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Guangdong, China, 2Department of Pathophysiology, School of Medicine, Jinan University,
Guangzhou, Guangdong, China, 3Department of General Surgery, Guangdong Second Provincial
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Immune Checkpoint Inhibitors (ICIs) therapy has advanced significantly in

treating malignant tumors, though most ‘cold’ tumors show no response. This

resistance mainly arises from the varied immune evasion mechanisms. Hence,

understanding the transformation from ‘cold’ to ‘hot’ tumors is essential in

developing effective cancer treatments. Furthermore, tumor immune profiling

is critical, requiring a range of diagnostic techniques and biomarkers for

evaluation. The success of immunotherapy relies on T cells’ ability to

recognize and eliminate tumor cells. In ‘cold’ tumors, the absence of T cell

infiltration leads to the ineffectiveness of ICI therapy. Addressing these

challenges, especially the impairment in T cell activation and homing, is crucial

to enhance ICI therapy’s efficacy. Concurrently, strategies to convert ‘cold’

tumors into ‘hot’ ones, including boosting T cell infiltration and adoptive

therapies such as T cell-recruiting bispecific antibodies and Chimeric Antigen

Receptor (CAR) T cells, are under extensive exploration. Thus, identifying key

factors that impact tumor T cell infiltration is vital for creating effective treatments

targeting ‘cold’ tumors.
KEYWORDS

cold tumors, immune checkpoint inhibitors, tumor-infiltrating T lymphocytes, tumor
microenvironment, immunotherapy
1 Introduction

In recent years, Immune Checkpoint Inhibitors (ICIs) have increasingly been

incorporated into the treatment of various cancers, becoming a standard part of

oncological treatment guidelines. However, a significant proportion of cancer patients

still exhibit poor responses to ICI therapy. This trend highlights a need for further research
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and development in personalized cancer treatment strategies to

improve outcomes for this patient subset (1, 2). In patients with

solid tumors, ‘hot’ tumors (‘immune- inflamed’) often show a

favorable response to ICIs, characterized by extensive lymphocyte

infiltration in the tumor parenchyma. In contrast, ‘cold’ tumors

exhibit a poorer response to ICIs. These tumors are marked by an

inability of T cells to penetrate the tumor parenchyma, remaining

instead in the tumor stroma (‘immune-excluded’) or by a lack of T cell

infiltration in both the tumor parenchyma and stroma (‘immune-

desert’) (3). This distinction underscores the importance of

understanding tumor immunology to optimize ICIs therapy

efficacy. However, increasing evidence suggests that not all tumors

with high T cell infiltration exhibit favorable responses to ICIs.

Conversely, some tumors with low T cell infiltration may also

demonstrate good responsiveness to ICIs. This observation indicates

a more complex relationship between T cell infiltration levels and ICI

response, underscoring the need for a deeper understanding of tumor

immunobiology to effectively predict and enhance ICIs therapy

outcomes (4–6). These findings indicate that T cell infiltration

might be necessary, but additional factors may be required for

precisely identifying the responsiveness to ICIs. Currently, the

treatment of ‘cold’ tumors remains a significant challenge. In this

review, we discuss the definitions of ‘cold’ and ‘hot’ tumors, as well as

the challenges the immune systemmay encounter at different stages of

the cancer immunity cycle. We also describe therapeutic approaches

combining ICIs with other strategies to overcome ‘cold’ tumors. This

integrative approach aims to enhance the understanding and

treatment efficacy of tumors with varying immune characteristics.
Abbreviations: CAFs, cancer-associated fibroblasts; CCR5,C-C motif chemokine

receptor 5; cDC1, type 1 classical DC; cDC2, type 2 classical DC; CI, confidence

interval; CPS, combined positive score; CRC, colorectal cancer; CRT, calreticulin;

cSCC, cutaneous squamous cell carcinoma; CSF-1R, colony-stimulating factor 1

receptor; CTLs, cytotoxic T-lymphocytes; CXCR3, CXC-chemokine receptor 3;

DCs, dendritic cells; dMMR, defective mismatch repair; DNMT1, DNA

methyltransferase 1; ECM, extracellular matrix; EPR, enhanced permeability

and retention effect; ETBR, endothelin B receptor; EZH2, enhancer of zeste

homologue 2; FasL, Fas ligand; GBM, glioblastoma multiforme; HLA-I LOH,

HLA-I loss of heterozygosity; HR, hazard ratio; ICD, immunogenic cell death;

ICIs, immune checkpoint inhibitors; mCRPC, metastatic castration-resistant

prostate cancer; MDSCs, myeloid-derived suppressor cells; mIF, multiplex

immunofluorescence; MIS-H, high microsatellite instability; MMRp, mismatch

repair proficient; NK, natural killer; NSCLC, unresectable non-small cell lung

cancer; NSSMs, nonsynonymous somatic mutations; ORR, objective response

rate; OS, overall survival; OV, oncolytic viruses; PD-1, programmed death-1;

PDAC, pancreatic ductal carcinoma; pDCs, plasmacytoid DCs; PFS,

progressionfree survival; PRC2, polycomb repressive complex 2; RNS, reactive

nitrogen species; scRNA-seq, single-cell RNA sequencing; sGSN, secreted

gelsolin; TAAs, tumor-associated antigens; TAMs, tumor-associated

macrophages; VCAM-1, vascular cell adhesion protein 1; TCR, T cell receptor;

VEGF, vascular endothelial growth factor; TGFb, transforming growth factor b;

Th1, type 1 helper T cells; Th2, type 2 helper T cells; TILs, tumor-infiltrating T

lymphocytes; TMB, tumor mutational burden; TME, tumor microenvironment;

TNBC, triplenegative breast cancer; Treg, regulatory T cells; TSAs, tumor-specific

antigens; TVEC, Talimogene laherparepvec.
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2 Definition of “cold” and “hot” tumors

The concept of ‘cold’ and ‘hot’ tumors is not new in the field of

oncology. It was first described in 2006 by Galon et al. in their

publication on the relationship between immune cell types, density,

and distribution with the prognosis of colorectal cancer. This

seminal work introduced the idea of classifying tumors as ‘hot’ or

‘cold’ based on the type, density, and distribution of immune cells

within the tumor microenvironment. They posited that this

immune-based classification in colorectal cancer could provide a

more accurate prognosis assessment than the traditional TNM

staging system. This approach underlines the significant role of

the immune landscape in understanding and predicting cancer

progression (7). In 2007, Galon and colleagues proposed the

concept of “immune contexture” based on immunoscore (8).

Following this, in 2009, Camus et al. first described three immune

coordination profiles (hot, altered, and cold) in primary colorectal

cancer (CRC), balancing tumor escape and immune coordination

(9). Building on these works, researchers introduced the

immunoscore, which assesses the infiltration of lymphocyte

populations (CD3 and CD8) in the tumor core and at its margin.

The score ranges from immunoscore 0 (I0, low-density CD3 and

CD8 stained cells in the tumor center and periphery) to

immunoscore 4 (I4, high-density CD3 and CD8 stained cells in

these regions) (10, 11). This scoring system classifies cancer based

on immune infiltration and introduces the concepts of ‘hot’ tumors

(I4) and ‘cold’ tumors (I0-I3). As research progressed, the

characteristics of hot tumors were expanded to include the

presence of tumor-infiltrating lymphocytes (TILs), expression of

programmed death-ligand 1 (PD-L1) on tumor-associated immune

cells, and a high tumor mutational burden. Conversely, cold

tumors, characterized by poor infiltration, also feature low or

negligible PD-L1 expression, high proliferation rates, and a low

tumor mutational burden (12).
3 Mechanisms of immune escape in
“cold” tumors

Immune checkpoints encompass a group of receptors expressed

by immune cells, facilitating the dynamic regulation of immune

homeostasis. They hold particular relevance for the functioning of T

cells. Among these checkpoints, PD-1 and its primary ligand PD-L1

find expression on T cells, tumor cells, and myeloid cells infiltrating

tumors. The interaction between PD-1 and PD-L1 leads to CD8+ T

cell exhaustion, a potentially irreversible state of dysfunction

characterized by diminished or absent effector functions

(including cytotoxicity and cytokine production), reduced

responsiveness to stimuli, and altered transcriptional and

epigenetic profiles (13, 14). Tumor cells exploit this interaction to

establish immune tolerance. However, it also serves essential

physiological roles, such as limiting autoimmune inflammation,

preserving fetal tolerance during pregnancy, and preventing the

rejection of transplanted organs (15). Immune checkpoint

inhibitors function by blocking immune checkpoints, thus
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restoring the anti-tumor activity of CD8+ T cells. Immune

checkpoint inhibitors function by blocking immune checkpoints,

thus restoring the anti-tumor activity of CD8+ T cells. Any failures

during the stages of T cell activation, homing, or infiltration into the

tumor bed in the tumor immune process can result in inadequate T

cell infiltration into the tumor core (Figure 1). This, in turn, leads to

resistance to ICIs therapy.
3.1 Lack of tumor antigens

Tumor antigens can be categorized into two main types:

Tumor-specific antigens (TSAs) and Tumor-associated antigens

(TAAs) (16). TAAs are antigens that, while not exclusive to tumor

cells, are present in normal cells and other tissues but are

significantly elevated during cellular transformation into cancer.

These antigens exhibit quantitative changes without strict tumor

specificity. Although they can also trigger immune responses, the

most crucial in activating immune responses are neoantigens, also

known as TSAs. TSAs are antigens unique to tumor cells or

present only in certain tumor cells and not in normal cells. This

includes antigens produced by oncogenic viruses integrated into

the genome and those arising from mutant proteins (17). In
Frontiers in Immunology 03
addition to mutations in DNA coding regions, gene fusions

(18), mutations in non-coding regions (19), and alternative

splicing (20) can also generate neoantigens. Loss of DNA

damage response can lead to gene mutations, including

mismatch repair deficiencies (dMMR) and microsatellite

instability (MSI) (21). Currently, ICIs treatment has become the

preferred therapy for advanced colorectal cancer with high

microsatellite instability (22). Therefore, the recognition of TSAs

plays a key role in activating T cells and promoting their

infiltration into tumor tissues.

Tumor Mutational Burden (TMB) refers to the number of

nonsynonymous single nucleotide mutations found in tumor cells.

A high TMB implies more mutations, leading to the generation of

more TSAs. Research over the past five years has shown that tumors

with high TMB respond better to ICIs treatment than those with low

TMB (23). McGrail et al. found that in cancers characterized by

recurrent mutations, neoantigens are positively correlated with TILs

infiltration (24). However, in tumors characterized by recurrent copy

number variations, there is no correlation between TILs infiltration

and the neoantigen load (24). Spranger et al. found no association

between T cell infiltration and nonsynonymous somatic mutations

(NSSMs) (25). These studies indicate that the lack of T cell infiltration

cannot be solely explained by TMB.
FIGURE 1

A therapeutic strategy to convert cold tumors into hot tumors based on tumor immune cycle. The cancer-immunity cycle encapsulates seven
pivotal steps, with each one being integral to the overall mechanism. A malfunction or inefficiency at any juncture can potentially instigate the tumor
to evade the immune response. Nevertheless, a wide array of therapeutic approaches such as Chimeric Antigen Receptor T-cell (CAR-T) therapy, T-
cell Redirecting Bispecific Antibodies, cancer vaccines, oncolytic viruses, macrophage-targeted therapies, radiotherapy, chemotherapy, targeted
therapies, and nanoparticle-assisted treatments manifest their potential to modulate this cycle, thereby amplifying the body’s defensive reaction
against tumors.
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3.2 Defective antigen presentation

Dendritic cells (DCs) are pivotal in the antigen presentation

process. They play a critical role in initiating anti-tumor immune

responses by capturing and processing tumor antigens, conducting

cross-presentation, and activating naive T cells. There are multiple

subgroups of DCs, including classical DCs (type 1 cDC1 and type 2

cDC2), plasmacytoid DCs (pDCs), inflammatory DCs, and

Langerhans cells. Each subgroup plays a distinct role in immune

responses (26). In tumor immunology, DCs are often activated by

“danger signals” such as Damage-Associated Molecular Patterns

(DAMPs), including ATP, HMGB1, Calreticulin (CRT), and the

S100 protein family (27). Among the different DCs subtypes, cDC1s

are particularly crucial in tumor immunity. Studies show that Batf3-

knockout mice, which lack cDC1s, exhibit reduced TILs and

decreased responsiveness to ICIs (28). Research on tumor-bearing

mice indicates that cDC1s are essential for reactivating circulating

memory anti-tumor T cells and responding to ICIs (29). Tumors

can evade detection by DCs through various mechanisms, such as

expressing the “don’t eat me” signal CD47 (30). Tumor cells also

avoid exposing DAMPs, such as CRT, by expressing inflammatory

molecules like A20 (31) in CRC, STC1 (32) in certain tumors, and

glycosylated B7-H4 (33) in breast cancer. cDC1s cross-present

antigens from dying tumor cells, which is fundamental in

initiating anti-cancer CD8+ T cell responses. cDC1s express high

levels of DNGR-1 (also known as CLEC9A), a receptor that binds to

exposed F-actin in dying tumor cells and facilitates antigen cross-

presentation. Tumor cells can inhibit this process by secreting

extracellular proteins like sGSN, reducing the binding between

DNGR-1 and F-actin, thus preventing cDC1s from activating

CD8+ T cells (34).

HLA-I Loss of Heterozygosity (HLA-I LOH) is a significant

mechanism of immune escape, with approximately 17% of tumors

exhibiting HLA-I LOH (35, 36). TRAF3, a factor that inhibits NF-

kB activity, negatively regulates the expression of MHC-I. Lower

levels of TRAF3 are associated with better responses to ICIs) (37).

Notably, MHC-I on the surface of Pancreatic Ductal

Adenocarcinoma (PDAC) cells is degraded through autophagy.

Inhibiting autophagy can restore MHC-I levels on the surface of

PDAC cells. In mouse models of PDAC, combining autophagy

inhibitors with dual ICIs enhances the immune response against the

tumor (38). Therefore, increasing the expression of HLA-I on

tumor cells’ surface could be a potential strategy for treating

‘cold’ tumors.
3.3 T lymphocytes are unable to infiltrate
the tumor bed through the
blood circulation

3.3.1 Dysregulation of chemokines and cytokines
Chemokines in the TME mediate the recruitment of various

immune cells, including T cells, thereby influencing tumor

immunity and treatment outcomes. Dysregulation of chemokines
Frontiers in Immunology 04
within the TME often promotes tumor progression by altering the

infiltration of immune cells. For instance, effector CD8+ T cells, Th1

cells, and NK cells can migrate into the tumor in response to

chemokines like CXCL9 and CXCL10, facilitated by their shared

expression of the CXC chemokine receptor 3 (CXCR3) (39).

Enhancer o f ze s t e homologue 2 (EZH2) and DNA

methyltransferase 1 (DNMT1) reduce the presence of effector T

cells in tumors by inhibiting the production of CXCL9 and CXCL10

by Th1 cells (40). In colorectal cancer, the polycomb repressive

complex 2 (PRC2) similarly suppresses the production of these

chemokines by Th1 cells, thereby diminishing the entry of effector T

cells into the tumor (41). Additionally, the expression of CCL5 is

associated with the infiltration of CD8+ T cells, while DNA

methylation leads to reduced expression of CCL5, consequently

decreasing TILs (42). Reactive nitrogen species (RNS) produced in

the TME can also induce nitration of CCL2, impeding T cell

infiltration (43).

Cytokines significantly impact tumor cell development and the

treatment outcomes of ICIs. For instance, in urothelial cancer,

combining Transforming Growth Factor b (TGF-b) blockade

with ICIs therapy has been shown to promote T cell infiltration

into the tumor core and elicit strong anti-tumor immune responses

(44). Similarly, in colorectal cancer, inhibiting TGF-b increases the

number of cytotoxic T cells, thereby inhibiting tumor metastasis

(45). Additionally, Interferon g (IFNg), Interleukin-2 (IL-2), and

Interleukin-9 (IL-9) also play crucial roles in the efficacy of ICIs

treatment (46).

3.3.2 Immune cell–mediated immunosuppression
Within the tumor microenvironment, tumor cells interact with

various immune cells that have immunosuppressive functions,

particularly regulatory T cells (Tregs), myeloid-derived suppressor

cells (MDSCs), and tumor-associated macrophages (TAMs),

playing a crucial role in the regulation of tumor development and

progression (47, 48).

Tregs, initially identified as thymus-derived immunosuppressive

cells among CD4+ T cells with a high expression of CD25 in mice (49),

and later described in humans (50–52), gained recognition in the field

of immunology. The discovery of Foxp3, a master regulator of

Tregs, firmly established this population as an independent

immunosuppressive cell lineage within CD4+ T cells (53–55). In

current classification, Tregs are divided into natural/thymic and

peripherally induced subsets, based on the sites of their development

(56–58). Hence, it becomes imperative to distinguish Tregs from

FOXP3-expressing conventional T cells in humans. In human

studies, FOXP3-expressing CD4+ T cells are further categorized into

three groups, depending on the expression of CD4, CD45RA, CD25,

and/or FOXP3: 1) naive/resting Tregs, defined by CD4+

CD45RA+CD25lowFOXP3low T cells; 2) effector/activated Treg

(eTreg) cells, characterized by CD4+CD45RA−CD25highFOXP3high

T cells; and 3) non-Treg cells, identified as CD4+CD45RA−

CD25lowFOXP3low T cells. Naive Tregs, initially displaying weak

suppressive activity, have recently exited the thymus but remain

quiescent in the periphery (59, 60). Upon TCR stimulation, naive
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1344272
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ouyang et al. 10.3389/fimmu.2024.1344272
Tregs exhibit vigorous proliferation and differentiate into highly

suppressive eTreg cells. In contrast, non-Treg cells lack

immunosuppressive functions and instead produce inflammatory

cytokines, including interferon (IFN)-g and IL-17 (61). Treg cells

play a crucial role in dampening antitumor immune responses,

particularly those directed towards tumor-specific effector T cells

(62). These Treg cells are attracted to the TME, where they undergo

local proliferation and differentiation into an activated subset with

potent suppressive capabilities (63). Importantly, the presence of a high

frequency of Treg cells and an elevated ratio of Treg cells to effector T

cells, such as CD8+ T cells, within the TME is consistently associated

with an unfavorable prognosis among patients with various cancer

types (64, 65). Eliminating Tregs from the tumor environment can thus

potentiate the anti-tumor immune response. Moreover, a lower CD8

+T/Treg ratio has been identified as a poor prognostic indicator for the

effectiveness of anti-PD-1 monoclonal antibody treatments (66). Post-

immunotherapy scenarios where there is no appreciable increase in T

effector cells coupled with a decrease in Tregs, or a surge in Treg cells

within the tumor matrix, are often indicative of resistance to PD-1/PD-

L1 monoclonal antibody therapies.

MDSCs, a diverse group of cells, are known to inhibit effector T-

cell responses and foster the development of Tregs (67). The efficacy

of immunotherapy is often reduced in the presence of the tumor

microenvironment (68). These MDSCs are induced in immature

myeloid cells by external agents such as tumor-derived factors, and

they disrupt the production, proliferation, migration, and activation

of MDSCs. MDSCs facilitate tumor invasion and metastasis,

predominantly through factors like Indoleamine 2,3-dioxygenase

(IDO), Arginase-1 (ARG1), Reactive Oxygen Species (ROS), IL-10,

Inducible Nitric Oxide Synthase (iNOS), Cyclooxygenase-2 (COX-2),

and Nitric Oxide (NO) (69). Additionally, MDSCs can attract Tregs

to the tumor microenvironment to augment immunosuppression.

Studies also reveal that inhibiting PI3K can synergize with

immunocheckpoint inhibitors. In models where PD-1 monoclonal

antibody treatment was ineffective, PI3K inhibition reduced MDSC

circulation and recruitment, curtailed the production of

immunosuppressive factors like IL-10 and TGF-b, and enhanced

the secretion of inflammatory mediators such as Interleukin-12 (IL-

12) and Interferon-Gamma (INF-g), mirroring the combined

inhibitory effects on CTLA-4 and PD-1 monoclonal antibodies (70,

71). These findings suggest that PI3K inhibitors could serve as

potential adjunctive therapies with PD-1/PD-L1 antibodies,

particularly in overcoming single-agent drug resistance. In the

metabolic context, MDSCs derive energy from arginine

metabolism, primarily through ARG1. Impairment of ARG1

activity can diminish the inhibitory capacity of MDSCs, thereby

heightening the sensitivity of tumors to PD-1/PD-L1 antibodies (72).

TAMs, another influential cell type in immunotherapy, consist

of M1-like macrophages that bolster anti-tumor immunity and M2-

like macrophages that promote cancer. PD-1 expression is more

pronounced in M2-like macrophages compared to M1-like

macrophages (73, 74), and an increase in PD-1+M2-like

macrophages correlates with advanced disease stages, hinting at

their progressive accumulation in the tumor microenvironment

(75). M2-like macrophages aid in tumor cell immune evasion

through PD-1 and are activated by cytokines such as IL-4, IL-10,
Frontiers in Immunology 05
IL-13, or Colony Stimulating Factor 1 (CSF1), engaging in wound

healing, tissue repair, and anti-inflammatory responses through

cytokines including IL-10 (76). They also promote tumor invasion

and metastasis via angiogenesis and remodeling of the extracellular

matrix (77). Clinical studies have correlated high levels of TAMs

with poor outcomes in various cancers (78). Targeting the C-C

Motif Chemokine Ligand 2 (CCL2) and C-C Motif Chemokine

Receptor 2 (CCR2) pathways in a lung adenocarcinoma mouse

model led to reduced recruitment of M2 macrophages and inhibited

tumor growth (79). Notably, using macrophage Colony Stimulating

Factor 1 Receptor (CSF-1R) blockers reduces TAM frequency,

increases IFN production, and enhances tumor cell response to

drugs in pancreatic cancer models. When combined with PD-1 or

CTLA-4 antibodies, and gemcitabine, CSF-1R blockers

demonstrated increased efficacy (80).

In conclusion, the heterogeneous nature of inhibitory immune

cells within tumors, influenced by chemokines, cytokines, and

colony-stimulating factors in the tumor microenvironment, limits

the effectiveness of PD-1/PD-L1 blockers when used alone.

Resistance to immune checkpoint blockade may be indicated by

factors such as the CD8+/Treg ratio, IDO, ARG1, CSF-1R, and the

M1/M2 ratio. Addressing these indicators through combined

therapeutic strategies could lead to more effective clinical

outcomes and prognoses. The concurrent use of drugs targeting

immunosuppressive cells, including IDO inhibitors, ARG1

inhibitors, PI3K inhibitors, and ICIs, has shown promise in

clinical trials, particularly when used in dual combinations,

offering manageable side effects and good clinical compliance.

However, the effectiveness of combinations involving three or

more such agents remains less explored.
3.3.3 Vascular abnormalities and hypoxia
CD8+ T cells must enter the tumor core through the

intratumoral vasculature (16). Their transport into tumor tissue

depends on enhanced expression of adhesion molecules and

chemokines in the tumor blood vessels, a process known as

endothelial cell activation. However, poor activation of tumor

blood vessels often leads to impaired transport of CD8+ T cells

(81). Studies have shown that the absence of TILs is associated

with overexpression of the endothelin B receptor (ETBR) (82).

Tumor cells often promote angiogenesis by producing vascular

endothelial growth factor (VEGF), which typically reduces the

expression of vascular cell adhesion protein 1 (VCAM-1), thereby

hindering T cell migration into the TME (83). Additionally,

research indicates that Fas ligand (FasL, also known as CD95L)

is selectively expressed in the vasculature of human and mouse

tumors, whereas it is not expressed in normal vasculature.

Expression of FasL enables endothelial cells to kill CD8+ T cells,

but not Tregs (84). Tumors with poor vascularization, such as

PDAC, due to their abnormal vascular structure and function,

reduce the transport of immune cells and often exhibit high

resistance to ICIs treatment (85).

Aberrant angiogenesis in tumors frequently precipitates

conditions such as hypoxia, acidosis, and necrosis, subsequently

impeding anti-tumor immune responses (86). Hypoxia, a defining
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characteristic of cancer, arises from a disparity between oxygen

consumption and supply within the tumor milieu. This is attributed

to the voracious oxygen consumption by rapidly proliferating

tumor cells, coupled with inadequate oxygen delivery due to

dysfunctional vasculature (87). The impact of hypoxia on TILs is

complex and wide-ranging. Notably, hypoxia can stimulate the

expression of CCL28 (88), VEGF (86), CD39 (89, 90), and CD73

(89, 90). These molecules are instrumental in angiogenesis and

modulate T cell mobilization.

3.3.4 Oncogenic pathway activation
In the field of oncology, the complex interplay between tumor

cells and various signaling pathways is pivotal in shaping the tumor

microenvironment (TME) and influencing therapy resistance.

Tumor cells are known to hijack and modulate numerous

pathways, notably including PKC, Notch, and TGF-b signaling.

Recently, attention has also been drawn to the cyclic GMP–AMP

synthase (cGAS)–stimulator of interferon genes (STING) and Siglec

signaling pathways. These pathways play a critical role in sustaining

a tumor-friendly microenvironment and fostering resistance to

treatment, including multi-drug resistance.

3.3.4.1 Protein kinase C signaling

In oncology, the role of PKC isoforms in the TME is increasingly

recognized as critical in determining tumor behavior. PKC, a family

of serine/threonine kinases, serves as a signal transducer for various

molecules including hormones, growth factors, cytokines, and

neurotransmitters. These molecules are key regulators of cell

survival, proliferation, differentiation, apoptosis, adhesion, and

malignant transformation (91–93). The interaction of ligands with

receptors can activate phospholipase C, thereby upregulating

activators of PKC signaling like diacylglycerol (DAG) and Ca++

(94, 95), subsequently modulating several molecular pathways such

as Akt, STAT3, NF-kB, and apoptotic pathways. Interestingly,

different PKC isoforms play varying roles in tumorigenesis and

metastasis (94). For instance, PKC alpha demonstrates antitumor

activity by influencing the polarization of TAMs within the TME

(96). Conversely, PKC theta has been shown to suppress tumors by

inducing immune suppression through CTLA4-mediated regulatory

T-cell function (97–99). However, other isoforms, like PKC beta, are

known to facilitate angiogenesis and invasiveness in certain tumors

via the VEGF signaling pathway (100–102). The complexity of PKC

signaling is further evidenced by its dual role as both a tumor

promoter and suppressor, depending on the isoform and the

context. This dual role presents both challenges and opportunities

for therapeutic interventions.

Recent advancements in cancer treatment strategies have

explored the modulation of PKC signaling, utilizing activators like

Bryostatins (103) and Epoxytiglianes (104–106), as well as

inhibitors such as CGP 41251, to counteract tumor growth and

reverse multidrug resistance (107).

3.3.4.2 PI3K-AKT-mTOR signaling pathway

The PI3K/AKT/mTOR signaling pathway, a pivotal regulator of

cellular processes such as apoptosis, proliferation, movement,

metabolism, and cytokine expression, plays a critical role in
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PD-1/PD-L1 antibodies. Central to this pathway is the lipid

phosphatase PTEN, a tumor suppressor that inhibits PI3K

activity. PTEN deletion or mutation leads to the activation of

PI3K/AKT and resistance to PD-1/PD-L1 in various cancers.

PTEN’s expression is regulated through diverse mechanisms,

including epigenetic silencing, post-transcriptional and post-

translational modifications, and protein-protein interactions

(108). PTEN’s downregulation is key in cancer progression,

affecting cell energy metabolism, metabolic reprogramming of

cancer cells, and influencing glucose uptake and protein synthesis.

PTEN also plays a role in cell migration and senescence, with its loss

leading to increased cell viability and promoting EMT and tumor

cell migration (109). PTEN loss affects tumor immunotherapy,

showing a correlation with resistance to immunotherapy,

particularly impacting the tumor microenvironment (110). PTEN

deficiency leads to downregulation of SHP-2, a negative regulator of

JAK/STAT3 pathway, promoting tumor growth (111, 112). The loss

of PTEN in certain cancers is associated with decreased T-cell

function, increased VEGF production, and the release of anti-

inflammatory cytokines, resulting in non-inflammatory tumors.

Moreover, PTEN’s role extends to regulating PD-L1 levels, with

its absence or constitutive expression of the PI3K/AKT pathway

influencing PD-L1 expression (113, 114). This interaction affects

PD-1/PD-L1 antibody responses and is subject to modulation by

various intracellular signaling pathways, including RAS/RAF/MEK

and JAK/STAT, influenced by IFN-g released by immune cells.

Selective inhibition of PI3K has shown to enhance the therapeutic

effect of PD-1/PD-L1 and CTLA-4 antibodies in experimental

models, indicating potential in reversing resistance to

immunocheckpoint inhibitors (115). Further clinical studies are

warranted to explore this possibility.

3.3.4.3 TGF-b signaling

Transforming Growth Factor-Beta (TGF-b) plays a

multifaceted role in the progression of cancer, affecting a variety

of cellular processes including cell proliferation, angiogenesis,

epithelial-to-mesenchymal transition, immune infiltration,

metastatic dissemination, and drug resistance (116). Interestingly,

TGF-b produced by tumor cells can alter the function of tumor-

associated plasmacytoid dendritic cells (pDCs), particularly

affecting their ability to produce Type I interferon, thereby

impacting T cell recruitment (117, 118). This aspect of TGF-b
signaling is crucial in understanding its role in excluding T cells

from the TME.

Recently, the combined use of TGF-b blocking antibodies with

PD-L1 antibodies has been proven effective in enhancing T cell

penetration into tumors, boosting anti-tumor immunity, and leading

to tumor regression (44). Additionally, TGF-b signaling plays a dual

role in cancer progression. Initially, it acts as a tumor suppressor by

inhibiting cell proliferation and inducing apoptosis (119). However,

as malignancies progress, cancer cells exploit TGF-b signaling to

create a favorable TME, activating CAFs, promoting angiogenesis,

and suppressing anti-tumor immune responses (120–122). Given its

complex role, the side effects of targeting TGF-b signaling in

therapeutic interventions are also a concern.
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3.3.4.4 cGAS-STING signaling

Recent advancements in cancer research have increasingly

focused on the cGAS-STING signaling pathway and its role in

tumor progression. Analysis of The Cancer Genome Atlas (TCGA)

database, which classifies 18 different types of malignant tumors,

has revealed variations in the expression of key genes involved in

the cGAS-STING signaling mechanism between normal and

cancerous tissues. These include genes encoding cGAS

(MB21D1), STING (TMEM-173), TBK-1, and IRF-3. Studies

have found that these genes are significantly upregulated in nearly

all cancer models, indicating a possible universal activation of

cGAS-STING signaling in various cancer types (123, 124).

Interestingly, some highly invasive tumors seem to rely on the

cGAS-STING pathway to facilitate tumorigenesis, impacting cancer

treatment approaches (125, 126). The NF-kB pathway, known for

regulating cell proliferation, apoptosis, and survival, also plays a

vital role in the inflammatory response. Its activation can contribute

to inflammation, tumor development, and immune dysfunction.

Chromosomal instability can lead to chronic inflammation by

persistently activating the cGAS-STING pathway, which in turn

enhances NF-kB function and promotes the progression of

metastatic cancer cells (126, 127).

Furthermore, TCGA data analysis has demonstrated a

negative correlation between STING expression levels in cancer

and the infiltration of immune cells in various tumor models. This

suggests that an increase in cGAS-STING signaling may predict

poorer outcomes in cancer patients (123). Additionally, certain

tumor cells promote brain metastasis by enhancing astrocyte-gap

junctions through the expression of PCDH7 (composed of Cx43).

These junctions transfer cGAMP from cancer cells to adjacent

astrocytes, activating STING and triggering the production of

TNF and IFN-a. These paracrine signals further activate NF-kB
and STAT-1 pathways in metastatic brain cells, contributing to

brain metastasis and resistance to lung and breast cancer

therapies (128).
4 Therapeutic strategies for
cold tumors

4.1 Dual ICIs

4.1.1 a−CTLA−4 combined with a−PD−1/PD−L1
T cell activation requires two essential signals: the T cell receptor

(TCR) and costimulatory pathways (129). Numerous costimulatory

receptors have been discovered, which bidirectionally regulate T cell

responses (130). Identified as the first molecule to deliver inhibitory

signals, CTLA-4 is critical for concluding immune responses (131,

132). It negatively regulates T cell activation by, for instance,

competing with CD28 for binding shared ligands B7.1 and

B7.2 (133).

In clinical therapeutics, ipilimumab is seldom used in

isolation. Physicians typically administer it in combination

with nivolumab. While both CTLA-4 and PD-1 serve as
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mechanisms, their modulatory effects on immune response are

uniquely characterized. Consequently, anti-CTLA-4 monoclonal

antibodies may synergize with anti-PD-1/PD-L1 counterparts to

potentiate tumor immunity. A growing body of research indicates

that dual blockade of PD-1/PD-L1 and CTLA-4 exhibits enhanced

antitumor efficacy in certain cancer types (134). Studies from

CheckMate-069, CheckMate-067, and CheckMate-142 demonstrate

that the combination of ipilimumab and nivolumab significantly

improves clinical outcomes compared to monotherapy with either

agent alone (135–137). Data from CheckMate-214, CheckMate-227,

and CheckMate-743 further reveal superior treatment efficacy of the

ipilimumab plus nivolumab regimen over standard targeted or

chemotherapy approaches (138–140). To date, the U.S. FDA has

approved the use of the ipilimumab and nivolumab combination for

the treatment of melanoma, renal cell carcinoma, microsatellite

instability-high/mismatch repair-deficient colorectal cancer,

hepatocellular carcinoma, PD-L1 positive non-small cell lung

cancer, and malignant pleural mesothelioma (134–140).

4.1.2 a−PD−1/PD−L1 combined with ICIs
Emerging dual immune checkpoint blockade strategies,

encompassing the combination of a-PD-1/PD-L1 with a-TIM-3,

a-LAG-3, a-PVRIG, and a-TIGIT, remain in clinical trials and

await regulatory approval. The ligation of TIM-3 to galectin-9

instigates apoptosis in Th1 cells via calcium flux (141). This dual

inhibition, when applied to TIM-3 and PD-1/PD-L1 pathways,

markedly augments anti-tumor immunity, as shown by slower

tumor growth in murine models (142). Data from clinical trials

suggest that this combined blockade does not increase adverse

effects, although optimization of patient selection is warranted

(143–145).

Extending the scope of ICIs, a-LAG-3, a-PVRIG, a-TIGIT, and
a-Siglec-10, when used in concert with a-PD-1/PD-L1, enhance
TIL functionality and concomitantly inhibit tumor growth (146–

149). The RELATIVITY-047 phase 2/3 trial revealed a notable PFS

advantage with relatlimab (a-LAG-3) plus nivolumab in late-stage

melanoma (10.1 vs. 4.6 months; HR: 0.75), outperforming

nivolumab alone (150). Additionally, COM701 (a-PVRIG) with

nivolumab exhibited promising antineoplastic activity in phase 1

trial NCT03667716, inclusive of patients with prior ICI treatment

(151). In phase 2 trial NCT03563716, tiragolumab (a-TIGIT) plus
atezolizumab significantly improved both response rates (OR: 2.57,

95%CI: 1.07–6.14) and PFS (HR: 0.57; 95%CI 0.37–0.90) in PD-L1

positive NSCLC patients, compared with the control group

receiving placebo and atezolizumab (152).
4.2 CAR-T cell therapy combined with ICIs

Chimeric Antigen Receptors (CARs) are multifaceted

constructs, typically encompassing an extracellular antigen-

binding domain, such as a single-chain variable fragment

(scFv) targeting CD19, a hinge region to enhance antigen-
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receptor and tumor antigen interaction, a transmembrane

domain for functional stability, and a T-cell activation domain

(CD3 z) for primary signaling. Additionally, one or more

intracellular co-stimulatory domains, like CD28/4-1BB, are

included for secondary T-cell activation signaling (153). CAR

T-cell activation is contingent on the presence of TAAs or TSAs.

CARs’ unique ability to recognize diverse targets, including

both protein and non-protein entities, on the cell surface,

activates T cells without the necessity for antigen processing

and presentation. This capability, bypassing human MHC

constraints, positions CAR T-cell therapy as a revolutionary

approach in T-cell therapeutic strategies, noted for its

distinctive treatment characteristics (154).

CAR-T cell therapy’s hallmark is its non-reliance on Major

Histocompatibility Complex (MHC) restrictions, coupled with an

enhanced tumor-specific immune response, facilitated by the

incorporation of co-stimulatory domains such as CD28, OX40,

and 4-1BB. This attribute offers the potential to effectively target

‘cold tumors’, characterized by limited pre-existing T cell

infiltration and a paucity of tumor antigens. A multitude of

ongoing clinical trials are exploring CAR T-cell therapies against

solid tumors, as elaborated in Table 1. Despite the direct tumor cell

eradication capabilities of CAR-T cells, they remain susceptible to

immunosuppression via immune checkpoints. Consequently, the
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emerges as a promising treatment strategy (155, 156).
4.3 CAR-NK cell therapy

A noteworthy attribute of mature NK cells in the field of

adoptive cell therapy is their ability to retain functionality when

transplanted into new environments with differing MHC

expression patterns (157, 158). Unlike T lymphocytes, NK cells

predominantly do not trigger graft-versus-host disease but instead

exert a regulatory role (159). Advances in genetic modification

techniques have shown that NK cells can be customized further,

including the introduction of CARs and the knockout of inhibitory

genes (160). These advancements enable NK cells from patients

with hematologic malignancies to rapidly eliminate autologous

tumor cells resistant to unmodified NK cells (161, 162).

Preclinical studies on CAR-NK cells in xenograft mouse models

have demonstrated in vivo activity comparable to CAR-T cells, yet

with less cytokine release and improved overall survival rates (163,

164). The inaugural human study of CAR-NK cells has revealed

promising anti-tumor responses without significant toxicities such

as cytokine release syndrome and graft-versus-host disease (165).

These positive outcomes lay the groundwork for further
TABLE 1 Key clinical trials of immunotherapy combined with CAR-T cell/targeted therapy.

Study Phase Cancer type Treatment status Start year

NCT04003649 I GBM, N=60 IL13Ra2-CAR T+Ipilimumab Recruiting Dec, 2019

NCT03726515 I GBM, N=7 CART-EGFRvIII+Pembrolizumab Completed Mar, 2019

NCT02366143 III NSCLC, N=1202 Atezolizumab+bevacizumab +carboplatin + paclitaxel Completed Mar, 2015

NCT01984242 II RCC, N=305 Atezolizumab+bevacizumab Completed Jan, 2014

NCT02420821 III RCC, N=915 Atezolizumab+bevacizumab Completed May, 2015

NCT03434379 III HCC, N=558 Atezolizumab+bevacizumab Completed Mar, 2018

NCT02501096 Ib/II RCC, N=357 Lenvatinib+ pembrolizumab Completed Jul, 2015

NCT03517449 III EC, N=827 Pembrolizumab+Lenvatinib Active, not recruiting Jun, 2018

NCT02853331 III RCC, N=861 Pembrolizumab + axitinib Active, not recruiting Sep, 2016

NCT02684006 III RCC, N=888 Avelumab + axitinib Active, not recruiting Mar, 2016

NCT03609359 II GC, N=29 Lenvatinib+pembrolizumab (single-arm) Completed Oct, 2018

NCT02811861 III RCC, N=1069 lenvatinib + pembrolizumab Active, not recruiting Oct, 2016

NCT02967692 III melanoma, N=569 Spartalizumab + dabrafenib + trametinib (single-arm) Active, not recruiting Feb, 2017

NCT02752074 III Melanoma, N=706 epacadostat + pembrolizumab Completed Jun, 2016

pembrolizumab

NCT02908672 III melanoma, N=514 Atezolizumab+vemurafenib + cobimetinib Active, not recruiting Jan, 2017

NCT03082534 II HNSCC, N=78 Pembrolizumab + Cetuximab Active, not recruiting Mar, 2017

NCT02734004 I/II BC, N=264 Olaparib + durvalumab Active, not recruiting Mar, 2016
RCC, Renal Cell Carcinoma; HCC, hepatocellular carcinoma; EC, Endometrial Cancer; HNSCC, neck squamous cell carcinoma; BC, breast cancer; GBM, Glioblastoma.
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development of CAR-NK cells as a promising modality for cancer

therapy (162).

Currently, CAR-NK cell-mediated immunotherapy is

advancing rapidly, offering new therapeutic avenues for patients

with malignant tumors. Despite extensive research in the field of

cancer immunotherapy, the application of CAR-NK cells remains

relatively limited to a variety of tumor models, primarily focusing

on hematological malignancies (166). Table 2 summarizes the

clinical studies of CAR-NK cells in solid tumors.
4.4 T Cell redirecting bispecific antibody
combined with ICIs

T cell-redirecting bispecific antibodies (BsAbs) represent a

cutting-edge approach in immunotherapy, merging two

monoclonal antibodies into a singular entity. Ingeniously

engineered, these antibodies concurrently engage specific

receptors on T cells, like CD3, and distinct tumor cell

antigens. Central to their dual-specific functionality is the

ability to directly steer T cells towards tumor cells, thus

enhancing T cell-mediated identification and elimination of

tumor cells. A distinctive feature of BsAbs-induced tumor cell

lysis is its independence from conventional antigen recognition

processes, which typically involve MHC class I or II molecules,

antigen-presenting cells, or the necessity of co-stimulatory

molecules (167).

Advancements in T cell-redirecting BsAbs for solid tumors

lag behind those in hematological malignancies, in part due to a

more limited range of available surface targets in solid tumors

(167). Despite these challenges, four bispecific antibodies

(BsAbs) have currently received FDA approval. These include

Catumaxomab (Fresenius/Trion’s Removab®), which was

withdrawn from the market in 2017, Blinatumomab (Amgen’s

Blincyto®), Amivantamab-vmjw (Janssen’s Rybrevant®), and

Tebentafusp-tebn (Immunocore ’s Kimmtrak®) (168). In

addition, there are still many BsAbs in the clinical evaluation

stage for cancer treatment (Table 3). These agents signify

progress in targeted therapeutic interventions, illustrating the
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evolving landscape of cancer treatment. However, even with

their effectiveness, the T cells activated by these therapies can be

rendered inactive by immune checkpoints. Consequently, a

synergistic approach of ICIs in conjunction with T cell-

redirecting BsAbs presents as a viable and potentially more

effective treatment strategy.
4.5 Cancer vaccine

‘Cold’ tumors, characterized by a dearth of tumor antigens,

commonly exhibit immune evasion. Nonetheless, the use of cancer

vaccines containing tumor antigens has shown efficacy in eliciting

immune responses against such tumors (169). A range of cancer

vaccines, designed to bolster the patient’s immune system, have

received approval, including Tedopi, Ilixadencel, GVAX, and

PolyPEPI101884 (170). Notably, Sipuleucel-T is the first FDA-

approved cancer vaccine for metastatic castration-resistant

prostate cancer (mCRPC), significantly prolonging patient

survival (171). However, the therapeutic efficacy of cancer

vaccines is often impeded by high PD-1 expression in effector T

cells (172, 173). To address this, numerous phase 1 clinical trials

have been initiated to investigate the combined use of cancer

vaccines and immunoglobul ins in cancer treatment ,

demonstrating their combined potential (174, 175). Ongoing

cl inical tr ia ls in this domain include NCT04300244,

NCT03632941, KEYNOTE-603, and NCT03743298.
4.6 Oncolytic virus combined with
ICIs therapy

Oncolytic viruses, encompassing both natural and genetically

engineered variants, induce tumor cell lysis by selectively infecting

and proliferating within tumor cells. Beyond their direct antitumor

activity, these viruses also provoke a comprehensive, potent, and

enduring anti-tumor immune response. This response is facilitated

by the liberation of TAAs and additional DAMPs upon tumor cell

demise (176). A significant aspect of oncolytic viral therapy is its
TABLE 2 Clinical trials of CAR-NK cell-based cancer immunotherapy.

Study Phase Cancer type Treatment status Start
year

NCT03940820 I/II Solid Tumor, N=20 Biological: ROBO1 CAR-NK cells Recruiting May, 2019

NCT03415100 I Solid Tumor, N=30 Biological: CAR-NK cells targeting NKG2D ligands Recruiting Jan, 2018

NCT03931720 I/II Malignant Tumor, N=20 Biological: BiCAR-NK/T cells (ROBO1 CAR-NK/
T cells)

Recruiting Mar, 2019

NCT03692663 I Castration-resistant Prostate Cance, N=9 Biological: anti-PSMA CAR-NK cell Recruiting Dec, 2018

NCT04847466 II Gastroesophageal Junction Cancers; Advanced
HNSCC, N=55

Drug: N-803; Drug: Pembrolizumab; Biological:
PD-L1 t-haNK

Recruiting Dec, 2021

NCT03692637 I Epithelial Ovarian Cancer, N=30 Biological: anti-Mesothelin Car-NK cells Not
yet recruiting

Mar, 2019

NCT03941457 I/II Pancreatic Cancer, N=9 Biological: BiCAR-NK cells (ROBO1 CAR-
NK cells)

Recruiting May, 2019
fro
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systemic immunomodulatory impact, which extends its effects

beyond the injection locus to distant tumor regions (176).

T-VEC, a modified herpes simplex virus, demonstrates

augmented anti-tumor efficacy in treating unresectable stage IIIB-

IV melanoma when used in conjunction with Ipilimumab,

surpassing the results achieved with Ipilimumab alone (177).

Furthermore, integrating a PD-1 inhibitor with oncolytic viral

therapy significantly boosts its anti-tumor potency in glioma

models (178). In the context of triple-negative breast cancer

(TNBC), the response to ICIs typically remains suboptimal.

Oncolytic viral treatment, however, renders TNBC more

responsive to immune checkpoint blockade, successfully averting

recurrence in a majority of the treated animal models (179).
4.7 Macrophage targeted therapy
combined with ICIs therapy

TAMs, as key immune constituents in the TME, play an integral

role in solid tumor development. These cells exhibit dual

phenotypes: anti-tumoral (M1) and pro-tumoral (M2), with their

behavior governed by their polarization state (180). TAMs

significantly modulate immune responses by producing an array

of cytokines and effector molecules. They suppress the function of T

cells, B cells, NK cells, and dendritic cells, while simultaneously

enhancing the roles of Tregs, T helper 17 cells (Th17), gd T cells,

and MDSCs. This mult i faceted approach fosters an

immunosuppressive milieu within the TME (181). Crucially,

TAMs’ association with PD-L1 expression suggests that strategies

combining ICIs with targeted TAM therapies could offer substantial

therapeutic benefits (182, 183).

TAMs are pivotal in cancer treatment strategies. Targeting TAMs

typically involves three approaches: 1) eradicating existing TAMs in

the TME, 2) curtailing the recruitment of monocytes, and 3)

reprogramming TAMs (181). TAMs are pivotal in cancer treatment

strategies. Targeting TAMs typically involves three approaches: 1)

eradicating existing TAMs in the TME, 2) curtailing the recruitment

of monocytes, and 3) reprogramming TAMs (184, 185). In a phase 1b

study (NCT02323191), a combination of the CSF-1R inhibitor

emactuzumab with atezolizumab exhibited a superior Objective
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Response Rate (ORR) compared to controls (186). Additionally, in a

separate clinical trial, the C-C chemokine receptor type 5 (CCR5)

inhibitor maraviroc, used in tandem with pembrolizumab,

demonstrated notable efficacy in patients with dMMR CRC (187).
4.8 Radiotherapy combined with
ICIs therapy

Radiation therapy, employing ionizing radiation to directly

destroy tumor cells, exerts multifaceted impacts on tumor

immunity: 1) It can trigger immunogenic cell death (ICD) in

tumor cells, culminating in the release of abundant DAMPs.

These DAMPs, once phagocytosed by DCs, facilitate DC

maturation (188). 2) Mature dendritic cells are capable of cross-

presenting tumor antigens to CD8+ T cells, thereby initiating

specific immune responses (189). 3) Concurrently, radiation

therapy exhibits immunosuppressive properties, encompassing

bone marrow suppression, the direct eradication of immune cells,

upregulation of immune checkpoints, and the elicitation of

immunogenic cytokines and chemokines (190–192). These

immunoregulatory effects lay the groundwork for integrating ICIs

with radiation therapy.

In certain cases, patients undergoing combined therapies

exhibit spontaneous tumor regression beyond the irradiated

zones, termed the ‘abscopal effect’ or radiotherapy’s distant

impact. This phenomenon is largely attributed to radiotherapy

enhancing the antigen presentation of tumor cells, thereby

augmenting CD8+ T cell production. These cells then travel via

the bloodstream to remote sites, influencing tumors outside the

irradiated areas (193, 194). Contemporary research suggests that

the abscopal effect can counteract immunosuppression and

enhance the efficacy of ICIs (195–198). For instance,

preliminary results from a phase III study on stage III

unresectable NSCLC patients revealed that post-radiotherapy

treatment with durvalumab significantly prolonged progression-

free survival (PFS) compared to a placebo (199). Furthermore,

another phase III study involving 799 participants demonstrated

that, in patients with mCRPC previously treated with docetaxel, a

combination of ipilimumab and radiotherapy markedly increased
TABLE 3 Bispecific antibody clinical trials ongoing.

Study Phase Cancer type Treatment status Start year

NCT04506086 IV B-precursor Acute Lymphoblastic Leukemia, N=45 Blinatumomab Recruiting Aug, 2021

NCT03415100 I B-cell NHL, N=116 AZD0486 IV Recruiting Mar, 2021

NCT04844073 I/II Advanced Cancer, N=228 MVC-101 (TAK-
186)

Recruiting Mar, 2021

NCT04221542 I Prostate Cance, N=461 AMG 509 Recruiting Mar, 2020

NCT03564340 I/II Recurrent Ovarian Cancer, N=690 REGN4018 Recruiting May, 2018

NCT04117958 I MUC17-positive Solid
Tumors, N=58

AMG 199 Recruiting Jan, 2020

NCT04104607 I Castration-Resistant Prostatic Cancer, N=86 CC-1, PSMAxCD3 Recruiting Nov, 2019
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overall survival (OS) over placebo plus radiotherapy (200).

Addi t ional informat ion on cl in ica l tr ia l s combining

radiotherapy with ICIs is detailed in Table 4.
4.9 Chemotherapy combined with
ICIs therapy

Chemotherapy drugs wield a bidirectional impact on the

immune system during tumor therapy. Initially, they frequently

induce systemic immunosuppression, evident through bone

marrow suppression and lymphocyte depletion. Concurrently,

these agents can eradicate specific immune cells, contributing to

the reconstitution and establishment of a renewed immune system

(201). The immunostimulatory actions of chemotherapy are

manifested in several ways: 1) Augmenting antigenicity: Agents

like cyclophosphamide, gemcitabine, platinum-based drugs, and

taxanes boost the antigenicity of tumor cells. 2) Increasing

susceptibility to immune assaults: This is primarily achieved by

improving the visibility of tumor cells to the immune system. 3)

Triggering ICD and antigen-specific responses: Anthracyclines,

mitoxantrone, and oxaliplatin accomplish this by interacting with

DNA replication and repair mechanisms (202). These pathways

illustrate that chemotherapeutic drugs not only directly eradicate

tumor cells but also engage in combatting tumors by stimulating

and modulating the immune system.

Clinical trials integrating chemotherapy with immunotherapy

have demonstrated considerable therapeutic success. In the phase

III KEYNOTE-189 trial (NCT02578680), a regimen of

pembrolizumab combined with pemetrexed-platinum agents

yielded an ORR of 48.3%, markedly surpassing the 19.9% ORR of

the placebo plus pemetrexed-platinum cohort. This combination

therapy also significantly enhanced OS with a Hazard Ratio (HR) of

0.56 (95% Confidence Interval [CI]: 0.46-0.69) and PFS with an HR

of 0.49 (95% CI: 0.41-0.59) (203). The phase III KEYNOTE-355

trial revealed that supplementing standard chemotherapy with

pembrolizumab substantially improved PFS in metastatic TNBC

patients with a combined positive score (CPS) of 10 or above (204).

The KEYNOTE-021 (NCT02039674) tr ia l found that
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pembrolizumab plus chemotherapy exhibited superior ORR (58%

vs 33%) and PFS (median of 24.5 months vs 9.9 months; HR: 0.54;

95% CI: 0.35-0.83) compared to chemotherapy alone (205).

Furthermore, in the phase III IMpower133 trial (NCT02763579),

the addition of atezolizumab to carboplatin and etoposide

significantly prolonged OS and PFS in small-cell lung cancer

patients over the placebo with carboplatin and etoposide (206).

Other clinical trials of chemotherapy combined with ICIs treatment

are detailed in Table 5.
4.10 Targeted therapy combined with
ICIs therapy

Targeted cancer therapy is predicated on creating potent inhibitors

that specifically target molecular markers of tumor cells, aiming to

effectively treat the cancer. The modes of action of this therapy span a

range, including suppressing tumor cell proliferation, intervening in

the cell cycle, promoting tumor cell differentiation, curbing metastasis,

inducing apoptosis, and hampering tumor angiogenesis (207). Despite

the considerable successes of many targeted therapies in clinical

settings, the emergence of drug resistance in a significant number of

patients represents a formidable challenge. Recent research has

revealed that these targeted agents can trigger ICD in tumor cells,

thereby bolstering the effectiveness of ICIs (207). Consequently,

integrating targeted therapy with immunotherapy emerges as a novel

and promising approach to surmount drug resistance and enhance

therapeutic outcomes.

In the phase III IMspire150 trial (NCT02908672), the

combination of vemurafenib, cobimetinib, and atezolizumab was

compared against a control regimen of vemurafenib, cobimetinib,

and placebo in patients with advanced or metastatic melanoma

harboring the BRAF V600 mutation. The study revealed that the

addition of atezolizumab significantly extended PFS to 15.1

months, compared to 10.6 months in the control group, with a

HR of 0.78 (95% CI: 0.63-0.97, p=0.025) (208). In the phase 1/2

MEDIOLA trial, the efficacy of Olaparib combined with

durvalumab was evaluated in patients with metastatic breast

cancer with germline BRCA1 or BRCA2 mutations. This trial
TABLE 4 Key clinical trials of immunotherapy combined with radiotherapy.

Study Phase Cancer type
(population,N)

Interventions and
Combination

status Start year

NCT02855203 I/II ccRCC, N=30 Pembrolizumab+ SABR Completed Oct, 2016

NCT02904954 II NSCLC, N=60 Durvalumab+SBRT Completed Dec, 2016

NCT02125461 III NSCLC, N=713 Durvalumab +
Chemoradiation therapy

Active, not recruiting May, 2014

NCT02492568 II NSCLC, N=92 Pembrolizumab + SBRT Completed Jul, 2015

Pembrolizumab

NCT02316002 II NSCLC, N=51 Pembrolizumab + LAT (single-arm) Active, not recruiting Jan, 2015

NCT02444741 I/II NSCLC, N=126 Pembrolizumab + SBRT Active, not recruiting Sep, 2015
ccRCC, Clear cell renal cell carcinoma; SABR, Stereotactic Ablative Body Radiosurgery; NSCLC, Non-small cell lung cancer; SBRT, Stereotactic body radiotherapy; LAT, Locally ablative therapy.
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showed positive safety and disease control outcomes in 80% of

patients after 12 weeks of treatment. These findings underscore

the potential of integrating targeted therapy with immunotherapy

in the treatment of certain cancers (209). Detailed information on

additional clinical trials combining targeted therapy with ICIs is

available in Table 1.
4.11 STING agonist combined with
ICIs therapy

The accumulation of cytosolic chromatin fragments and

micronuclei, a hallmark of malignant transformation in cancer

cells, raises the likelihood of cytosolic DNA escape or DCs

engulfing tumor-derived DNA (210). The cGAS-STING pathway,

pivotal for cytosolic DNA detection, plays a crucial role in this

context. Binding of cytosolic double-stranded DNA (dsDNA) to

cGAS triggers the synthesis of cyclic GMP-AMP (cGAMP). This

activation leads to the transformation of STING from a monomer

to a dimer, facilitating its relocation from the endoplasmic

reticulum to perinuclear microsomes. Subsequently, STING

engages and phosphorylates TBK1, initiating a cascade that

activates IRF3 and boosts IFN-I production (211–213).

Additionally, the STING pathway enhances IFN-I through the

NF-kB route (214). IFN-I, a multifaceted immune enhancer,

significantly augments the functions of DCs, NK cells, and T cells

(215). The cGAS-STING pathway’s integral role in linking innate
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and adaptive immunity underscores its potential as a target for

cancer immunotherapy.

Initial clinical trials with Dimethyloxoxanthenyl acetic acid

(DMXAA), the first STING agonist, were unsuccessful (216).

Further research revealed that DMXAA specifically activates the

mouse STING pathway, with minimal effects on its human

counterpart (217, 218). Consequently, several natural and synthetic

cyclic dinucleotides (CDNs), structurally and functionally akin to

cGAMP, have emerged as promising STING agonists in cancer

immunotherapy (219–221). However, these CDNs typically face

challenges like limited transmembrane transport and reliance on

intratumoral injection. Recent developments include novel STING

agonists like diABZI andMSA-2, which offer systemic administration

possibilities (222, 223). Moreover, manganese has been identified as a

natural STING agonist, playing a significant role in anti-tumor

immunity (224, 225).

In the context of combination therapy, the synergy of STING

agonists with a-PD-1/PD-L1 antibodies presents a promising avenue.

This approach simultaneously amplifies innate and adaptive immunity,

effectively countering immunotherapy resistance. STING agonists

enhance immune cell infiltration and amplify the functionality of

APCs, NK cells, and T cells (226–228). Concurrently, a-PD-1/PD-L1
antibodies capitalize on the PD-L1 upregulation induced by STING

agonists (227). Ongoing clinical trials involving combinations like

ADU-S100 with spartalizumab, MK-1454 with pembrolizumab, and

manganese with a-PD-1 have shown promising anti-tumor efficacy

and tolerable safety profiles (229, 230).
TABLE 5 Key clinical trials of immunotherapy combined with chemotherapy.

Study Phase Cancer type Treatment status Start year

NCT02039674 II NSCLC, N=267 Pembrolizumab +
Chemotherapy

Completed Feb, 2014

NCT02578680 III NSCLC, N=616 Pembrolizumab+pemetrexed+platinum Completed Jan, 2016

NCT00324155 III Melanoma, N=681 Ipilimumab+ dacarbazine Completed Aug, 2006

NCT00527735 II NSCLC, N=334 Ipilimumab+paclitaxel+Carboplatin Completed Feb, 2008

NCT01285609 III NSCLC, N=1289 Ipilimumab + chemotherapy Completed Jan, 2011

NCT03036488 III TNBC, N=1174 Pembrolizumab+chemotherapy Active, not recruiting Mar, 2017

NCT02425891 III mTNBC, N=902 Atezolizumab+Nab-paclitaxel Completed Jun, 2015

NCT02763579 III ES-SCLC, N=503 Atezolizumab+carboplatin+etoposide Completed Jun, 2016

NCT02366143 III NSCLC, N=1202 Atezolizumab+bevacizumab +carboplatin + paclitaxel Completed Mar, 2015

NCT02775435 III NSCLC, N=559 Pembrolizumab+Chemotherapy Active, not recruiting Jun, 2016

NCT03043872 III ES-SCLC, N=987 Durvalumab+tremelimumab +platinum-etoposide Active, not recruiting Mar, 2017

NCT02494583 III GC, N=763 Pembrolizumab+chemotherapy Completed Jul, 2015

NCT02819518 III TNBC, N=882 Pembrolizumab+chemotherapy Active, not recruiting Jul, 2016

NCT03134872 III NSCLC, N=419 Camrelizumab+chemotherapy Completed May, 2017

NCT02853305 III BLCA, N=1010 Pembrolizumab+chemotherapy Completed Sep, 2016

NCT02872116 III GC, GEJ, OAC, N=2031 Nivolumab+chemotherapy Active, not recruiting Oct, 2016
TNBC, Triple-negative breast cancer; mTNBC, Metastatic triple-negative breast cancer; ES-SCLC, Extensive-stage small-cell lung cancer; GC, Gastric cancer; GEJ, Gastro-oesophageal junction
cancer; OAC, Oesophageal adenocarcinoma; BLCA, Bladder urothelial carcinoma.
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4.12 Nanoparticles combined with
ICIs therapy

Rapidly proliferating cancer tissues frequently form enlarged

vascular endothelial gaps, with an average size of several hundred

nanometers, to draw more nutrients from the body. Such gaps are

generally not found in normal tissues. This phenomenon, known as

the enhanced permeability and retention effect (EPR), allows

nanoparticles of suitable size to infiltrate tumor tissues, while

being restricted by the denser structure of normal tissues. This

underpins the theoretical foundation for targeting tumor tissues

with nanoparticles (231). Nanoparticles can amplify the efficacy of

immunotherapy by inducing ICD in tumor cells (232). In

melanoma mouse models, pH-sensitive liposomes equipped with

a dual delivery system of doxorubicin hydrochloride and

deferasirox have shown to enhance antigen presentation and T-

cell infiltration, thereby augmenting their anti-tumor action (233).

In glioblastoma multiforme (GBM) research, where drug delivery is

constrained by the blood-brain barrier, BAMPA-O16B/siRNA

liposomes have been able to effectively transport anti-CD47 and

PD-L1 siRNA into intracranial GBM tumors in mice (234).

Consequently, the strategy of using nanoparticles in combination

with ICIs represents a promising avenue of research.
5 Conclusion and perspectives

In the evolving landscape of oncology, ICIs have emerged as a

pivotal advancement. However, their efficacy is not uniform across all

patient groups, highlighting a need for more nuanced understanding

beyond the simplistic ‘cold’ and ‘hot’ tumor classifications.

Intriguingly, some ‘hot’ tumors show responsiveness to ICIs despite

a scarcity of CD8+ T cells, driven by NK cell-mediated immune

responses. Conversely, ‘cold’ tumors often struggle with T cell

activation and infiltration issues. Strategies that combine ICIs with

other treatments such as radiotherapy, chemotherapy, CAR-T cell

therapy, or targeted therapy are being investigated to transform ‘cold’

tumors into ‘hot’ ones, potentially increasing the efficacy of ICIs.

Currently, many combination therapies fail to replicate these results

in clinical settings. Currently, only a limited number of combinations,

including a-PD-1/PD-L1 with chemotherapy, angiogenesis

inhibitors, or a-CTLA-4, have received regulatory approval. The

efficacy of most combinations remains confined to animal tumor

models, underscoring the need for optimal preclinical models, with

humanized patient-derived models offering more precise efficacy

evaluations. However, combination therapies pose challenges such

as increased immune-related adverse events (irAEs) and healthcare

costs, and the risk of exposing patients to higher toxicities with

inappropriate combinations. Optimizing administration regimens,

including dosage, timing, and sequence, is crucial for the

development of these therapies. Furthermore, the selection of

suitable combination therapies and identification of predictive

biomarkers for treatment response are still areas of active

investigation. Liquid biopsy, by monitoring the dynamic immune

landscape of the tumor microenvironment, offers a promising

approach for real-time biomarker identification, guiding precision
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immunotherapy. Personalized combination therapies based on

immune profiling and other predictive biomarkers, and a

comprehensive framework integrating genomic, transcriptomic,

immune, and microbiome profiles, could enhance patient selection

for combination treatments. Particularly for patients with ‘cold’

tumors, a-PD-1/PD-L1 monotherapy often falls short of clinical

benefits, necessitating personalized combinations to overcome drug

resistance. In immune-desert scenarios, treatments such as

radiotherapy, chemotherapy, and STING agonists can counter low

immunogenicity-mediated immune tolerance by inducing

immunogenic cell death and promoting antigen-presenting cell

function. These combinations with a-PD-1/PD-L1 can

simultaneously enhance multiple aspects of the cancer-immunity

cycle, reshape the tumor microenvironment, and facilitate the

transformation from non-inflamed to inflamed tumors.

Additionally, the development of next-generation a-PD-1/PD-L1
drugs, including bifunctional or bispecific antibodies, could extend

the indications for a-PD-1/PD-L1 therapies, allowing a broader

range of patients to benefit from these advanced treatments.
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