to the genetic instrument selection process described above. Power

calculations for bidirectional univariable MR analyses between

autoimmune diseases including CD, CeD, MS, RA, SLE, UC, T1D,

PsO, PSC, PBC, AS, ViT and BE, were performed. The study reported

F- statistics exceeding 60 for all instrumental variants, signifying a

robust reduction in bias fromweak instruments. The SNPs selected as

IVs ranged from 15 to 83, accounting for an explained variance of

2.59% to 1535.64% (Supplementary Table 1).

LDSC genetic correlation analyses were conducted to estimate

the genetic correlation between different autoimmune diseases and

BE. LDSC analysis revealed significant genetic correlations between

BE and CD (rg = 0.220, P = 0.037), RA (rg = 0.210, P = 0.021), and

UC (rg = 0.247, P = 0.023) (Supplementary Table 2). However, no
Frontiers in Immunology 05
genetic correlation was found with other autoimmune diseases (P >

0.05). The SNP-based liability-scale heritability (h²) ranged from

0.1% to 232.99%. Additionally, the genetic correlation between each

autoimmune disease and BE was analyzed (Figure 2;

Supplementary Table 3).
Association of genetically predicted
autoimmune diseases with BE

A scatter plot illustrates the causal relationship between each

autoimmune disease and BE (Supplementary Figure 1). After

adjusting for multiple comparisons, the primary IVW analysis

provided strong evidence for two causal relationships (Figure 3).

Specifically, for each standard deviation (SD) increase in genetically

predicted RA, there was a 10.3% increase in the incidence of

BE (odds ration [OR] = 1.103, 95% CI 1.055-1.154, P = 1.75×10-5,

FDR = 5.25×10-5). Furthermore, for every SD increase in CeD, the

incidence of BE was reduced by 5.1% (OR = 0.949, 95% CI 0.902-

0.999, P = 0.044, FDR = 0.044). We also observed suggestive

evidence corresponding to a 3% increase in BE incidence with

T1DM (OR = 1.033, 95% CI 1.001-1.066, P = 0.042, FDR = 0.063).

Additionally, we had 96%, 100%, and 92% statistical power to detect

the associations of CeD, RA, and T1D with BE, with OR values of

1.103, 0.949, and 1.033, respectively (Supplementary Table 1). No

other causal relationship evidence was found (P > 0.05, FDR > 0.05)

(Table 2). Furthermore, MVMR analysis showed that RA was an

independent risk factor for BE, whereas mediator MR analysis did

not identify any mediating factors (Figure 4).

To avoid excessive bias effects, Cochran’s Q test was performed

to analyze the sensitivity of the MR results, and no evidence of

heterogeneity was observed (P>0.05). Moreover, no horizontal

pleiotropy was identified using the MR-Egger intercept test

(P>0.05) or the MR-PRESSO global test (P>0.05). These analyses

confirmed the robustness of the findings (Table 3). Leave-one-out

analysis did not reveal any horizontal pleiotropy and further

confirmed that the causal relationship was not influenced by any

individual SNP (Supplementary File 1).
Discussion

In this study, we performed a comprehensive MR analysis to

investigate the relationship between autoimmune diseases and BE.

The results of LDSC analysis revealed significant genetic

correlations between BE and CD, RA, and UC. However, beyond

the aforementioned genetic correlations, no other genetic

correlations were observed. Moreover, our objective in utilizing

the MR analysis was to mitigate bias and confounding factors and

identify causal associations. Interestingly, we found suggestive

evidence of an association between T1D and BE. The MVMR

analysis substantiated RA as an independent risk factor for BE,

whereas the mediation MR analysis did not reveal any mediating

model. While observational studies have inherent limitations, such
frontiersin.org
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as potential confounders and ambiguous causality, our MR

approach aimed to mitigate these biases, providing clarity to

these associations.

BE is characterized by damaged and dilated bronchi and is one

of the most common pulmonary manifestations in patients with RA

(43). Persistent pulmonary inflammation can inflict irreversible

damage to the bronchi, culminating in BE (44). This notion is

further supported by Lake et al., who suggested that pulmonary

nodules, pleurisy, and air trapping in patients with RAmight elevate
Frontiers in Immunology 06
the risk of anomalous pulmonary dilation (45). Additionally, Jin

et al. found that the systemic inflammatory milieu in patients with

RA might increase their susceptibility to other inflammatory

disorders (46). Such inflammation can impair the bronchial walls,

leading to BE. Moreover, Quirke et al. demonstrated that BE is a

potent model for the initiation of autoimmunity in RA via bacterial

infection of the lungs (47). CeD pathophysiologically correlates

with autoimmune damage to the small intestine (48). This

autoimmune response can potentially affect the lungs, wherein
FIGURE 3

Summary of IVW results for the main UVMR analysis methods. IVW, Inverse variance weight; UVMR, Univariate Mendelian Randomization; SNP, Single
Nucleotide Polymorphism; FDR, False Discovery Rate; OR, odds ratio; CI, confidence interval; CD, Crohn's disease; CeD, Celiac disease; MS, Multiple
sclerosis; RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; UC, Ulcerative colitis; T1D, Type 1 diabetes; PsO, Psoriasis; PSC, Primary
sclerosing cholangitis; PBC, Primary biliary cirrhosis; AS, Ankylosing spondylitis; ViT, Vitiligo.
FIGURE 2

Summary of genetic correlation results. *: represents the presence of genetic correlation, P<0.05. LDSC, linkage disequilibrium score; CD, Crohn's
disease; CeD, Celiac disease; MS, Multiple sclerosis; RA, Rheumatoid arthritis; SLE, Systemic lupus erythematosus; UC, Ulcerative colitis; TID, Type 1
diabetes; PsO, Psoriasis; PSC, Primary sclerosing cholangitis; PBC, Primary biliary cirrhosis; AS, Ankylosing spondylitis; ViT, Vitiligo; BE, Bronchiectasis.
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TABLE 2 Summary of UVMR analysis results.

Celiac disease (CeD)

or_lci95 or_uci95 beta P-value FDR

0.902 0.999 -0.052 0.044 0.044

0.852 0.987 -0.087 0.039 0.044

0.882 0.987 -0.069 0.015 0.044

Systemic lupus erythematosus (SLE)

or_lci95 or_uci95 beta P-value FDR

0.974 1.046 0.009 0.618 0.618

0.884 1.031 -0.047 0.242 0.5055

0.973 1.084 0.027 0.337 0.5055

Psoriasis (PsO)

or_lci95 or_uci95 beta P-value FDR

0.984 1.010 -0.003 0.630 0.63

0.975 1.008 -0.009 0.312 0.468

0.973 1.005 -0.011 0.182 0.468

Ankylosing spondylitis (AS)

or_lci95 or_uci95 beta P-value FDR

0.783 1.371 0.035 0.805 0.835

0.783 2.026 0.231 0.352 0.835

0.715 1.515 0.040 0.835 0.835

Ulcerative colitis (UC)

or_lci95 or_uci95 beta P-value FDR

0.967 1.091 0.027 0.383 0.648

0.872 1.246 0.042 0.648 0.648

0.942 1.126 0.029 0.516 0.648

Vitiligo (ViT)

or_lci95 or_uci95 beta P-value FDR

0.964 1.070 0.016 0.555 0.8325

(Continued)
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Methods SNPs
Crohn's disease (CD)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 76 0.991 0.941 1.043 -0.009 0.728 0.728 15 0.949

MR Egger 76 0.939 0.819 1.078 -0.063 0.375 0.5625 15 0.917

Weight median 76 0.956 0.886 1.031 -0.045 0.238 0.5625 15 0.933

Methods SNPs
Rheumatoid arthritis (RA)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 83 1.103 1.055 1.154 0.098 1.75E-05 5.25E-05 40 1.009

MR Egger 83 1.098 1.026 1.175 0.094 0.008 1.20E-02 40 0.954

Weight median 83 1.087 1.012 1.167 0.083 0.022 2.20E-02 40 1.027

Methods SNPs
Type 1 diabetes (T1D)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 38 1.033 1.001 1.066 0.033 0.042 0.063 61 0.997

MR Egger 38 1.071 1.021 1.122 0.068 0.007 0.021 61 0.991

Weight median 38 1.035 0.990 1.082 0.034 0.131 0.131 61 0.989

Methods SNPs
Primary biliary cirrhosis (PBC)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 34 1.027 0.977 1.081 0.027 0.293 0.4395 24 1.036

MR Egger 34 1.051 0.915 1.208 0.050 0.484 0.484 24 1.259

Weight median 34 1.080 1.004 1.163 0.077 0.040 0.12 24 1.041

Methods SNPs
Multiple sclerosis (MS)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 48 0.966 0.906 1.029 -0.035 0.281 0.281 56 1.027

MR Egger 48 0.886 0.780 1.007 -0.121 0.070 0.105 56 1.043

Weight median 48 0.912 0.829 1.004 -0.092 0.059 0.105 56 1.030

Methods SNPs
Primary sclerosing cholangitis (PSC)

SNPs
OR or_lci95 or_uci95 beta P-value FDR OR

Inverse variance weight 17 0.967 0.903 1.034 -0.034 0.325 0.364 35 1.016
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damage to the intestine may precipitate the migration of

inflammatory cells to the lungs, causing bronchitis. Dellaripa

et al. also drew attention to dysregulated immune responses,

suggesting that lungs are potential targets for autoimmune

diseases (49). The primary hallmark of T1D is hyperglycemia,

which stems from an immune attack on pancreatic b-cells.
Barrett et al. suggested that microvascular damage correlated with

T1DM might compromise the airway blood supply, contributing to

BE (50). Lewis et al. have found that cystic fibrosis-associated

diabetes (CFRD) often leads to poorer clinical outcomes in

patients with CF including increased in pulmonary exacerbations,

poorer lung function, and early mortality (51).

Emerging research has probed possible shared genetic pathways

between autoimmune diseases and BE. Juge et al. have identified

shared genetic susceptibilities between RA and respiratory ailments

(52). Moreover, both CeD and T1D have been linked to gut

microbiota dysbiosis (53, 54). An MR study by Huang et al.

delineated a causal relationship between the gut microbiome and

pulmonary diseases (55), hinting at the potential influence of the

gut microbiota on pulmonary health and the predisposition to BE.

Finally, as discussed by Litman et al., certain medications for

autoimmune diseases may inadvertently exacerbate or induce

pulmonary conditions (56).

The differences in the results between the MR and LDSCmay be

attributed to their distinct methodologies. MR relies on the use of

genetic variants as instruments to infer causality, which assumes

that these genetic variants affect the outcome solely through their

impact on the exposure of interest and are not influenced by

unmeasured confounding factors. Differently, LDSC focuses on

quantifying genetic similarities between phenotypes and diseases.

A significant genetic correlation detected by LDSC indicated shared

genetic variations across multiple loci between the phenotypes.

However, it is important to note that LDSC does not necessarily

imply a causal relationship. In light of our findings, it is evident that

there may be a causal relationship between BE and RA, and direct

genetic correlations were detected using LDSC.

Our study has several strengths. First, our MR approach

holistically analyzed the causative relationships between

autoimmune diseases and BE. Second, the unique identification of

SNPs as IVs in the European population minimized potential

population stratification biases. Third, we employed rigorous

methods with an F-statistic exceeding 10, reducing the biases

from weak instruments. Fourth, we evaluated the confounding

influence of the MVMR. Fifth, we relied on myriad sensitivity

analyses based on statistical models and ‘leave-one-out’ techniques

to enhance the reliability of the results. However, this study has

several limitations. First, because of the lack of IVs achieving

genome-wide significance for the outcomes, reverse causation

inference was unfeasible. Second, summary-level GWAS data

precluded subgroup analyses of autoimmune diseases and BE.

Third, the sequencing and analysis methods for each autoimmune

disease and BE may differ, contributing to the distinct results.

Lastly, due to the summary-level GWAS data, the demographic

data of the studies are absent, and further subgroup analysis of

confounding factors, such as age and gender on autoimmune

diseases and BE remains unknown.
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Conclusion
LDSC analysis suggested significant genetic correlations

between several autoimmune diseases and BE, and further

MVMR analysis showed that RA was an independent risk factor

for BE. These results provide genetic evidence for further

mechanistic and clinical studies aimed at understanding the

association between BE and autoimmune diseases.
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FIGURE 4

Summary of MVMR results. Estimating the impact of all positive exposure factors on the outcome through potential mediators. MVMR, Multivariate
Mendelian Randomization; BMI, body mass index; OR, odds ratio; CI, confidence interval; LDL-C, Low Density Lipoprotein Cholesterol; HDL-C, High
Density Lipoprotein Cholesterol; TG, Triglyceride; 250HD, 25-hydroxyvitamin D; CeD, Celiac disease; RA, Rheumatoid arthritis.
TABLE 3 Summary of sensitivity results.

Exposure Outcome
MR-Egger intercept MR-PRESSO global test Cochrane’s Q Steiger_test

Intercept SE Pval RSSobs P-value Outlier Q Q_df Q_pval Direction Pval Filtered SNPs

CD

BE

0.009 0.011 0.414 84.328 0.300 NA 81.699 75 0.279 TRUE 0 NA

CeD 0.020 0.016 0.238 20.231 0.257 NA 17.773 14 0.217 TRUE 0 NA

MS 0.016 0.011 0.136 45.697 0.630 NA 42.816 47 0.646 TRUE 0 NA

RA 0.001 0.006 0.858 84.445 0.484 NA 82.900 82 0.451 TRUE 0 NA

SLE 0.022 0.014 0.118 37.818 0.551 NA 35.118 39 0.648 TRUE 0 NA

UC -0.001 0.014 0.966 48.172 0.657 NA 46.698 55 0.780 TRUE 0 NA

T1D -0.020 0.010 0.054 31.404 0.811 NA 29.506 37 0.805 TRUE 0 NA

PsO 0.012 0.012 0.309 80.749 0.061 rs73695700 78.790 60 0.052 TRUE 0 NA

PSC 0.040 0.020 0.064 27.022 0.113 NA 22.246 16 0.135 TRUE 0 NA

PBC -0.006 0.018 0.729 42.556 0.190 NA 38.110 33 0.248 TRUE 0 NA

AS -0.013 0.013 0.330 28.893 0.331 NA 26.232 23 0.290 TRUE 0 NA

ViT -0.031 0.024 0.207 41.969 0.251 rs28688825 39.443 34 0.240 TRUE 0 NA
All results are after removing outliers and re-running the MR analysis. CD, Crohn's disease; CeD, Celiac disease; MS, Multiple sclerosis; RA, Rheumatoid arthritis; SLE, Systemic lupus
erythematosus; UC, Ulcerative colitis; T1D, Type 1 diabetes; PsO, Psoriasis; PSC, Primary sclerosing cholangitis; PBC, Primary biliary cirrhosis; AS, Ankylosing spondylitis; ViT, Vitiligo; BE,
Bronchiectasis; SNP, Single Nucleotide Polymorphisms.
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