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The multifaceted role of
autophagy in skin autoimmune
disorders: a guardian or culprit?
Yi Lin †, Xiuyi Wu †, Yiwen Yang, Yue Wu, Leihong Xiang
and Chengfeng Zhang*

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
Autophagy is a cellular process that functions to maintain intracellular

homeostasis via the degradation and recycling of defective organelles or

damaged proteins. This dynamic mechanism participates in various biological

processes, such as the regulation of cellular differentiation, proliferation, survival,

and the modulation of inflammation and immune responses. Recent evidence

has demonstrated the involvement of polymorphisms in autophagy-related

genes in various skin autoimmune diseases. In addition, autophagy, along with

autophagy-related proteins, also contributes to homeostasis maintenance and

immune regulation in the skin, which is associated with skin autoimmune

disorders. This review aims to provide an overview of the multifaceted role of

autophagy in skin autoimmune diseases and shed light on the potential of

autophagy-targeting therapeutic strategies in dermatology.
KEYWORDS
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1 Introduction

Autophagy also referred to as “self-eating”, is an intracellular catabolic process that

involves transporting cytoplasmic components into the lysosomes for degradation and

recycling (1). The primary function of autophagy is to eliminate defective organelles,

untapped proteins, or intracellular pathogens, which makes it a fundamental mechanism in

cellular physiology, participating in coordinated responses to stress and cell differentiation

and development (2). Recent studies have revealed that autophagy is associated with several

aspects of immunity, including defense against microorganisms, secretion of pro-

inflammatory cytokines, and development and maintenance of lymphocytes (3, 4).

Hence, autophagy is generally considered to preserve cellular homeostasis and protect

against many diseases. Paradoxically, studies have suggested that autophagy also acts as a

form of regulated cell death (RCD) under certain circumstances, called autophagic cell

death (5), which directly contributes to the pathogenesis of numerous human diseases.

Therefore, dysregulation of autophagy may cause a disturbance of cellular homeostasis
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and affect both innate and adaptive immunity, consequently

participating in the initiation and progression of human disease.

Skin, being the largest organ of the human body, serves as the

outermost protective barrier against a variety of environmental

hazards, such as ultraviolet (UV) radiation, pathogen intrusion,

toxic substances, and mechanical stresses (6). Additionally, the skin

is recognized as an important immune organ responsible for

immune surveillance and homeostasis (7). Deregulation of this

function plays a significant role in the pathogenesis of many

autoimmune disorders. Over the past decade, numerous studies

have demonstrated that autophagy is constitutively active in various

skin cell types, including keratinocytes, melanocytes, fibroblasts,

and epidermal stem cells (8). Given that autophagy functions as an

endogenous defense mechanism against harmful environmental

factors, its activation acts as a protective mechanism by removing

external stimuli, maintaining skin homeostasis, and preventing the

onset and progression of skin diseases (9). Furthermore,

polymorphisms in autophagy-related genes and altered

expressions of autophagy-related genes and proteins have been

correlated with various skin autoimmune disorders (4).

Consequently, the disruption of autophagy in the skin is closely

linked to disturbances in skin homeostasis and immunity, which

emerge as a critical factor in the genesis and progression of skin

diseases, particularly skin autoimmune disorders.

In this review, we aim to elaborate on the connection between

autophagy and skin autoimmune disorders and highlight potential

therapeutic approaches for these diseases employing autophagy-

related mechanism.
2 Overview of autophagy and its
molecular mechanism

Autophagy can be categorized into three types based on cargo

transportation methods (1) (Table 1), namely, macroautophagy,

microautophagy, and chaperone-mediated autophagy (CMA).

Macroautophagy is marked by the generation of a double-

membrane organelle termed the autophagosome, which

encapsulates bulk cytoplasm and dysfunctional organelles and

subsequently merges with a lysosome to degrade cargo (2). In

microautophagy, lysosomes and late endosomes uptake

cytoplasmic components through membrane protrusion and

invagination, leading to cargo degradation within the

endolysosomal lumen (10). CMA, on the other hand, operates

through a chaperone-dependent degradation pathway. In the

process of CMA, proteins carrying a KFERQ-like motif are

recognized by the chaperone heat-shock cognate protein 70

(Hsc70), and then these proteins are transported across the

lysosomal membrane via the lysosomal-associated membrane

protein 2A (LAMP2A) for final degradation (11).

Autophagy can also be divided into nonselective and selective

processes: autophagy induction that responds to nutrient

deprivation operates in a nonselective (or bulk) manner, whereas

starvation-independent or constitutive autophagy targets

potentially harmful cargoes for degradation (12). Selective
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autophagy can be classified according to its targets, including

mitophagy (mitochondria), ER-phagy (endoplasmic reticulum),

xenophagy (intracellular pathogens), ferritinophagy (ferritin), and

lipophagy (lipid droplets) (13). In selective autophagy, P62, also

known as sequestosome 1 (SQSTM1), is the key adaptor protein

that binds directly to LC3 on the phagophore to facilitate the

targeted degradation of cargo (14). Failure to degrade these

targets is associated with various diseases, and certain selective

types of autophagy are also involved in other types of RCD, such as

apoptosis and ferroptosis.
2.1 Molecular machinery
of macroautophagy

Since macroautophagy is recognized as the most prevalent form

of autophagy, the terms “autophagy” and “macroautophagy” are

often used interchangeably (hereafter referred to as autophagy).

The autophagic pathway consists of several phases, including

induction, nucleation, elongation, autophagosome completion,

autophagosome/lysosome fusion, and degradation, and involves

multiple autophagy-related genes (ATGs) and their products (15).

The initiation begins with the assembly of a complex made up of

Unc-51-like kinase (ULK) family proteins, ATG13, ATG101, and

FIP200. This complex then recruits class III phosphatidylinositol 3-

kinase (PI3K) complexes, subsequently stimulating the production

of phosphatidylinositol 3-phosphate (PI3P) and participating in the

nucleation of phagophore (16). The next phase is elongation, which

relies on two ubiquitin-like conjugation systems: the light chain 3

(LC3)–ATG8 and the ATG5–ATG12 conjugation systems (17, 18).

LC3 is cleaved by the protease ATG4 to generate the isoform LC3-I.

Following this, LC3-I conjugates to phosphatidylethanolamine (PE)

with the assistance of ATG7 and ATG3, converting into the

membrane-anchored form LC3-II (18, 19). Meanwhile, the
TABLE 1 Different classifications of autophagy.

Based on the
mode of cargo
transportation

Characteristics

Macroautophagy Substrates are enclosed in cytosolic double-membrane
vesicles (autophagosomes).

Microautophagy Cytosolic components are directly incorporated into the
lysosome by invagination of the lysosomal membrane.

Chaperone-
mediated autophagy

Targeted proteins are transferred across the lysosomal
membrane with the assistance of chaperone proteins.

Based on
degradation
products

Characteristics

Bulk autophagy Indiscriminate engulfment of cytosolic components,
including organelles and macromolecular complexes.

Selective autophagy Targeting specific, often potentially harmful cargoes
for degradation.
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ATG5–ATG12 conjugate system interacts with ATG16 to facilitate

the conjugation of LC3-I to PE (20). Together, these two

conjugation systems foster the elongation of phagophores and the

formation of autophagosomes. Once formed, autophagosomes

merge with an endosome or a lysosome, transforming into

autolysosomes. During this fusion, the UV radiation resistance-

associated tumor suppressor gene (UVRAG) protein enhances the

process by interacting with the PI3K complex (21).
2.2 Regulation mechanisms and signaling
pathways of autophagy

Autophagy is modulated by several key protein kinases,

including the AMP-activated protein kinase (AMPK) and the

mammalian target of rapamycin (mTOR) (22). AMPK activates

autophagy directly via the phosphorylation of autophagy-related

proteins, such as mTORC1 and ULK1, or indirectly by regulating

the expression of downstream ATGs (23). While ULK1 activation

facilitates autophagy, mTOR functions as a suppressor (23, 24).

Notably, mTOR exists in two distinct complexes, namely, mTOR

complex 1 (mTORC1) and mTORC2. The former hinders

autophagy by phosphorylating the ULK1/Atg13/FIP200 complex,

thereby inhibiting ULK1 activation (25). Recent studies have also

revealed that mTORC2 participates in the regulation of autophagy

through diverse downstream effectors (26). The activity of TOR

kinase may be downregulated by AMPK, and the activation of the

ULK1 complex is similarly attributed to the negative regulation of

mTORC1 (23).

The PI3K/AKT pathway serves as the primary upstream

modulator of mTORC1. When Class I PI3K is activated, it

converts phosphatidylinositol-4,5-bisphosphate (PIP2) into

phosphatidylinositol-3,4,5-trisphosphate (PIP3), and such

transformation attracts pleckstrin homology (PH) domain

proteins, such as AKT kinase (AKT) and protein kinase B (PKB),

to the cellular membrane (18). Subsequently, Akt activation leads to

the phosphorylation of various proteins, including mTORC1,

which, in turn, inhibits the autophagic process (27). Intriguingly,

different classes of PI3K exert distinct effects on autophagy. Elevated

levels of the class III PI3K product, PI3P, downregulate the process

(27). Beclin1, a subunit of class III PI3K complex-VPS34, is essential

in stimulating PI3P synthesis and the formation of autophagosomes

(22). Beclin1 can be regulated positively via ATG14L1 and the

activating molecule in Beclin1-regulated autophagy 1 (AMBRA1),

or negatively by anti-apoptotic proteins (15).

Accumulating evidence supports the involvement of reactive

oxygen species (ROS) in mediating autophagy through a variety of

signaling pathways (28, 29). Studies revealed the deactivation of Akt

and mTORC1 proteins, accompanied by the activation of AMPK

protein in response to oxidative stress, which subsequently triggers

the initiation of autophagy machinery through the PI3K–ULK1 and

Beclin1 complexes, ultimately promoting autophagy (27).

Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2), a

transcription factor regulating cellular antioxidant mechanisms, has

been found to participate in the regulation of autophagy (27, 30).

Under normal conditions, Nrf2 binds to the kelch-like ECH-
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associated protein 1 (Keap1), which leads to its ubiquitylation

and proteasomal degradation. When ROS levels exceed the

normal threshold, Nrf2 induces the expression of autophagy-

related genes, including SQSTM1/p62, unc-51-like kinase 1

(ULK1), and autophagy protein 5 (ATG5), actively contributing to

the enhancement of autophagy (31). On the other hand, autophagy

and Nrf2 intersect in a p62-dependent manner. Autophagy

dysfunction leads to p62 accumulation, which activates Nrf2 and

initiates the upregulation of Nrf2-targeted genes through its

competitive binding to the Nrf2-binding site of Keap1 (32).

Consequently, p62-mediated Nrf2 activation and Nrf2-mediated

p62 transcription may establish a positive feedback loop in

the regulation of autophagy, particularly in the context of

oxidative stress.
3 The interplay between autophagy
and other cell death pathways

Generally speaking, autophagy functions primarily as a

housekeeper in the maintenance of cellular homeostasis and

facilitates cellular survival under various stresses. For example, in

the context of oxidative stress, elevated levels of ROS can trigger

protective autophagy, which effectively clears defective organelles,

reduces ROS levels, and restores cellular homeostasis. Moreover,

under certain conditions like nutrient depletion and hypoxia,

autophagy serves to recycle essential biomolecules for cell survival

and growth. Failing to do so may precipitate cell death (33).

However, emerging evidence suggests that autophagy also plays

a decisive role in cell death processes (34) (Figure 1). Two distinct

autophagy-related cell death modes have been identified:

autophagy-dependent cell death (ADCD) and autophagy-

mediated cell death (AMCD) (35). ADCD exhibits unique

morphological characteristics distinct from apoptosis or necrosis

and relies mechanistically on excessive autophagic machinery, such

as excessive ER-phagy, excessive mitophagy, and autosis (36).

ADCD has been documented in various diseases, and it has been

linked to the senescence of normal human epidermal keratinocytes

(NHEKs), ultimately leading to cell death (37). In contrast, in

AMCD, the autophagy pathway activates various cell death

modalities, including apoptosis, necrosis, and ferroptosis (34),

forming a dynamic interplay with other cell death pathways.

Apoptosis is normally classified as intrinsic (mediated by Bcl-2,

Bax, and Bak) or extrinsic apoptosis (mediated by membrane death

receptors) based on the triggering mechanisms, while both

pathways ultimately lead to the release of cytochrome c and a

cascade of caspase signaling (38). Autophagy shares certain

common components with apoptosis, notably through the

interaction between the autophagy mediator protein Beclin1 and

the anti-apoptotic protein Bcl-2. Depending on the cellular ROS

level, Beclin1 can either initiate autophagy by dissociating from Bcl-

2 or be cleaved by caspase when the stress signal becomes

overwhelming, resulting in the suppression of autophagy. Its

cleavage products subsequently lead to the release of pro-

apoptotic factors from mitochondria, hastening the process of
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apoptosis (27, 39). Additionally, autophagy-related molecules can

directly interact with apoptotic molecules, thereby promoting

apoptosis. The Atg5 and Atg12 conjunction system is essential for

autophagy, while recent discoveries have identified that the

unconjugated forms of Atg5 and Atg12 can promote apoptosis

independently (40).

Necroptosis is an inflammatory form of RCD, whose

mechanisms involve receptor-interacting protein kinase 1

(RIPK1), RIPK3, and mixed lineage kinase domain-like

pseudokinase (MLKL). The autophagy machinery can serve as a

scaffold, allowing for more efficient activation of the necrosome by

recruiting RIPK1 through p62. This recruitment leads to the

phosphorylat ion of MLKL, ult imately leading to cel l

necroptosis (41).

Ferroptosis, a recently identified form of RCD, is activated

mainly by the accumulation of iron and lipid peroxide

production. Autophagy, particularly selective autophagy, plays a

crucial role in the mechanisms of ferroptosis, including the

regulation of cellular iron homeostasis, lipid metabolism, and

redox homeostasis (42, 43). Upon the induction of ferroptosis,

autophagy is triggered, leading to the degradation of ferritin and

the ferritinophagy cargo receptor, nuclear receptor coactivator 4

(NCOA4). This process results in elevated levels of cellular labile

iron and the rapid accumulation of cellular ROS, both of which are

essential for the machinery of ferroptosis (44). In addition to

ferritinophagy, lipophagy is also correlated with ferroptosis, as the

level of lipid droplets shows a negative association with ferroptosis

(42). Mediated by RAB7A (a member of the RAS oncogene family),

lipophagy recruits lipid droplets via multivesicular bodies and

lysosomes. The increased RAB7A-dependent lipophagy promotes
Frontiers in Immunology 04
lipid droplet degradation, thereby facilitating lipid peroxidation-

mediated ferroptosis (42). Furthermore, glutamine metabolism, the

tricarboxylic acid cycle, and the electron transport chain play

pivotal roles in cysteine deprivation-induced ferroptosis,

suggesting that compromised mitochondria contribute to

ferroptosis (45, 46). Therefore, under the condition of cysteine

deprivation, PTEN-induced putative kinase 1 (PINK1)-mediated

mitophagy can specifically degrade excess or dysfunctional

mitochondria within cells, serving as a negative regulator of

ferroptosis (47, 48). However, as mitochondria also regulate

intracellular redox homeostasis and iron metabolism, the

excessive activation of mitophagy facilitates ferroptosis through

the release of free Fe2+, which allows the Fenton reaction to

proceed with unreduced ROS (49).

Collectively, autophagy has a multifaceted role in various cell

death mechanisms and a more in-depth exploration of the precise

regulatory mechanisms of autophagy is required to reach a better

understanding of the significance of the interplay between

autophagy and other cell death pathways.
4 The crosstalk between autophagy
and autoimmunity

Autophagy and autophagy proteins have emerged as vital

players in a diverse array of immune functions, including host

defense against pathogens, regulation of immune cell development,

and antigen processing and presentation (50, 51). Autophagy

participates in the regulation of both innate and adaptive immunity.
FIGURE 1

The interplay between autophagy and other cell death pathways. ULK, Unc-51-like kinase; FIP200, FAK-family Interacting Protein of 200 kDa; ATG,
autophagy-related gene; NCOA4, nuclear receptor coactivator 4; PINK1, PTEN-induced putative kinase 1; RIPK, receptor-interacting protein kinase;
MLKL, mixed lineage kinase domain-like pseudokinase.
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4.1 Autophagy, innate immunity,
and inflammation

Autophagy has been reported to modulate the innate immune

system by regulating innate immune cell differentiation,

phagocytosis, cytokine secretion, and antigen processing and

presentation, which not only shapes the innate immune response

but also affects the activation of the adaptive immune

compartment (52).

Autophagy exerts diverse influences on different innate immune

cell types. For example, constitutive autophagy promotes

macrophage differentiation at various stages, while negatively

impacting the development of neutrophils (53). Moreover,

autophagy is actively involved in the process of phagocytosis by

promoting the fusion of phagosomes with lysosomes, which

enhances the clearance of pathogens, foreign material, or dead

cells (54). Autophagy is also integral to the process of antigen

presentation of both MHC class I and II molecules by antigen-

presenting cells (APCs) (29). Autophagy affects the production of

antigenic peptides and the expression of MHC class I molecules on

the cell surface. During the MHC class II molecular antigen

presentation, antigens captured by APCs are transported to the

autophagosomes to further produce immunogenic peptides (29).

Therefore, in dendritic cells (DCs) and macrophages, which

function as professional APCs, the induction of autophagy

promotes both MHC class II and MHC class I antigen

presentation (50).

Another notable connection between autophagy and the innate

immune response is cytokine secretion. Blocking autophagy

increases interleukin (IL)-1b and IL-18 production in

macrophages, thereby promoting inflammasome activation (55).

Autophagy-dependent cytokine production was also observed in

DCs, involving key cytokines such as IL-6, tumor necrosis factor

(TNF)-a, and interferon (IFN)-g (52), mediating inflammatory and

immune responses.
4.2 Autophagy and adaptive immunity

In the adaptive immune response, autophagy and autophagic

proteins are not only essential to antigen presentation and thymic

selection, but also vital to the development, survival, and

homeostasis of T and B lymphocytes. The targeted knockout of

different autophagy genes in specific lymphocyte populations has

demonstrated an indispensable role for autophagy proteins in the

maintenance of normal numbers of B1 B cells, CD4+ T cells, and

CD8+ T cells in mice (56, 57).

With regard to the development and survival of B cells,

autophagy-related genes and signaling pathways are related to the

transition of pro-B cells to pre-B cells and autophagy is required for

the peripheral self-renewal of B1 cells (58–60). In the context of T

cell development and survival, where mitochondrial content is

developmentally reduced during the transition from thymocyte to

peripheral T cell, the absence of autophagy could result in

developmental defects of T cells, potentially related to the
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impaired clearance of mitochondria (61). Autophagy also plays a

role in T cell differentiation. Specifically, defective autophagy has

been proven to inhibit the transition from a double-negative to a

double-positive stage of the T cells in the thymus (62). T cells that

have undergone positive selection interact with thymic epithelial

cells (TECs), consequently resulting in the elimination of

autoreactive T cells (63). High levels of autophagy in TECs are

instrumental in the delivery of self-antigens to MHC class II loading

compartments (56, 62). Genetic disruption of Atg5 in TECs alters

the selection of certain MHC class II-restricted T cell specificities

and autoimmunity (64). Moreover, autophagy promotes T cells to

evolve into invariant natural killer T cells and regulatory T cells

(Treg) in the thymus (65). It also facilitates the differentiation of

CD8+ T cells into cytotoxic T lymphocytes and guides T cells to

differentiate into T helper cells in the periphery (53).

Furthermore, as previously mentioned, MHC class II-loading

compartments can fuse with autophagosomes (66). Therefore,

autophagy proteins may actively participate in various facets of

antigen presentation, facilitating the delivery of endogenous

antigens for MHC class II presentation to CD4+ T cells, in

addition to enhancing the cross-presentation of antigen donor

cells to CD8+ T cells (67).

Autophagy modulates the development, homeostasis, and

functions of B and T lymphocytes. Nevertheless, the cytokines

secreted by lymphocytes in turn influence the progress of

autophagy. Specifically, transforming growth factor (TGF)-b,
interferon (IFN)-g, IL-1, IL-2, and IL-12 are autophagy inducers

while IL-4, IL-10, and IL-13 are autophagy inhibitors (53), further

delineating the intricate interplay between autophagy and adaptive

immune system components.
5 Autophagy in skin
autoimmune disorders

5.1 Psoriasis

Psoriasis is a chronic immune-mediated inflammatory skin

disease that is clinically characterized by the presence of red, scaly

plaques or patches and is often accompanied by common

comorbidities such as metabolic syndrome and cardiovascular

disease. Although the exact etiology of psoriasis is not yet fully

understood, it is believed to be caused by a combination of genetic

and environmental factors (68). Recent studies have revealed that

mutations in the autophagy regulator genes ATG16L1 and AP1S3

are associated with psoriasis (69, 70). The connection between

autophagy dysfunction and psoriasis pathogenesis was further

verified by the altered expression of autophagy-related proteins in

psoriatic skin, such as ATG5, ATG7, Beclin1, LC3, and p62 (71–75).

Hyperplasia and abnormal terminal differentiation of epidermal

keratinocytes are major pathological characteristics of psoriasis

(76). As autophagy is constitutively active in the epidermis and

modulates the terminal differentiation and proliferation of

keratinocytes, its impairment contributes to aberrant keratinocyte

proliferation in psoriasis (77). LC3 expression was downregulated
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or even absent in psoriasis lesional skin epidermis, negatively

correlating with the mean thickness of the epidermis, indicating

the impairment or blockade of autophagy in psoriasis (74, 78, 79).

Controversially, several other studies indicated the elevated

expression of LC3 and other autophagy-related factors including

ATG5 and ATG7, which may point to the induction of autophagy

(72, 75, 80). It was speculated that the increased autophagosome

formation could be a compensatory mechanism for reduced

autophagic degradation activity, as evidenced by the accumulation

of p62 and the decline of lysosome protease activity in patients with

psoriasis, leading to parakeratosis in psoriasis (75, 78, 79).

Abnormal keratinocyte proliferation and differentiation cause

defects in the epidermal barrier and the microorganism defense

mechanism. Meanwhile, autophagy dysregulation has also been

related to inefficient bacterial clearance (6), with studies revealing

the crucial role of bacteria colonization, such as Staphylococcus

aureus and Streptococcus danieliae, in exacerbating psoriasis (76).

Inflammation is another hallmark of psoriasis pathogenesis and

accumulating evidence has demonstrated the involvement of

autophagy in modulating the immune response. Defective

autophagy contributes to an upregulation of proinflammatory

transcription factors (e.g., NF-kB) and the production of

proinflammatory cytokines (e.g., IL-1b and IL-36) (70). The

decreased level of LC3 in the psoriatic epidermis is negatively

correlated with inflammatory cell infiltration (79). IL-17A, a

crucial cytokine in the disease pathogenesis, has been shown to

stimulate autophagosome formation in early stages; however, upon

longer-term exposure to IL-17A in keratinocytes, it inhibits

autophagy through the activation of the PI3K/AKT/mTOR

signaling pathway, indicating a dynamic crosstalk between

autophagy and inflammation in psoriasis (78). Feng et al.

reported that cis-khellactone inhibited the activation of NF-kB
and the infiltration of macrophages by promoting autophagy,

which subsequently ameliorated imiquimod-induced psoriasis in

mice (81). Daturataturin A has also been confirmed to induce

autophagy, which negatively regulates inflammation in human

immortalized keratinocytes (82). Collectively, these studies

suggest that autophagy takes on a proactive role in psoriasis and

that its dysfunction exacerbates the disease. However, AMPK was

found to promote both autophagy and skin inflammation in the

psoriasis mouse model via the ULK1/ATG7 signaling pathway (83).

Moreover, a recent study demonstrated that MAPK pathway-

activated autophagy exacerbated skin inflammation in patients

with psoriasis and mouse models with psoriasis, whereas

autophagy blockade alleviated inflammation. The study also

identified the autophagy-based release of high mobility group box

1 (HMGB1) as a booster of psoriatic inflammation (80). In

conclusion, dysregulation of autophagy may contribute to the

pathogenesis of psoriasis, making autophagy a potential target for

therapeutic intervention in psoriasis.
5.2 Atopic dermatitis

Atopic dermatitis (AD) is a relatively common inflammatory

skin disorder that is characterized by impaired epidermal barrier
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function and an excessively activated immune system (84).

Emerging evidence has demonstrated that autophagy is

implicated in the pathogenesis of AD. RNA sequencing analysis

has revealed increased expression of autophagy-related genes in AD

patients, such as ULK1, ATG4, and ATG16L2 (85). Decreased LC3

levels and increased p62 levels have been observed in the epithelium

of both patients and AD mouse models compared to healthy

controls and normal mice, reflecting an autophagic blockade in

the pathogenesis of AD (86). In a different study, however, raised

levels of ATG5, ATG7, LC3B, and p62 were detected in the

epithelium of AD patients (75). Although the elevation of the first

three proteins indicates autophagy induction, it could represent a

cellular response to compensate for the decline in autophagic

degradation activity by increasing autophagosome formation.

Moreover, levels of functional lysosome proteases, cathepsins D

and L, were significantly reduced in the epithelium of patients with

AD. In general, these results supported the pathogenic role of

defective autophagy in AD.

Inflammation also plays a pivotal role in the pathogenesis of

AD, with multiple immune cells and pro-inflammatory cytokines

jointly contributing to the inflammatory response in AD. TNF-a,
which exhibits proinflammatory effects in AD, is able to induce

autophagy in the early phase to re-establish cellular homeostasis,

but prolonged exposure to it inhibits lysosomal activity and

autophagy flux in keratinocytes (75, 87). Studies have shown that

Th2 cytokines (e.g., IL-4 and IL-13), which were upregulated in AD

skin lesions, counteracted autophagy induction in human

keratinocytes by activating the mTOR pathway (86, 88). IL-37, on

the other hand, increases AMPK levels and thereby leads to a

reduction in the expression levels of mTOR, ultimately promoting

autophagy and ameliorating inflammation in AD (89).

Furthermore, skin barrier disruption, another hallmark of AD,

has also been associated with dysfunctional autophagy. Defective

autophagy suppresses the differentiation of keratinocytes and

downregulates stratum corneum barrier-related and tight junction

barrier-related proteins, jeopardizing the integrity of the skin

barrier (86, 90). Moreover, autophagy is also essential for the

skin’s defense mechanisms against invading pathogens. Dysbiosis

of the skin microbiota, especially S. aureus, has been found to

exploit autophagy and thereby persist within keratinocytes,

contributing to the pathogenesis of AD as well (91). Hence,

dysfunctional autophagy significantly contributes to the

pathogenesis of AD by causing damage to the epidermal barrier

and perpetuating inflammation.
5.3 Vitiligo

Vitiligo is one of the most important pigmentary disorders,

characterized by the absence or reduction of functional melanocytes

in the epidermis, resulting in depigmented skin lesions. Despite the

obscure etiology, proposed mechanisms so far include oxidative

stress, autoimmune responses, genetic factors, and neural

influences (92).

Autophagy has been associated with the biological functions of

melanocytes, including melanin metabolism and the formation,
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maturation, and destruction of melanosomes (93). Various

autophagy-related proteins, such as ATG7, ATG4, LC3, and

Beclin1, are strongly correlated with the melanogenesis pathway

(94, 95). Autophagy activation and increased levels of LC3 have

been linked to enhanced melanin synthesis in melanocytes (96).

In contrast, LC3 depletion suppressed the expression of

microphthalmia-associated transcription factor (MITF) and

tyrosinase, resulting in decreased melanin content, which suggests

that impaired autophagy may participate in the pathogenesis

of vitiligo (96). Furthermore, autophagy inducers, such as

lipopolysaccharide and 30-hydroxydaidzein, stimulated

melanogenesis in melanocytes and PIG3V melanocytes (a vitiligo

melanocyte cell line), while autophagy inhibitors, such as 3-

methyladenine or chloroquine, exerted the opposite effect (97).

Dysregulated autophagy disrupts the antioxidant defense

system in melanocytes, ultimately contributing to the onset and

progression of vitiligo (98). Studies have demonstrated that vitiligo

melanocytes exhibited impaired autophagy and increased

proneness to hydrogen peroxide-induced oxidative stress (99). In

addition, specific suppression of ATG7-dependent autophagy in

melanocytes failed to exhibit any discernible effect on pigment

production or the formation and maturation of melanosomes.

Instead, the absence of autophagy in melanocytes impeded their

proliferation, disrupted Nrf2 signaling, and reduced the

antioxidative defense mechanism within melanocytes (100, 101).

On the other hand, the upregulation of ATG7-dependent

autophagy defends melanocytes from oxidative stress-induced

apoptosis (101). Collectively, ATG7-dependent autophagy is

essential for maintaining normal biological processes and redox

balance in melanocytes.

In a recent study employing RNA sequencing to analyze tissue

samples from vitiligo patients, autophagy inhibition was observed

in lesional skin, as supported by the decreased ratio of LC3-II/LC3-I

and increased p62 expression in vitiligo lesions (102). Moreover,

polymorphisms of the UVRAG genes may contribute to enhanced

susceptibility to non-segmental vitiligo, connecting autophagy

dysregulation with vitiligo pathogenesis (103). Intriguingly,

autophagy induction has also been reported in vitiligo. Bastonini

et al. demonstrated elevated expression levels of autophagic

markers, including LC3-II, ATG7, ATG8, and ATG5, in non-

lesional vitiligo melanocytes compared to normal melanocytes.

Concurrently, p62 levels were reduced. These observations could

be attributed to the mitochondrial defects and the subsequent

impaired energy metabolism (104). On the other hand, inhibition

of autophagy leads to an exacerbation of the deleterious metabolic

effects observed in the corresponding melanocytes, further

suggesting that autophagy in non-lesional vitiligo melanocytes is a

responsive mechanism to metabolic surveillance (104). In

comparison to active vitiligo lesions, stable lesions exhibited

increased levels of autophagy, which suggests that the induction

of autophagy serves as a protector to counteract the progression of

the disease (105).

Considering that vitiligo is now viewed as a disease affecting the

entire skin, not just melanocytes, the alteration of autophagy may

extend to other skin cells including keratinocytes and fibroblasts

(102, 106). Therefore, the variable role of autophagy in vitiligo
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reflects complex mechanisms, that ultimately lead to melanocyte

loss, and is in need of further investigation.
5.4 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease characterized by the immune system mistakenly attacking

healthy cells and tissues due to a failure to distinguish between

certain self-antigens and foreign ones (107). The etiology and

pathogenesis of SLE are complicated and multifactorial, involving

mechanisms such as genetics, environmental elements, hormonal

factors, and abnormal immune function. In SLE, an elevated level of

cell apoptosis has been associated with an increase in autoantigens,

which subsequently induces an excessive autoimmune response

(108). Autophagy has been implicated in the degradation of pro-

apoptotic proteins and clearance of apoptotic cells, thereby

effectively preventing the onset of inflammation. Recently,

autophagy dysfunction has gained gradual recognition as a

contributing factor in SLE (109, 110). Studies focusing on

genome-wide association have identified several autophagy-

related genes associated with SLE susceptibility, such as ATG5,

ATG16L2, CDKN1B, DRAM1, and CLEC16A (111). Additionally,

polymorphisms of the ATG5 gene and the Prdm1-ATG5 intergenic

region have also been connected to SLE, further implicating the

involvement of autophagy in this disease (112).

The dysregulated immune response plays a critical role in the

development and progression of SLE, which is characterized by

abnormal B and T cell activation, cytokine secretion, and

autoantibody production (113). Dysregulation of autophagy

affects both innate and adaptive immune responses in SLE and

contributes to the disease’s pathogenesis through multiple

mechanisms. First, autophagy regulates the development,

proliferation, and activation of T and B cells (114). Under normal

circumstances, autoreactive B cells will be eliminated through

apoptosis. Upregulated autophagy, on the other hand, enables

autoimmune B cell precursors to evade the initial tolerance

checkpoints and escape physiological deletion (115). In patients

with SLE, defective B cell tolerance checkpoints have been observed,

along with intensified autophagy in B cells, especially in naïve B cells

(116). Accordingly, levels of anti-nuclear antibodies (ANA) and

inflammatory cytokines were reduced in mice with B cell-specific

ablation of autophagy, as well as inhibited plasma cell (PC)

differentiation, suggesting that autophagy may regulate the

survival of autoreactive B cells and the differentiation of PCs in

SLE (117).

Autophagy also appears to participate in the processing and

presentation of self-antigen-derived peptides to cognate T cells

(118). Using an autophagy inhibitor, researchers observed

reduced MHC class II molecules in B cells, a diminished number

of PCs, and decreased IgG secretion by lupus B cells (119).

Moreover, higher numbers of autophagic vacuoles were noted in

T cells of lupus-prone mouse models and patients with SLE,

particularly in peripheral T cells (120). This observation indicates

that autophagy may regulate the survival of autoreactive T cells in

individuals with lupus. In a more recent study, CD4+ naïve T cells
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extracted from patients with SLE exhibited elevated levels of

constitutive autophagy compared with those from healthy

controls (121). However, other studies have indicated a blockade

of autophagy in SLE, rather than activation. It has been confirmed

that autophagy is necessary for T cell differentiation, activation, and

survival, the downregulation of which can lead to mitochondrial

dysfunction, increased production of ROS, and, ultimately, cell

death (122). Indeed, mTOR signaling is enhanced in SLE, which

subsequently inhibits autophagy and is considered to be a central

mediator to lupus pathogenesis (122). Furthermore, T cells from

patients with SLE were demonstrated to be resistant to autophagy

induction, and autophagy-suppressing genes (e.g., Bcl-2 and Akt1)

were overexpressed (121). Failure to induce autophagy in SLE could

lead to an overload of damaged mitochondria and thus excessive

ROS production. In support of the notion that autophagy inhibition

is involved in SLE pathogenesis, Fernandez et al. found that

rapamycin, an autophagy inducer, was able to alleviate disease

activity and restore T cell activation in patients with SLE (123).

Therefore, the function of autophagy in patients with SLE can be

cell type-dependent and have distinctive roles in different stages of

the same cell.

Elevated levels of IFN-a have been acknowledged as a hallmark

of SLE, and the secretion of it from plasmacytoid DCs is modulated

by autophagy (50, 124). As skin lesions in patients with SLE exhibit

photosensitivity, UV exposure is also closely associated with the

development of SLE. The regulation of apoptotic cells and DNA

damage clearance through autophagy is crucial in preventing the

development of SLE, as defects in this process may promote the

disease (125). In addition, infections, especially Epstein–Barr virus

(EBV), are another triggering factor for SLE. EBV-encoded latent

membrane protein 1 has been observed to induce autophagy,

facilitate the activation of B and T cells, and might lead to

abnormal immune responses (126). In summary, the deregulation

of autophagy could be integrated into many aspects of pathogenesis.
5.5 Alopecia areata

Alopecia areata (AA) is an autoimmune disease that primarily

targets hair follicles (HFs), resulting in non-scarring hair loss (127).

Autophagy has been proven to be involved in the modulation of

hair growth. Specifically, activated autophagy encourages hair

growth in dormant telogen HFs, whereas inhibiting autophagy

leads to apoptosis-driven involution of HFs ex vivo (128, 129). In

addition, autophagy promotes the differentiation of HF stem cells

(130). Genome-wide association studies have identified genetic

variations related to autophagy regulation, such as STX17,

CLEC16A, and BCL2L11, as predisposing genetic loci for AA

(131, 132). Furthermore, several AA patients have exhibited copy

number variations (CNVs) in the genomic region spanning ATG4B,

another key autophagy gene (133).

Notably, disruptions in autophagy have been implicated in the

immunologic derangement in the pathogenesis of AA (134).

Advanced-stage AA is marked by reduced autophagic activity, as

evidenced by the accumulation of SQSTM1 in the affected skin and

HFs of AA mouse models, in contrast to both non-lesional and
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healthy skin and HFs. Conversely, notably higher levels of ATG5

and LC3B in non-lesional HFs compared with healthy ones may

reflect a temporary autophagic upregulation in the early stages of

AA pathogenesis. Pharmacological induction of autophagy, on the

other hand, restores autophagic activity and reduces the associated

inflammation in AA skin, while autophagy inhibition accelerates

disease onset (135, 136). Recent research identified melanocytes as

the ignitor of autoimmune attacks in both vitiligo and AA and

proposed that alterations in the autophagy mechanism participate

in the process (134, 137). Taken together, these results reveal the

involvement of disrupted autophagy in the pathogenesis of AA.
5.6 Systemic sclerosis

Systemic sclerosis (SSc) is an autoimmune disease characterized

by skin and visceral organ fibrosis as well as vasculopathy, resulting

from aberrant activation of fibroblasts, excess deposition of collagen,

and abnormal fibrosis. The pathogenesis of SSc is intricate and may

involve genetic and environmental factors, along with immune

dysregulation (138). Malfunctional autophagy is believed to play a

key role in SSc, as evidenced by the upregulation of autophagy in the

fibrotic skin of SSc patients with increased expression levels of LC3,

Beclin1, and ATG7, in addition to downregulated protein levels of

p62 (108, 139). Similarly, activation of autophagy in fibroblasts was

also observed in murine models of pulmonary or dermal fibrosis,

especially in the sclerotic phase compared to the edematous phase,

suggesting an association between abnormal activation of the

autophagic degradation system and fibrosis in SSc (139, 140).

Moreover, inhibition of the PI3K/Akt/mTOR signaling pathway

reduced the production of the fibrotic cytokine connective tissue

growth factor (CTGF) and collagen I in SSc fibroblasts via

downregulation of HIF-1a (141). Meanwhile, the treatment of a

dual inhibitor for PI3K/Akt and mTOR signaling in an SSc mouse

model also attenuated dermal fibrosis, reinforcing the role of PI3K/

Akt/mTOR signaling in SSc (142).

Among the cytokines implicated in SSc, transforming growth

factor-b (TGF-b) is considered the main profibrotic molecule,

functioning through the activation of the small mother against

decapentaplegic (SMAD) signaling and the production of the

extracellular matrix (ECM) (143). Zehender et al. proved that

inhibition of autophagy renders human fibroblasts less sensitive

to the profibrotic effects of TGF-b, thereby reducing fibroblast

activation and ameliorating fibrosis (139). Specifically, TGF-b
activates autophagy by repressing MYST1, which further unravels

the possible mechanism of TGF-b and autophagy in the context of

fibrosis. These findings suggest that regulating autophagy may serve

as a potential therapeutic approach for SSc.
6 Conclusion

Autophagy is an innate defense mechanism that maintains

cellular equilibrium in response to different stress conditions by

breaking down and recycling damaged or dysfunctional cellular

components. Emerging evidence has established connections
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between autophagy and a multitude of immune functions, including

defense against both intracellular and extracellular pathogens,

modulation of the development and homeostasis of immune cells,

and antigen processing and presentation, which positions

autophagy as a mediator of autoimmunity. In the context of skin

physiology, autophagy plays a pivotal role not only in regulating the

metabolic and functional integrity of diverse skin cells but also in

modulating skin inflammation and immune responses. Therefore,

functional autophagy is closely associated with skin health and its

proper functions, while the dysregulation of autophagy contributes

to various skin disorders, particularly skin autoimmune disorders,

as supported by polymorphisms in autophagy-related genes and

altered expression levels of autophagic proteins observed in the

forementioned skin autoimmune diseases (Table 2, Figure 2). In

most cases, autophagy functions as a protective mechanism for skin

autoimmune diseases. In the context of skin autoimmune diseases

like psoriasis, AD, vitiligo, and AA, autophagy serves as a protective

mechanism. The pathogenesis of those conditions is often

associated with a reduced level of autophagy and disruption of its

related pathways. This deficiency contributes to disease progression

mainly by affecting skin barrier function, promoting inflammatory

responses, disrupting the antioxidative defense mechanism, and
TABLE 2 Role of dysregulated autophagy in various skin
autoimmune diseases.

Skin
autoimmune
diseases

Altered
levels of
autophagy-
related
genes
and proteins

Alteration
of
autophagy

Role of
dysregulated
autophagy

Psoriasis •Genes:
ATG16L1 and
AP1S3 (60, 70)
•Proteins: ATG5,
ATG7, Beclin1,
LC3, and p62
(71–75)

Reduced Abnormal
differentiation and
proliferation of
keratinocytes (78,
79)
Colonization of
bacteria (76)
Aggravation of
inflammatory
response (79, 80)

Induced Compensatory
mechanism (78)

Atopic
dermatitis

•Genes: ATG4
and ATG16L2
(85)
•Proteins: ATG5,
ATG7, LC3B,
and p62 (75)

Reduced Defect of skin
barrier (86, 90)
Proinflammatory
effects (75, 86, 89)
Entry of
pathogens (91)

Induced Compensatory
mechanism to re-
establish cellular
homeostasis (75)

(Continued)
F
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TABLE 2 Continued

Skin
autoimmune
diseases

Altered
levels of
autophagy-
related
genes
and proteins

Alteration
of
autophagy

Role of
dysregulated
autophagy

Vitiligo •Proteins: ATG4,
ATG5, ATG7,
ATG8, LC3, and
Beclin1 (94,
95, 104)

Reduced Suppression of
melanogenesis (96)
Impairment of
melanocyte
proliferation (100)
Disruption of the
antioxidant
defense system
(98, 99)

Induced A protector to
counteract the
progression of the
disease (105)

Systemic
lupus
erythematosus

•Genes: ATG5,
ATG16L2,
CDKN1B,
DRAM1, and
CLEC16A
(111, 112)

Reduced An overload of
damaged
mitochondria and
excessive ROS
production (122)
Incomplete
clearance of
apoptotic cells and
DNA
damage (125)

Induced Aberrant
development,
proliferation, and
activation of T and
B cells (114, 115)
Processing and
presentation of
self-antigens (118)
Epstein–Barr virus
infection (130)

Alopecia areata •Genes: STX17,
CLEC16A,
BCL2L11, and
ATG4B (131–
133)
•Proteins:
SQSTM1, ATG5,
and LC3B (134)

Reduced Dysregulated hair
growth (135, 136)
Inhibition of hair
follicle stem cell
differentiation
(130)

Induced Protective
mechanism in the
early stages
(128, 129)

Systemic
sclerosis

•Proteins: LC3,
Beclin1, ATG7,
and p62
(108, 139)

Induced Dermal fibrosis
(141)
Modulating the
sensitivity of
human fibroblasts
to the profibrotic
effects of TGF-
b (139)
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impacting the homeostasis, development, and function of relevant

cell types. In some circumstances, a moderate elevation of

autophagy in these diseases tends to function as a compensatory

mechanism. In contrast, in SLE and SSc, excessive autophagy has

been observed, which may facilitate the progression of these

diseases. Additionally, autophagy engages in complicated

interactions with multiple types of cell death, which are also

implicated in skin autoimmune disorders. For example, impaired

mitophagy leads to pyroptosis and ferroptosis in certain skin

diseases, such as psoriasis (144). Moreover, environmental factors,

including UV exposure, smoking, and alcohol consumption, exert

additional impacts on the diseases partially through the modulation

of autophagy. Smoking has been reported to be associated with

elevated risks of psoriasis and SLE (145, 146). The related

mechanism could be attributed to oxidative stress, inducing

abnormal mitochondrial functions and ER stress, which can be

modulated through autophagy (146, 147). Excessive alcohol

consumption is another risk factor for psoriasis, potentially

related to the generation of ROS and its effects on both innate

and adaptive immunity (148). Alcohol may not only induce ROS to

activate autophagy but also increase p62 expression, which inhibits

autophagy (149). To this end, the precise role of autophagy in the

impact of alcohol consumption on psoriasis remains uncertain.

Overall, autophagy plays a complex role in the pathogenesis of skin

autoimmune diseases, with both excessive and deficient autophagy

implicated in disease development. Therapies targeting autophagy-

related proteins and signaling pathways have also been implicated

in several autoimmune skin diseases. Glucocorticoids and
Frontiers in Immunology 10
rapamycin are both effective therapies for patients with SLE,

which may relieve the symptoms of SLE by influencing autophagy

(109). Notably, rapamycin, a pharmacological inducer of

autophagy, exerts therapeutic effects mainly by binding to

FKBP12 and inhibiting mTORC1 and its relevant pathways (150).

The topical application of rapamycin improved imiquimod-

induced psoriasis-like dermatitis, restored autophagy suppression,

and reduced oxidative stress and the inflammatory response in the

psoriatic mouse model (150, 151). Therefore, comprehensive

research uncovering the functions of autophagy and its

contributions to cell death-related and immune response-related

machinery may provide a better understanding of the pathogenesis

of skin autoimmune diseases. Both direct regulation of autophagy

and synergistic use of autophagy modulators with conventional

therapies may shed light on new therapeutic strategies for skin

autoimmune disorders.
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FIGURE 2

Role of dysregulated autophagy in various skin autoimmune
diseases. IL, interleukin; S. aureus, Staphylococcus aureus; ROS,
reactive oxygen species; EBV, Epstein–Barr virus; TGF, transforming
growth factor; CTGF, connective tissue growth factor; ECM,
extracellular matrix; SMAD, small mother against decapentaplegic.
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