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Early allogeneic immune
modulation after establishment
of donor hematopoietic cell-
induced mixed chimerism in a
nonhuman primate kidney
transplant model
Christopher J. Little1,2†, Steven C. Kim3†, John H. Fechner1,
Jen Post1‡, Jennifer Coonen4, Peter Chlebeck1, Max Winslow1,
Dennis Kobuzi1, Samuel Strober5‡ and Dixon B. Kaufman1*

1Department of Surgery, University of Wisconsin School of Medicine & Public Health, Madison,
WI, United States, 2Department of Surgery, University of Washington School of Medicine, Seattle,
WA, United States, 3Department of Surgery, Emory University School of Medicine, Atlanta, GA, United
States, 4Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United
States, 5Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
Background: Mixed lymphohematopoietic chimerism is a proven strategy for

achieving operational transplant tolerance, though the underlying immunologic

mechanisms are incompletely understood.

Methods: A post-transplant, non-myeloablative, tomotherapy-based total

lymphoid (TLI) irradiation protocol combined with anti-thymocyte globulin and

T cell co-stimulatory blockade (belatacept) induction was applied to a 3-5 MHC

antigen mismatched rhesus macaque kidney and hematopoietic cell transplant

model. Mechanistic investigations of early (60 days post-transplant) allogeneic

immune modulation induced by mixed chimerism were conducted.

Results: Chimeric animals demonstrated expansion of circulating and graft-

infiltrating CD4+CD25+Foxp3+ regulatory T cells (Tregs), as well as increased

differentiation of allo-protective CD8+ T cell phenotypes compared to naïve and

non-chimeric animals. In vitro mixed lymphocyte reaction (MLR) responses and

donor-specific antibody production were suppressed in animals with mixed

chimerism. PD-1 upregulation was observed among CD8+ T effector memory

(CD28-CD95+) subsets in chimeric hosts only. PD-1 blockade in donor-specific

functional assays augmented MLR and cytotoxic responses and was associated

with increased intracellular granzyme B and extracellular IFN-g production.
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Conclusions: These studies demonstrated that donor immune cell engraftment

was associated with early immunomodulation via mechanisms of homeostatic

expansion of Tregs and early PD-1 upregulation among CD8+ T effector memory

cells. These responses may contribute to TLI-based mixed chimerism-induced

allogenic tolerance.
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Introduction

Allogeneic immunoreactivity is a major barrier to the long-term

survival of donor grafts following solid organ transplantation. The

best therapeutic regimens of systemic immunosuppression make

transplantation possible by effectively diminishing host allo-

immune responses; however, there is cost, morbidity, and

mortality associated with these medications. Induction of donor-

specific tolerance, a state of allogenic immune unresponsiveness,

obviates the need for lifelong immunosuppression (IS) and its

adverse effects, representing the ideal post-transplant state.

Establishing mixed lymphohematopoietic chimerism that is

comprised of recipient- and donor-derived cellular immune elements

has emerged as a proven strategy for the induction of allograft

tolerance (1–16). A novel tolerance induction protocol developed at

Stanford University involving a post-transplant, non-myeloablative,

total lymphoid irradiation (TLI) and anti-thymocyte globulin (ATG)

conditioning regimen has been reported to achieve engraftment of

donor hematopoietic cells (HCs). This protocol has been successful in

human clinical trials of combined kidney and HC transplantation

between HLA-identical pairs (2–4). We have previously shown that

this protocol, modified to utilize helical Tomotherapy-based TLI
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(TomoTLI), is capable of achieving transient mixed chimerism-based

operational tolerance between more disparate major histocompatibility

complex (MHC) donor-recipient pairs in a 1-haplotype matched

rhesus macaque model, permitting complete withdrawal of IS with

>4 years of graft survival (17).

Unlike a strategy of total chimerism, transient mixed chimerism,

mitigates the risk of graft-versus-host disease (GVHD), highlighting an

important safety feature of this tolerance induction strategy. The

Stanford human protocol requires stable mixed chimerism to

prevent rejection after IS withdrawal; however, several tolerance

induction studies have demonstrated the sufficiency of transient

mixed chimerism for IS-free survival of renal allografts (2, 11–13).

This distinction is driven by the development of complex multifactorial

peripheral mechanisms of donor-specific immunomodulation,

including induction of T cell anergy and exhaustion, expansion of

regulatory T cells (Tregs), and peripheral differentiation of allo-

protective T cell phenotypes (18, 19). However, despite an important

body of research exploring these mechanisms, the underpinnings of

allogenic tolerance induction during the establishment of mixed

chimerism remain incompletely understood. Further, the necessary

level and duration of chimerism to induce these immunologic changes

has yet to be elucidated.

We have previously demonstrated in a 1-haplo-matched rhesus

macaque model that a post-transplant, non-myeloablative, TomoTLI-

based conditioning regimen followed by donor HC infusions can

induce transient mixed chimerism and subsequent allogenic

tolerance (17). Given these promising findings, we applied the

foundations of this previously reported conditioning protocol to a 3-

5 antigen mismatched rhesus kidney transplant tolerance induction

model, with protocol modifications to mitigate the development of

early DSA (20–23). Specifically, belatacept, a costimulation blockade

agent targeted against the CD28-B7 pathway was added to the

treatment regimen, as well as an extended steroid taper to reduce the

incidence of engraftment syndrome, a major barrier to kidney survival

among previous 1-haplotype recipients (24–27). This report provides

important mechanistic insights into the early immunologic effects of

low-level, transient mixed chimerism induction using non-

myeloablative TomoTLI-based conditioning.
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Materials and methods

Animal characterization, typing, and
determination of donor-recipient pairs

Rhesus macaques were obtained from the National Institute of

Allergy and Infectious disease colony maintained by Alpha Genesis

Inc. (Yemassee, SC) as previously described (17, 28). All animals

were treated in accordance with the 8th edition of the Guide for the

Care and Use of Laboratory Animals published by the National

Research Council. All procedures and protocols were approved by

the University of Wisconsin-Madison Institutional Animal Care

and Use Committee.

At the time of transplant, animals were 5.3-12.2 kg and 4.5-5.1-

years-old. Both males and females were used as donor and

recipients. MHC Class I and Class II typing were performed by

the Wisconsin National Primate Research Center (WNPRC) and its

Genetics Service Unit as previous described (17, 29, 30). Donor and

recipient pairs were selected based on MHC haplotyping results to

arrange for maximal MHC antigen disparity.
Post-transplant mixed chimerism-based
tolerance induction protocol

A post-transplant, TomoTLI and ATG conditioning regimen

was applied to a rhesus macaque kidney transplant tolerance model

as previously described (17, 28). Prior to conditioning, recipient

macaques underwent solitary allogenic kidney transplantation (day

0) and bilateral native nephrectomies (submitted to pathology).

Induction therapy was initiated on day 0 with five consecutive daily

doses of 4mg/kg rhesus-specific ATG (NIH Nonhuman Primate

Reagent Resource, Boston, MA) as previously described (17, 28).

Belatacept 10mg/kg (Bristol-Myers Squibb, Princeton, NJ) was

infused on days 11, 14, and 18.

TomoTLI was delivered as previously reported (17, 28). Briefly,

starting on day 1, ten fractions of TLI (1.2 gray/fraction) were

delivered by image-guided, intensity modulated helical

tomotherapy (TomoTherapy Hi-Art II, Accuracy Inc, Sunnyvale,

CA) to total a cumulative dose of 12 gray (Gy). The total lymphoid

target included the inguinal, iliac, sublumbar, para-aortic, axillary

and mandibular lymph nodes, as well as the spleen and anterior

mediastinal/thymic tissues. Offline adaptive planning was used to

account for changes in body weight or composition during

radiation delivery.

Donor-derived bone marrow (BM) infusion was performed on

day 15. Donor animals received three daily doses of granulocyte

colony-stimulating factor (G-CSF) (100mcg/kg) prior to collection.

Deceased donor BM procurement occurred after confirmation of

donor death by the veterinary team. Bilateral femurs and humeri

were explanted, segmented, and flushed with heparinized saline to

collect the marrow compartment. The BM was filtered through a

100-micron strainer to isolate the cellular component. Flow

cytometry was performed on a small aliquot to determine the

CD34+ and l ineage - commi t t ed compos i t i on o f the

infusion product.
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General anesthesia was utilized for all operative procedures and

delivery of TomoTLI. Induction and maintenance of anesthesia, as well

as endotracheal intubation and ventilator management, was performed

by trained members of the WNPRC veterinarian team. Animals were

sedated with ketamine (5-15mg/kg IM) andmidazolam (0.2mg/kg IM)

prior to intubation. Anesthesia was thenmaintained with isoflurane gas

(0.5-3%) or serial doses of ketamine (5-15mg/kg IM) and

dexmedetomidine (0.015mg/kg IM) and was reserved with

atipamezole (0.015mg/kg IM). Port placement was performed under

moderate sedation with meloxicam (0.2mg/kg SQ) and buprenorphine

(0.01-0.03 mg/kg IM). Euthanasia was performed humanely by first

sedating the animal with ketamine (>15mg/kg IM) followed by

administration of sodium pentobarbital (>50mg/kg IV).
Maintenance immunosuppression

Maintenance IS consisted of a prednisone taper (2mg/kg/day

tapered over 84 days) and mycophenolate mofetil (MMF) 15mg/kg

per mouth daily as well as tacrolimus intramuscularly (IM) BID and

sirolimus IM daily, with levels monitored 1-2 times per week to

maintain trough levels of 8-10ng/mL and 2-4ng/mL, respectively. At

day 90, MMF was scheduled to be tapered by 25% every two weeks

for discontinuation on day 132. Sirolimus was to be eliminated on day

132. Tacrolimus taper was to begin two weeks after MMF/sirolimus-

cessation by reducing the trough target by 25% per month until

discontinuation on day 224. All recipients received a course of

prophylactic antibiotics as previously reported (17, 28).
Experimental reagents and design

All in vitro reagents were obtained from the NIH Nonhuman

Primate Reagent Resource or were available from commercial

biotechnology companies. Information regarding antibody panels,

clones and reagent manufacturers is available in Supplementary

Table 1. Antibody stains were used at the manufacturer’s

recommended concentration. All flow cytometric data was

acquired on a BD LSR II flow cytometer instrument and analyzed

using FlowJo Software (Ashland, OR).
Chimerism testing, T cell
immunophenotyping, and
histology analysis

All transplant pairs were mismatched for at least one MHC

Class I allele, such that recipients were Mamu-A*01 negative and

donors were Mamu-A*01 positive to allow for flow cytometric

analysis of lineage-specific peripheral chimerism utilizing an anti-

Mamu-A*01 antibody. Whole blood was collected weekly following

donor cell infusion and stained for Mamu-A*01, as well as common

leukocyte surface markers.

Peripheral blood mononuclear cells (PBMC) were isolated from

recipients prior to transplant, as well as at monthly time points
frontiersin.org
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following donor cell infusion. Spleen, lymph nodes, and kidney

allograft were recovered and processed for lymphocytes at the time

of necropsy. Surface and intracellular staining were performed with

antibodies against T cell phenotypic markers.

Allograft tissue was fixed in formalin and sectioned by

pathology for hematoxylin and eosin, periodic acid-Schiff,

trichrome, and C4d staining. Analysis was performed and

reported by experienced renal pathologists with expertise in

transplant allograft histology.
Functional in vitro assays

Allogenic mixed lymphocyte reactions (MLRs) were performed

using fresh PBMC collected from recipients prior to transplant and

between post-infusion day (PID) 30-60, which were stimulated with

donor leukocytes (thawed from cryopreservation). Negative,

autologous controls were set up against leukocytes derived from

the recipient. Responder cells were labeled with Cell Trace Violet

(CTV), while stimulators were separately labeled with Cell Trace

Far Red (CTFR). Stimulators were irradiated (20 Gy) prior to

plating. A 4-day co-culture was set up using 2.0x105 responders

plated with 2.0x105 irradiated stimulators in growth media (RPMI

media supplemented with 10% fetal bovine serum) at 37°C.

Annexin V cytotoxicity assays used cryopreserved PBMC initially

collected between PID 30-60 from chimeric recipients as the responder

cells, which were recovered in growth media followed by dead cell

removal via bead separation. These cells were then similarly stimulated

with allogenic (donor) or autologous (self) PBMC in culture. Traceable

staining, stimulator irradiation, and plating were set up identical to the

MLR. After 4-days, cryopreserve donor and autologous cells were

recovered and depleted of dead cells as described to serve as

cytotoxicity target cells. 1.0x105 of these cells were stained with CFSE

and introduced to their respective cultures for 4 hours. Cells were then

stained with annexin V to detect apoptosis and 7-AAD for viability.

Parallel cultures were set up to evaluate intracellular granzyme

B (GZMB) production and extracellular interferon-g (IFN-g)
secretion after 4 days of stimulation. The supernatant was

collected for ELISA and remaining cells were re-stimulated with

PMA (81nM) and ionomycin (1.3µM) with Brefeldin A (5µg/mL)

for 5 hours. Intracellular staining was performed after fixation and

permeabilization for GZMB. IFN-g ELISA was performed per

manufacturers specifications with serial dilutions set up to detect

low level concentrations.
Donor-specific antibody testing

Flow cytometry-based crossmatch assays (FXM) were employed

to measure pre- and post-transplant DSA levels in recipients. Plasma

isolated from peripheral blood before and after transplantation was

serially diluted (1:5, 1:25, 1:125, 1:625) and incubated with donor

PBMC. Cells were then washed and stained. Post-transplant IgG

median fluorescence intensities (MFIs) were compared to

pretransplant controls on CD3+ and CD20+IgD+ cells to

determine the positivity of T and B cell crossmatches, respectively.
Frontiers in Immunology 04
Results

Chimerism induction and outcomes

Six rhesus macaques underwent tolerance induction in a living

allogenic transplantation model. MHC disparities between the

transplant pairs ranged from 2-4 MHC Class I mismatches and

0-1 MHC Class II mismatches (Table 1). The post-transplant, non-

myeloablative tolerance induction protocol, consisting of TomoTLI,

rhATG, and belatacept conditioning is shown in Figure 1A.

Recipients received 3.0-5.8x109 total cells/kg and 14.9-30.6x106

CD34+ cells/kg from the G-CSF-stimulated donor (Table 1). There was

no correlation between induction of chimerism and MHC disparity

nor total/CD34+ cell counts included in the infusion product.

Following donor-derived BM infusion, chimerism was established

in three of six recipients (50%). Maximum leukocyte chimerism ranged

from 7.2-10.6% in the peripheral immune system (Figure 1B).

Multilineage chimerism was established in all major leukocyte

subsets, though the highest levels were observed in non-lymphocyte

populations, including granulocytes and monocytes (Figure 1C). All

recipients with peripheral chimerism also demonstrated engraftment

within their central BM compartment, ranging from 4.9-22.9%

measured via aspirates on PID 42 (Figure 1C).

No chimeric animals appeared to develop alloreactivity. This was

evidenced by their persistent chimerism, lack of DSA production, and

allograft histology without evidence of immunologic injury.

Specifically, FXM remained negative during the lifespan of all three

chimeric recipients (Supplementary Figure 1). Further, histologic

staining revealed minimal interstitial inflammation without evidence

of glomerulitis, tubulitis, peritubular capillaritis or C4d positivity

(Supplementary Figure 2). In this context, no chimeric recipients

experienced allogeneic graft loss nor developed evidence of acute

cellular or antibody-mediated rejection. In addition, there were no

episodes of engraftment syndrome or GVHD. Of the three non-

chimeric animals, two (Rh2, Rh4) experienced graft loss secondary to

acute rejection early in the immunosuppression taper. Specifically, by

the time of necropsy, these recipients developed 13.2-fold and 27.3-fold

increases in B and T cell cross matches, respectively (Supplementary

Figure 1). Accordingly, terminal histology for both animals

demonstrated positive C4d staining indicative of DSA deposition, as

well as significant mononuclear interstitial infiltration, tubulitis, and

peritubular capillaritis suggesting acute cellular rejection

(Supplementary Figure 3). The third non-chimeric animal (Rh5) was

euthanized for weight loss on day 51 without evidence of rejection at

the time of necropsy.
Early immunomodulatory effects of
conditioning and chimerism induction

The tolerance conditioning protocol yielded significant lymphocyte

depletion, with an expected precipitous decline in total lymphocyte

count observed by day 2 followed by a statistically significant nadir of

<100/µL by day 14 (Figure 2A). Lymphocyte recovery (defined as a

statistical increase in cell count compared to the nadir) occurred for all

recipients by day 28. Similar depletion kinetics were observed for
frontiersin.org
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monocytes and neutrophils, though recoveries were day 21 and 35,

respectively. (Supplementary Figure 4).

The humoral response was studied to investigate generation of

post-transplant donor specific antibody. All recipients had a

negative B and T-cell crossmatch prior to transplant and

subsequently exhibited a negative B cell and T cell FXM in the

early (day 30-45) post-transplant period regardless of chimerism

induction (Figure 2B).

Cellular alloreactivity was studied in the early post-conditioning

period via MLRs on PID 30-60 (Figure 2C). The allo-MLR response

was defined as the fold increase in T cell proliferation against

allogenic donor cells over the baseline T cell proliferation observed

against autologous (self) cells. The post-transplant conditioning

regimen yielded a dampened recipient allo-MLR response against

donor cells compared to naïve, pre-transplant controls (n=5).
Frontiers in Immunology 05
Specifically, chimeric recipients (n=3) demonstrated a 70.9%

decrease in the allo-MLR response compared to naïve controls

(p<0.001), which correlated to a 57.0% reduction in proliferation

compared to non-chimeric recipients (p<0.001). Non-chimeric

recipients (n=3) exhibited a 32.6% reduction in T cell

proliferation compared to naïve responses (p=0.038).

Correlative studies examining CD4+CD25+Foxp3+ Treg

frequencies within the peripheral blood demonstrated elevated

levels among chimeric recipients in the early post-conditioning

period. By PID 30, the peripheral circulating CD4+ Treg fraction in

chimeric recipients was 5.24% versus 1.54% (p<0.001) in naïve

recipients, and 0.45% (p<0.001) in non-chimeric macaques

(Figure 2D). In contrast, non-chimeric recipients harbored fewer

Tregs than naïve, pre-transplant animals (p=0.024) and experienced

no statistical increase in Treg frequency at later time points.
A B

C

FIGURE 1

(A) Experimental post-transplant, TomoTLI, ATG, and belatacept-based tolerance induction protocol and immunosuppression taper schedule.
(B) Total leukocyte chimerism kinetics for individual recipients. (C) Maximum chimerism levels among lineage specific PBMC subsets and CD34+
bone marrow (BM – measured PID 42).
TABLE 1 Recipient MHC matching, infusion product composition, and engraftment outcomes.

MHC Class I

Ag Mismatch

MHC Class II

Ag Mismatch MHC Typing

Total Cells

(x10^9/kg)

CD34+ Cells

(x10^6/kg)

Chimerism

(Leukocyte)

Rh1 2 0 R A004 A074 B012b B017a DR03a DR04a 3.0 24.7 Yes

D A001 A001 B047a B047a DR03a DR03a (10.6%)

Rh2 2 1 R A025 A004 B012b B012b DR04a DR03f 2.6 23.3 No

D A001 A004 B012b B001a DR04a DR03a

Rh3 3 1 R A019 A004 B015c B012b DR03a DR04a 3.0 18.6 Yes

D A001 A004 B047a B048 DR03a DR01a (10.0%)

Rh4 3 1 R A004 A023 B017a B043a DR10a DR06 5.1 30.6 No

D A001 A023 B015b B043b DR10a DR03a

Rh5 3 1 R A004 A002a B056b B001a DR15a DR15a 5.8 15.0 No

D A001 A002a B055 B015a DR15a DR03g

Rh6 4 1 R A023 A004 B012b B001a DR04a DR15c 1.3 14.9 Yes

D A001 A042 B048b B047a DR04a DR09b (7.2%)
Small letters: MHC subtype.
Bold: Indicating the matched MHC alleles between donor and recipient.
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Some chimeric animals developed weight loss or Parvovirus

infection requiring euthanasia according to the protocol approved by

the University of Wisconsin-Madison Institutional Animal Care and

Use Committee. In those animals, Tregs were able to be evaluated in

the initial post-induction period within secondary lymphoid and

allograft tissue (Figures 2E, F). Few lymphocytes were present in the

non-rejecting allografts of chimeric recipients consistent with absence

of a cellular allo-immune response. Though among those present,

Tregs represented a considerable proportion (30.40%) of the isolated

graft-infiltrating CD4+ T cells, significantly higher than the frequency

observed in circulation (p=0.041). Similarly, Tregs were present at

elevated frequencies (16.34%) among lymph node derived CD4+ T

cells (p=0.045), though no difference was observed between PBMC and

spleen. Circulating peripheral Tregs at time of necropsy remained

enriched (5.17% of CD4+ T cells) compared to pre-transplant controls,

with no statistical decrease in frequency compared to PID30.
PD-1 expression during T cell
homeostatic recovery

Longitudinal T cell immunophenotyping was performed during

homeostatic recovery for all recipients. The TomoTLI induction

protocol was associated with an inversion of peripheral blood CD8:

CD4 polarization compared to pre-transplant controls irrespective

of engraftment (Figure 3A). By PID 30, circulating CD8+ T cells

were predominant, comprising 64.7% of the T cell compartment,

nearly double the frequency observed among naïve controls (35.4%,

p=0.013). Conversely, a minority of circulating T cells were CD4+

by PID 30, which were decreased 4-fold compared to pre-transplant

controls (11.9% vs 46.1%, p<0.001).
Frontiers in Immunology 06
Among circulating CD8+ T cells, the CD28-CD95+ effector

memory (Tem) phenotype was predominant at 94.13%, followed by

the CD28+CD95+ central memory (Tcm) subset at 4.29%, and the

CD28+CD95- naïve (Tn) subset at 0.69% (Supplementary Figure 5).

There were no differences in CD8+ Tem, Tcm, and Tn frequencies

between chimeric and non-chimeric recipients.

Though longitudinal T cell subset frequencies were similar

regardless of whether chimerism was achieved, PD-1 expression

on emerging circulating CD3+CD8+ T cells was significantly higher

among chimeric recipients than both non-chimeric hosts and naïve

controls (p<0.001). In contrast, no upregulation of PD-1 expression

was observed in CD8+ T cells among non-chimeric recipients

following conditioning, nor was there a statistical increase over

time. Specifically, by PID 30, CD8+PD-1+ T cells represented 6.49%

of circulating T cells in chimeric hosts, which was a 6.42-fold

increase compared to naïve animals (1.01%, p<0.001) and a 5.27-

fold increase compared to that observed in non-chimeric recipients

(1.23%, p=0.001) (Figures 3B, C). At the same timepoint (PID 30),

CD4+ PD-1 expression was elevated compared to naïve controls in

both chimeric (5.44%, p=0.028) and non-chimeric (2.89%, p=0.040)

recipients, though there was no statistical difference between the

two recipient groups (Figure 3C).

Further evaluation within the CD3+CD8+ compartment

demonstrated significant upregulation of PD-1 expression among

the Tem phenotype in chimeric recipients (7.25%) compared to

naïve (1.41%, p=0.002) and non-chimeric (1.16%, p=0.006)

macaques (Figure 3D). Conversely, CD8+ central memory and

naïve phenotypes demonstrated similar frequencies of PD-1

expressing cells irrespective of engraftment. There was no

difference in PD-1 expression among any CD4+ subset between

the chimeric and non-chimeric groups.
A B

D E F

C

FIGURE 2

(A) Lymphocyte depletion and recovery kinetics between non-chimeric (n=3) and chimeric (n=3) animals. (B) Early post-kidney transplant (postoperative day
30-45) B cell and T flow cross match levels. (C) Early post-infusion (PID 30-60) allogenic MLR responses in non-chimeric (NC) and chimeric (C) animals
compared to naïve controls. (D) Peripheral Treg frequencies collected on PID 30 in non-chimeric (NC) and chimeric (C) macaques compared to naïve
controls. (E) Representative flow plots demonstrating levels of CD25+FoxP3+ Tregs within peripheral blood and graft infiltrating CD4+ T cells among
chimeric recipients at the time of necropsy. (F) Percentages of Tregs present among CD4+ T cells within the peripheral blood (PBMC), draining lymph nodes
(LN), spleens (SPL), and allografts (GIC) of chimeric recipients at the time of necropsy. *p < 0.05; ***p < 0.001.
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At the time of necropsy, PD-1 expression was evaluated among T

cells isolated from circulation, secondary lymphoid tissue, and grafts

of chimeric recipients (Figure 3E). CD8+ T cell PD-1 upregulation

persisted within the peripheral circulation and was similar to that

observed on PID30. Though low numbers of cells were isolated, PD-1

expression was elevated among CD8+ T cells within the graft

compared to circulating PBMC (25.10% vs 8.68%; p=0.028). There

were similar relative levels of CD8+ PD-1 expression within the

peripheral circulation, lymph nodes (9.58%) and spleen (14.79%). No

difference in PD-1 expression was detected among CD4+ T cells

isolated from PBMC, lymph nodes, spleen, or the allograft.
Functional implications of PD-1 expression
in the early alloreactive T cell response

The role of PD-1 expression in the early immune environment

generated by the mixed-chimeric state was examined by

introducing a rhesus anti-PD-1 blocking agent to in vitro

alloreactivity assays. Functional assays were performed on PBMC

collected during the early post-conditioning period (PID 30-60). In

the allogenic MLR, inhibition of PD-1 uncovered a 1.43-fold

increase (p=0.004) in T cell proliferation compared to the

physiologic control (without PD-1 blockade) among all three

chimeric recipients (Figures 4A, B). In contrast, T cells from

naïve (n=5) and non-chimeric (n=3) macaques did not

demonstrate higher proliferative responses with the addition of

anti-PD-1.

Cytotoxicity assays were performed using cells collected from

chimeric recipients (n=3) during homeostatic recovery (Figures 4C,

D). These cells were stimulated over four days in culture using

irradiated recipient (autologous) or donor (allogenic) cells before

introducing target cells to their respective cultures. Consistent with
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the MLR data, in vitro PD-1 inhibition uncovered a 1.3-fold

increase in cytotoxic activity against donor cells compared to

non-blockade controls, an effect that was not observed against

autologous targets (p<0.001).

In a parallel experiment, intracellular GZMB and extracellular IFN-

g production were analyzed after four days of in vitro stimulation

(Figures 4E, F). PBMC samples from one chimeric recipient (Rh6)

collected at multiple timepoints were tested. PD-1 blockade yielded a

1.6-fold increase in GZMB MFI versus physiologic, non-blockade

controls, which was not observed with the addition the anti-PD1

blockade to cultures stimulated with autologous cells (p=0.018). In a

similar way, ELISA detection revealed higher levels (4.6-fold) of IFN-g
secretion in the donor-stimulated supernatants exposed to the anti-PD-

1 blocking agent, though no change in IFN-g secretion was elicited in

the autologous cultures (p=0.026).
Discussion

We have demonstrated that mixed chimerism can be achieved

in a MHC-disparate rhesus macaque BM-derived HC and kidney

transplant model using nonmyeloablative conditioning consisting

of TomoTLI, ATG, and belatacept therapies. Importantly, in

previous reports we have shown that transient mixed chimerism

generated by this tolerance induction method is capable of inducing

sustained, long-term allograft survival off all immunosuppression

(17). Though no chimeric recipients in this study cohort survived to

IS withdrawal, there was no evidence of clinical alloreactivity at the

time of necropsy, as indicated by lack of DSA production and

absence of immunologic injury on histology.

In this study we sought to better characterize the early (60 days

post-transplant) immunologic effects of mixed chimerism

induction. We observed that early anti-MHC humoral immune
A B

D EC

FIGURE 3

(A) Longitudinal post-infusion CD8+ and CD4+ T cell recovery among all recipients. (B) Representative flow plots demonstrating CD8+ T cell PD-1
expression among naïve, non-chimeric, and chimeric recipients at PID 30. (C) PD-1 expression among CD8+ and CD4+ T cells on PID 30 in non-
chimeric (NC) and chimeric (C) animals compared to naïve controls. (D) PD-1 expression among CD8+ T cell subsets on PID 30 in non-chimeric
(NC) and chimeric (C) animals compared to naïve controls. (E) CD8+ T cell PD-1 expression within the peripheral blood (PBMC), draining lymph
nodes (LN), spleens (SPL), and allografts (GIC) of chimeric recipients at the time of necropsy. *p < 0.05; **p < 0.01; ***p < 0.001.
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responses were controlled with the addition of T cell co-stimulation

blockade (belatacept) to the conditioning regimen. With this

modified protocol, all recipients demonstrated negative B cell and

T cell FXMs in the early post-transplant period, which was

associated with an increased rate of engraftment to 50% among

the widely MHC disparate pairs in this study. These results

contrasted with our previous findings in the 1-haplotype matched

group that received the same Tomotherapy tolerance induction

protocol but without belatacept. In that series of animals,

development of de novo DSA occurred in all recipients except the

11% that achieved transient mixed chimerism and long-term

tolerance (17). These observations are consistent with the premise

that belatacept provided improved control of the early post-

transplant humoral response at the time of bone marrow

transplantation and improved central engraftment of donor cells.

In addition, and consistent with the prior protocol, we observed

that conditioning efficiently depleted peripheral leukocytes, with all

lineages reaching a nadir prior to infusion of the allogenic HC

product. Further, MLRs performed in the early post-infusion period

revealed a markedly diminished allogenic T cell response in

chimeric animals compared to naïve controls. Taken together,

these findings demonstrated that TomoTLI, ATG, and belatacept-

based conditioning was effective at controlling early humoral and

cellular alloreactivity, thus creating a favorable immunologic

environment to support HC engraftment and mixed chimerism.

Though establishment of mixed chimerism is a proven strategy for

induction of allograft tolerance after kidney transplantation, the

necessary magnitude and duration of chimerism remains unknown.

We have demonstrated that low level, transient mixed chimerism was

sufficient for the generation of important peripheral mechanisms

involved in cellular immunomodulation. One mechanism involved
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expansion of regulatory T cells, which are known to be important

mediators of allogenic tolerance after induction of transient mixed

chimerism. Several studies have shown that Tregs are highly enriched

during homeostatic recovery and are directly involved inmodulation of

T cell alloreactivity (18, 19, 31–34). Accordingly, we found that

circulating Tregs were expanded during post-infusion immune

recovery within chimeric hosts compared to naïve and non-chimeric

macaques. Further, assessment of allograft-resident cells at the time of

necropsy revealed marked Treg enrichment, which was also observed

in draining secondary lymphoid tissue. This is consistent with prior

reports showing that graft infiltrating and tumor resident Tregs are

antigen-specific and present at higher frequencies within tolerant tissue

than in immunoreactive grafts (35–37). These findings indicated that

donor cell engraftment promoted a phenotypic shift toward T cell

regulation in the early, post-transplant peripheral immune system and

suggested that Treg homing to sites of alloantigen-rich environments

may contribute to the establishment of peripheral tolerance.

PD-1 is a co-inhibitory molecule expressed on emerging T cells

during thymic education, as well as mature CD4+ and CD8+ T cells

in the periphery (38–43). When engaged with its ligand, PD-L1, it

drives T cell exhaustion and antigen-specific hypo-reactivity during

the development of central and peripheral tolerance (44, 45). In the

periphery, PD-1 signaling reduces effector differentiation and

expansion while also inducing antigen-specific T cell exhaustion

among terminally differentiated phenotypes, thus controlling auto-

and alloreactivity (46–54). Among chimeric recipients of allogenic

bone marrow, PD-L1 upregulation on non-hematopoietic

populations serves to restrict effector T cell-mediated damage, thus

promoting tolerance (40, 47, 55, 56). In a similar way, PD-L1

expression on allogenic cells during islet transplantation has been

found to be protective against rejection (47, 57). Furthermore, when
A B

D E FC

FIGURE 4

(A) Flow histograms demonstrating the effects of in vitro PD-1 blockade on PBMC-derived CD8+ T cell PD-1 expression (left) and total T cell
proliferation represented by CTV low populations (right). (B) Early post-infusion (PID 30-60) allogenic MLR responses with and without the addition
of the anti-PD-1 agent among naïve, non-chimeric, and chimeric macaques. (C) Representative flow histogram demonstrating the effect of in vitro
PD-1 blockade on target cell annexin V positivity in cytotoxicity assays performed with chimeric recipient PBMC (collected between PID 30-60)
targeted against allogenic donor PBMC. (D) Fold-increase in target cell annexin V positivity in cytotoxicity assays performed with self- and donor-
simulated chimeric recipient PBMC (collected between PID 30-60) exposed to in vitro PD-1 inhibition over non-inhibited controls. (E, F) Fold-
increase self- and donor-stimulated intracellular GZMB expression and extracellular IFN-g with the addition of the in vitro anti-PD-1 agent using Rh6
PBMC collected at multiple post-transplant timepoints over non-inhibited controls.
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treated with PD-1 inhibitors for oncologic therapy, renal transplant

recipients experience significantly higher rates of allograft rejection

(58, 59). Of particular relevance to this study, Haspot et al.

demonstrated that tolerance induction after allogenic bone marrow

transplantation was dependent on PD-1 upregulation and signaling

among CD8+ T cells within the periphery (60). Collectively, these

findings underscore the importance of PD-1 co-inhibition in

transplant immunology and control of CD8+ T cell alloreactivity.

In our model we found a predominance of circulating CD8+ T cells

within the emerging immune system, in contrast to the relatively low

frequency of CD4+ T cells. This CD8 polarity was observed in both non-

chimeric and chimeric recipients, suggesting that conditioning, rather

than engraftment, was driving this pattern of T cell recovery. However,

there was an upregulation of PD-1 on the surface of emerging CD8+ T

cells in chimeric animals only, which was most prominently expressed

within the effector memory subset. Similar to Tregs, these PD-1

upregulated cells were found at higher concentrations within the graft,

further supporting a local immunoregulatory environment after

induction of mixed chimerism. Importantly, its role in early

alloreactivity was supported by an augmented donor-specific T cell

response with the addition of an anti-PD-1 blocking agent to post-

transplant allogenic MLRs performed with chimeric recipient cells. This

effect was not observed when naïve and non-chimeric allo-MLRs were

exposed to an in vitro PD-1 blockade, indicating that the increased T cell

proliferative response is specific to an underlying allo-protective role of

PD-1 in chimeric animals.

To better evaluate the implications of PD-1 expression in CD8+

T cell-mediated alloreactivity, cytotoxicity assays were performed in

which PD-1 blockade similarly exposed an allogenic response but

had no effect against autologous controls. Further, PD-1 inhibition

in chimeric recipient cells yielded increased excretion and

production of the CD8+ T cell effector molecules, IFN-g and

GZMB. Taken together, these findings suggest that post-

engraftment CD8+ T cell co-inhibition via PD-1 signaling plays

an important allo-protective role and is involved in the

establishment of mixed chimerism-based operational tolerance.

This mechanistic study of the early immunomodulation associated

with mixed chimerism induction demonstrated that non-

myeloablative, TLI-based conditioning with ATG and belatacept

dampened humoral and cellular allogenic responses and is capable of

supporting HC engraftment in widely MHC disparate transplantation.

Specifically, these findings demonstrated that low level donor immune

cell engraftment was associated with homeostatic expansion of Tregs

and upregulation of PD-1 expression among emerging recipient CD8+

T effector memory cells, both of which contributed to allogenic

immunomodulation. In conjunction with our prior studies, we posit

that these early immune cell mechanisms may contribute to the

establishment of TLI-based, mixed chimerism-induced operational

tolerance and serve as important foundational knowledge for

future protocols.
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