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Disulfidptosis, a regulated form of cell death, has been recently reported in

cancers characterized by high SLC7A11 expression, including invasive breast

carcinoma, lung adenocarcinoma, and hepatocellular carcinoma. However, its

role in colon adenocarcinoma (COAD) has been infrequently discussed. In this

study, we developed and validated a prognostic model based on 20

disulfidptosis-related genes (DRGs) using LASSO and Cox regression analyses.

The robustness and practicality of this model were assessed via a nomogram.

Subsequent correlation and enrichment analysis revealed a relationship between

the risk score, several critical cancer-related biological processes, immune cell

infiltration, and the expression of oncogenes and cell senescence-related genes.

POU4F1, a significant component of our model, might function as an oncogene

due to its upregulation in COAD tumors and its positive correlation with

oncogene expression. In vitro assays demonstrated that POU4F1 knockdown

noticeably decreased cell proliferation and migration but increased cell

senescence in COAD cells. We further investigated the regulatory role of the

DRG in disulfidptosis by culturing cells in a glucose-deprived medium. In

summary, our research revealed and confirmed a DRG-based risk prediction

model for COAD patients and verified the role of POU4F1 in promoting cell

proliferation, migration, and disulfidptosis.
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Introduction

Colon adenocarcinoma (COAD) is the third most common

cancer and has the second highest cancer-related mortality rate

worldwide. Compared with USA and Japan, China has the highest

all-age incidence for both sexes combined (1). Early-stage COAD

has a 5-year survival rate of more than 90% after treatment;

however, even after comprehensive treatment with surgery,

radiotherapy, chemotherapy, molecular targeted therapy, and

immunotherapy, for late-stage patients with distant metastases,

the rate is still only 14% (2–4). In the clinical treatment of

COAD, the TNM staging system has been the most commonly

applied method for predicting patient prognosis in recent decades,

but this method has limitations. Therefore, it is imperative to

develop a molecular predictive system to help clinicians

determine treatment options and drug choices for COAD patients.

Disulfidptosis is a form of regulated cell death (RCD) reported

in cancers characterized by a high expression of solute carrier family

7 member 11 (SLC7A11) (5). Disulfidptosis mainly originates from

the process by which nicotinamide adenine dinucleotide phosphate

(NADPH) fails to reduce cystine to cysteine, which induces

disulfide stress and actin cytoskeleton protein disulfide bond

cross-linking and cytoskeleton contraction and ultimately induces

disulfidptosis (6, 7). Disulfidptosis is triggered when cancer cells

with high SLC7A11 expression are subjected to glucose starvation,

and disulfidptosis-related genes (DRGs) were identified via

CRISPR–Cas9 screening (8, 9). In preclinical models, treatment

with a glucose transporter (GLUT) inhibitor can effectively inhibit

glucose uptake, induce disulfidptosis in SLC7A11high-expressing

cancer cells, and limit the growth of SLC7A11high cancer cells,

such as UMRC6 kidney cell carcinoma xenografts in mice, which

highlights the need for the development of cancer treatment

strategies (8, 9). The interactions of tumor-related genes (TRGs)

in the tumor microenvironment (TME) affect the survival, growth,

migration, and adhesion of cancer cells. This study is based on the

hypothesis that disulfidptosis, a form of cell death associated with

high SLC7A11 expression, plays a significant role in colorectal

adenocarcinoma (COAD) and can be used to predict prognosis

through a specific gene signature based on DRGs.

Based on technological developments in transcriptomics and

bioinformatics, such as CRISPR–Cas9 screening, bulk RNA-seq,

and scRNA-seq, prognostic models of malignant tumors have been

established to help determine the prognosis of cancer patients, but,

to date, few DRG prognostic models of COAD have been reported.

In our research, we constructed a molecular prognostic model for

COAD based on DRGs by least absolute contact and selection

operator (LASSO) and Cox regression analysis with transcriptomic

and clinical data from COAD patients in the TCGA, GEO, and

DRG databases. After accuracy and specificity validation, we

constructed a novel disulfidptosis-related prognostic model that

could predict the prognosis of COAD patients via the DRG-related

risk score, which can be explained by the analyses of biological

effects such as immune infiltration, specific tumorigenic pathways,

and drug response and synergy. The aim of this study was to

establish a solid platform for devising patient-specific treatment

regimens and assisting clinicians in the prognostic assessment and
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clinical treatment of COAD patients. Additionally, the key gene

POU4F1 in the model was further validated by in vitro assays.
Materials and methods

RNA-sequencing data and bioinformatics
analysis data collection

The data and clinical information of 454 CRC patients and 92

normal colon tissue samples were obtained from the TCGA database

(https://portal.gdc.cancer.gov). The data of 585 CRC patients and 19

nontumoral patients (GSE39582) were downloaded from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). DRGs were extracted

based on CRISPR–Cas9 screens from Gan’s study (5). Genes,

including 32 synergists and 63 suppressors, were identified

according to the criteria of a |NormZ value| >2 and a P-value <0.05

for further construction of the prognostic model.
Construction and validation of a
prognostic model based on DRGs

After the GSE39582 data were integrated, we used the “care”

package to randomly subdivide the patients into two datasets at a

ratio of 7:3 according to their survival status; these datasets were

used as training sets and internal test sets, respectively. A total of

555 patients in the TCGA database were used as independent

validation sets. DRGs downloaded and identified from CRISPR–

Cas9 screenings were obtained from a previous study (5, 6). Gene

expression data from the patients were used to identify DEGs, and

least absolute shrinkage and selection operator (LASSO) regression

analysis and multivariate Cox regression were used to construct the

prognostic model. The risk score for each COAD patient was

calculated based on the expression of DRGs (Expi) and Cox

coefficients (coefi), Riskscore =on
i=1Expi � coefi. We used the

“glmnet” package for LASSO regression model analysis. Patients

with COAD were divided into a high-risk group and a low-risk

group according to the median risk score. We used the “survival”

and “survminer” packages to perform univariate and multivariate

Cox analyses, generate Kaplan−Meier plots, and estimate whether

the risk score was an independent factor of clinicopathological

features. To assess the prognosis of both groups, OS was analyzed

via Kaplan−Meier curves. The prognostic ability of the risk model

was evaluated by time-dependent receiver operating characteristic

(ROC) curve analysis using the “survival ROC” software package.

We investigated the ability of the prognostic model to predict the

outcome of CRC patients by using the “TimeROC” package to

generate a time-dependent receiver operating characteristic (ROC)

curve. The area under the curve (AUC) of the ROC curve was

calculated with the “survivalROC” package. Nomogram plots were

generated with the “rms” package. To verify the DRG signature, the

risk score of COAD patients in the TCGA dataset was used to verify

the accuracy of the model. The risk score of COAD patients in the

GSE39582 dataset was determined via the same method to verify

the accuracy of the model.
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Establishment of a prognostic nomogram
for COAD

In the training set and test set, the associations between the DRG

signatures and clinicopathological features were analyzed with the “rms”

package. In addition, both univariate and multivariate Cox regression

analyses were conducted to explore whether the risk score has an

independent prognostic value in patients with COAD. The probabilities

of 1-, 2-, 3-, 4-, and 5-year OS in COAD patients were assessed by clinical

variables and risk scores. The accuracy of the nomogram was evaluated by

the concordance index (CI) and calibration curve.
Determination of DRGs’
differential expression

The differentially expressed genes (DEGs) were identified by the

“limma” package with a |threshold of log (fold change)| >1 and a P-

value <0.05 between the low and high groups.
Enrichment analysis

Based on the correlation analysis between the risk score and all

mRNAs, gene set enrichment analysis (GSEA) was further

performed by using the “ClusterProfiler” package of R software

(version 4.3.1).

In addition, the differentially expressed genes (DEGs) between

the low and high groups were identified based on the R package

“limma” with the thresholds of log(fold change) >1 and P-value

<0.05. The DEGs were further input into the DAVID online

tool (https://david.ncifcrf.gov/) for pathway and biological

process enrichment.
Correlation analysis

To further explore the biological function and clinical relevance

of the DRG prognostic model, we performed a correlation analysis

to evaluate the associations between the risk score and the

expression of oncogenes, tumor mutation burden (TMB),

immune regulatory gene expression, immune cell infiltration, and

tumor immune dysfunction and exclusion (TIDE) score. This

analysis utilized the Spearman method with the “psych” package.

Oncogene data were sourced from the ONGene database (http://

www.ongene.bioinfo-minzhao.org) (10), while 73 immunomodulatory

genes (IMGs) (11) were derived from earlier research. The immune

cell infiltration score was calculated with the XCELL algorithm (12).

Furthermore, the TIDE score, dysfunction score, and exclusion score

for each dataset patient were estimated using the standard process with

the TIDE online tool (http://tide.dfci.harvard.edu/) (13).

The Sanger Research Institute created the Genomics of Drug

Sensitivity in Cancer database (GDSC) to gather information on

tumor cell sensitivity and response to drugs (14). “OncoPredict”

was employed to determine the drug sensitivity of each sample in

the training and validation datasets, leveraging the GDSC V2.0

database (15).
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Cell lines and culture

The human colon adenocarcinoma cell line SW480 (SW-480),

which was isolated from the large intestine of a Dukes C colorectal

cancer patient, was obtained from the National Collection of

Authenticated Cell Culture at the Chinese Academy of Science

(Shanghai, China). Colon adenocarcinoma HCT116 cells

(ab255451) were isolated from the colon of an adult male with

colon adenocarcinoma obtained from the Abcam Trading

(Shanghai, China). The SW480 cells were cultured in DMEM

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin−streptomycin from Thermo Fisher Scientific (Shanghai,

China). The HCT116 cells were cultured in McCoy’s 5A medium

supplemented with 10% FBS (Gibco) and 1% penicillin

−streptomycin (Gibco). All cells were incubated at 37°C with 5%

CO2 for culture and passage unless otherwise stated. For the glucose

deprivation experiments, cells were cultured in glucose-free DMEM

supplemented with dialyzed FBS as previously described.
Short hairpin RNA construction, plasmid
vectors, and transfection

The POU4F1 sequences of the primers used were as follows:
Forward: 5′ - ACGCACGAACTGAGTCGAAA - 3′
Reverse: 5′-CACTTCCCGGGATTGGAGAG-3′
The POU4F1 shRNA plasmid (sc-29839-SH) was purchased

from Santa Cruz Biotechnology. The transfection of plasmid vectors

was carried out in Opti-MEM (Invitrogen) using Lipofectamine

3000 reagent (Invitrogen) according to the manufacturer’s

transfection protocol.
Transwell migration assays and Transwell
invasion assays

For the Transwell migration assay, cells were seeded in the

upper chamber of a Transwell membrane (Corning, Inc., USA) with

200 µL of FBS-free medium, and 600 µL of complete medium was

added to the lower chamber. After the cells were cultured at 37°C

for 24 h, they were fixed with 4% paraformaldehyde and stained

with 0.5% crystal violet solution. Subsequently, the cells in the upper

chamber of the Transwell membrane were removed. Images of the

migrated cells were captured under an inverted microscope and

were then assessed using NIH ImageJ software (version 1.8.0).
Western blotting and antibodies

Total protein was extracted from cells by using RIPA lysis buffer

(Beyotime, China) and quantitated by using Enhanced BCA Kit

(Beyotime, China). Total protein (30 µg) was separated via SDS

−PAGE and transferred onto PVDF Transfer Membranes (Thermo

Fisher Scientific, China). After blocking with 5% BSA, the
frontiersin.org
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membrane was incubated at 4°C overnight with primary antibodies

against POU4F1 (PA5–41509) and beta-actin (MA5–15452), which

were purchased from Thermo Fisher Scientific (Shanghai, China).

Following the primary incubation, the membranes were incubated

with HRP-labeled secondary antibodies. The protein bands were

visualized using enhanced chemiluminescence (ECL) substrate and

the GeneTools GBox (Syngene) system, the intensity of each band

was quantified using ImageJ software (National Institutes of

Health), and beta-actin was used as the internal control.
b-gal fluorescence imaging

The cell aging detection reagent SPiDER-b-gal was used for b-
gal fluorescence staining. Briefly, after the cells were washed with

wash buffer, SPiDER-b-gal staining solution was added. The plate

was incubated in the dark for 15 min, and the cells were washed

twice with PBS, followed by observation and imaging under a

fluorescence microscope.
Disulfidptosis assay

Glucose-free DMEM was used to simulate glucose deprivation

conditions. When POU4F1 was knocked down or overexpressed in

cells, the culture medium was replaced with a glucose-free medium,

and the regulatory effect of the gene on disulfidptosis was

determined by measuring cell viability and apoptosis.
Statistical analysis

All statistical analyses were performed using R software (version

4.1.3). Continuous variables were tested by Student’s t-test, while

categorical variables were tested by chi-square test. A p-value <0.05

was considered significant.
Results

Data collection

Three COAD cohorts and corresponding clinical data were

obtained from the TCGA and GEO databases (GSE39582). The

demographic and clinical data for the training, internal testing, and

independent validation sets are summarized in Table 1. After ruling

out the samples with missing clinical information in the GEO (584

patients) dataset, the samples were randomly divided into a training

set (n = 393, 70%) and an internal testing set (n = 168, 30%). As

expected, no significant differences were found in the major

clinicopathological features between the training, testing, and

entire GEO datasets (p > 0.05) (Table 1).
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Construction and validation of the DRG
prognostic model in COAD patients

A total of 808 DRGs were screened with the criteria of |normZ

values| >2 and P-value <0.05 based on the CRISPR–Cas9 screenings

(Supplementary Figure S1). Using univariate Cox regression

analysis, 95 prognosis-related DRGs were identified based on the

GEO training set (Figure 1A). Consequently, LASSO-penalized Cox

analysis further identified 20 DRGs for multivariate analysis

(Figures 1B, C). The multivariate Cox proportional hazard model

was built stepwise using the likelihood-ratio forward method to

reach the highest significance. A total of 20 DRGs were further

screened to construct a risk model to assess the prognostic risk of

COAD patients: risk score = (1.057 × KIF7 Exp) + (1.005 ×

SLCO1C1 Exp) + (0.886 × MAFG Exp) + (0.751 × THSD7B Exp)

+ (0.747 × POU4F1 Exp) + (0.701 × ACAP2 Exp) + (0.668 ×

TM2D3 Exp) + (0.563 × RAB6B Exp) + (0.315 × ARC Exp) + (0.292

× GDPD3 Exp) + (0.265 × LETM2 Exp) + (-0.102 × CXCL13 Exp) +

(-0.189 × AMACR Exp) + (-0.296 × OAS1 Exp) + (-0.394 ×

CCDC134 Exp) + (-0.457 × TXN2 Exp) + (-0.799 × CYB561D1

Exp) + (-0.805 × ADD1 Exp) + (-0.987 × C11of42 Exp) + (-1.092 ×

DIMT1 Exp) (Figure 1D). ROC curves demonstrated that the risk

score serves as a significant predictor of the OS of COAD patients,

with AUCs greater than 0.765 at 1–5 years (Figure 1E). K–M

survival analysis indicated that the low-risk group had a

significantly favorable overall survival for COAD patients

(Figure 1F). The samples in the training set were classified into

low-risk and high-risk groups based on the median value of the risk

score (Figure 1G). The distribution of risk scores between the low-

risk and high-risk groups and the survival status and survival time

of patients in the two different risk groups are depicted. The relative

expression of the 20 DRGs for each patient is shown in a

heatmap (Figure 1H).
Prognostic value of the DRG model
signature in the training cohort and
validation cohort

According to the median risk score, the patients in the internal

testing dataset and the entire GSE39582 dataset were divided into high-

risk and low-risk groups. The patients in the low-risk group in both

datasets had a significantly longer OS than did those in the high-risk

group (p < 0.0001), with AUC values of 0.760 and 0.781, respectively

(Supplementary Figures S2A, B, Figures 2A, B). According to the

distribution of risk scores, the number of deaths in the high-risk group

was significantly greater than that in the low-risk group

(Supplementary Figure S2C, Figure 2C). The heatmap showed the

differential expression of these 20 disulfidptosis-related risk genes

between the low-risk group and the high-risk group (Supplementary

Figure S2D, Figure 2D). The signature in the independent validation set

also yielded the same result (Figures 2E–H).
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DRG risk score is independent of
clinical features

As depicted in Supplementary Table S1, the mitophagy risk

score was related to several clinicopathological features in the

GSE39582 dataset, including MMR, TNM_stage, TNM_M,

TNM_N, and TNM_T. To assess whether the risk score is an

independent indicator in COAD patients, the effect of each

clinicopathological feature on OS was analyzed by univariate

Cox regression (Figure 3A). As shown in Figure 3B, after
Frontiers in Immunology 05
multicollinearity test and multivariable adjustment, the risk

score remained a powerful and independent factor in the

GSE39582 dataset. Moreover, the risk score was verified as an

independent factor based on the TCGA-COAD dataset

(Supplementary Figures S3A, B). The discrepancies in OS

stratified by M_stage and age were analyzed between the low-

risk and high-risk groups in the GSE39582 and TCGA-COAD

datasets. According to the subgroups classified by age and M stage,

the OS of the low-risk score group was superior to that of the high-

risk group (Figures 3C–F, Supplementary Figures S3C, D).
TABLE 1 Clinicopathological features of the GSE39682 and TCGA_COAD datasets.

Characteristics
GSE39582

TCGA_COAD
Training Testing All P-value

Age
≤60 107 (27.23%) 50 (29.76%) 160 (27.40%)

0.808
160 (28.83%)

>60 286 (72.77%) 118 (70.24%) 424 (72.60%) 395 (71.17%)

Gender
Female 179 (45.43%) 74 (44.05%) 263 (44.96%)

0.955
264 (47.57%)

Male 215 (54.57%) 94 (55.95%) 322 (55.04%) 291 (52.43%)

Location
Proximal 153 (38.83%) 67 (39.88%) 232 (39.79%)

0.949 NA
Distal 241 (61.17%) 101 (60.12%) 351 (60.21%)

MMR
pMMR 306 (85.00%) 138 (88.46%) 459 (85.63%)

0.574 NA
dMMR 54 (15.00%) 18 (11.54%) 77 (14.37%)

TP53_MUT
WT 105 (43.21%) 54 (50.94%) 161 (45.87%)

0.410 NA
MU 138 (56.79%) 52 (49.06%) 190 (54.13%)

KRAS_MUT
WT 224 (58.79%) 101 (63.12%) 328 (60.18%)

0.643 NA
MU 157 (41.21%) 59 (36.88%) 217 (39.82%)

BRAF_MUT
WT 321 (89.92%) 138 (91.39%) 461 (90.04%)

0.865 NA
MU 36 (10.08%) 13 (8.61%) 51 (9.96%)

CIN_status
Negative 72 (22.22%) 36 (26.47%) 112 (23.28%)

0.616 NA
Positive 252 (77.78%) 100 (73.53%) 369 (76.72%)

TNM_stage
Stage I/II 202 (51.27%) 92 (54.76%) 309 (52.82%)

0.739
307 (55.12%)

Stage III/IV 192 (48.73%) 76 (45.24%) 276 (47.18%) 250 (44.88%)

TNM_M
M0 338 (88.95%) 141 (88.12%) 499 (89.11%)

0.941
405 (83.51%)

M1 42 (11.05%) 19 (11.88%) 61 (10.89%) 80 (16.49%)

TNM_N
N0 204 (51.78%) 95 (56.55%) 314 (53.68%)

0.576
326 (58.53%)

N1/2/3 190 (48.22%) 73 (43.45%) 271 (46.32%) 231 (41.47%)

TNM_T
T1/2 36 (9.14%) 19 (11.31%) 61 (10.43%)

0.690
103 (18.49%)

T3/4 358 (90.86%) 149 (88.69%) 524 (89.57%) 454 (81.51%)

OS
0 261 (66.24%) 110 (65.48%) 385 (66.49%)

0.970
412 (77.30%)

1 133 (33.76%) 58 (34.52%) 194 (33.51%) 121 (22.70%)

OS.time
≤2 232 (58.88%) 100 (59.52%) 334 (57.69%)

0.884
266 (49.91%)

>2 162 (41.12%) 68 (40.48%) 245 (42.31%) 267 (50.09%)
MMR, defective mismatch repair; OS, overall survival. NA, Not applicable.
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To ensure the robustness and practicability of the 20-DRG

prognostic model, a prognostic nomogram for predicting overall

survival in COAD patients was established using the GSE31210 and

TCGA-COAD datasets (Figure 4A, Supplementary Figure S4A).
Frontiers in Immunology 06
Major clinicopathological features and risk scores were included in

the nomogram. The nomogram was internally validated by

computing the bootstrap C-index (≥0.785 both in the GSE31210

and TCGA-COAD datasets) and a calibration plot (Figure 4B,
A B

D

E

F

G

H

C

FIGURE 1

Construction of the DRG prognostic model of COAD. (A) Univariate Cox regression analysis for the selection of DRGs correlated with the overall
survival (OS) of COAD patients. (B, C) LASSO-penalized Cox analysis revealed 20 DRGs related to overall survival. (D) Forest plot showing the
multivariate Cox regression analysis of 20 DRGs. (E) ROC curves for 5-year OS in the training set. (F) Kaplan–Meier curve of overall survival in the
training group. (G) Risk score distribution and survival status of the training group. (H) Heatmap showing the expression of genes in 20 DRGs in the
training group. DRGs, disulfidptosis-related genes; ROC, receiver operating characteristic; COAD, colon adenocarcinoma.
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Supplementary Figure S4B). The ROC curve confirmed that the

score calculated based on the nomogram was highly predictive of

overall survival, with AUCs of 0.845 and 0.862 at 1 year in the

GSE31210 and TCGA-COAD cohorts, respectively (Figure 4C,
Frontiers in Immunology 07
Supplementary Figure S4C). The DCA for the nomogram is

presented in Figure 4D. The nomogram provided a better net

benefit than did the “treat-all” or “treat-none” schemes and the

current TNM staging system.
A

B D

E

F

G

H

C

FIGURE 2

Validation of the prognostic model with 20 DRGs constructed from the training dataset. ROC curves for overall survival in the entire GSE39582 (A)
and TCGA-COAD (E) datasets. K−M curves of overall survival in the entire GSE39582 (B) and TCGA-COAD (F) datasets. Risk score distribution and
survival status in the entire GSE39582 dataset (C) and external validation dataset (G). Heatmaps showing the expression of these 20 disulfidptosis-
related risk genes between the low-risk group and the high-risk group in the entire GSE39582 dataset (D) and external validation dataset (H). DRGs,
disulfidptosis-related genes; ROC, receiver operating characteristic; COAD, colon adenocarcinoma.
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DRG risk score correlated with immune
cell infiltration

The single-sample gene set enrichment analysis package

“XCELL” was used to quantify the infiltration of 24 immune cell

types, and Spearman correlation analysis was used to assess the
Frontiers in Immunology 08
correlation of immune cell infiltration with the DRG risk score. The

results revealed that the risk score was significantly correlated with

the infiltration of multiple immune cell types in both the GEO39582

and TCGA-COAD datasets (Figures 5A, B). Specifically, we found a

significant negative correlation between risk scores and T cells and

the infiltration of CD4+ T cells (Th1), common lymphoid dendritic
A

B

D

E F

C

FIGURE 3

The DRG risk score was an independent prognostic factor for overall survival in the entire GSE39582 dataset. Univariate (A) and multivariate (B) Cox
regression analyses of the risk score and clinicopathological features for overall survival in the entire GSE39582 dataset. (C, D) Kaplan−Meier analysis
of overall survival stratified by the patients’ age. (E, F) Kaplan−Meier analysis of overall survival stratified by TNM_M stage. DRGs, disulfidptosis-related
genes; VIF, variance inflation factor.
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progenitors, and plasmacytoid dendritic cells in both datasets

(Figure 5C). Additionally, the risk score was positively correlated

with the infiltration of hematopoietic stem cells, endothelial cells,

stroma score, cancer-associated fibroblasts, and common myeloid
Frontiers in Immunology 09
progenitors (Figure 5C). In addition, a correlation analysis revealed

that the risk score was positively correlated with the expression of

several immune checkpoint genes, mainly LILRB2, HAVCR2,

SIRPA, TIGIT, CTLA4, and BTLA, in both datasets (Figures 5D–
A

B

D

C

FIGURE 4

Nomogram for predicting the 1-y, 3-, and 5-year overall survival of COAD patients. (A) The nomogram consists of the 20-DRG risk scores and 12
clinical indicators based on the entire GSE39582 dataset. The points from these variables are combined, and the locations of the total points are
determined. The total points projected on the bottom scales indicate the probabilities of 1-, 3-, and 5-year overall survival. (B) 1/3/5-year calibration
plot validating the accuracy of the prognostic nomogram based on the GSE39582 dataset. (C) Kaplan–Meier curve of overall survival for the score
calculated from the nomogram in the GSE39582 dataset. (D) DCA curves of the nomogram; the 20-DRG risk score and the TNM stage system for
the prediction of OS prognosis at the 1-, 3-, and 5-year time points in the GSE39582 dataset. DRGs, disulfidptosis-related genes; COAD, colon
adenocarcinoma; OS, overall survival; DCA, decision curve analysis.
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F). As shown in Supplementary Figure S5, we found that the

risk score was significantly correlated with the expression of

multiple immune regulatory genes and the sensitivity to multiple

antitumor drugs.
DRG risk score correlated with
cancer progression

GSEA revealed that the DRG risk score was significantly

correlated with several vital cancer-related biological processes

(Figure 6A), mainly cytochrome complex assembly (NES = -3.47,

Figure 6B), DNA replication initiation (NES = -3.43, Figure 6B),

mitochondrial cytochrome c oxidase assembly, cell cycle DNA

replication, and base excision repair. In addition, the risk score

was related to several important KEGG pathways (Figure 6C),

including DNA replication (NES = -3.79, Figure 6D), base

excision repair (NES = -2.849, Figure 6D), mismatch repair, and

ECM receptor interaction. Moreover, the correlation analysis

demonstrated that the DRG risk score was significantly positively

correlated with multiple oncogenes (N = 285, 40.2%, Figure 6E),

including MIR99AHG (r = 0.558, Figure 6F), RUNX1T1 (r = 0.491,

Figure 6G), MEIS1 (r = 0.490, Figure 6H), and PRDM6 (r = 0.485,

Figure 5I). In addition, we found that the DRG risk score was

positively correlated with many cell senescence-related genes

(N = 95, 34.80%, Figure 6J), including EPHA3 (r = 0.504,

Figure 6K), NOTCH3 (r = 0.490, Figure 6L), CPEB1 (r = 0.481,

Figure 6M), and MYLK (r = 0.464, Figure 6N). These results

revealed that the DRG risk score was correlated with multiple

oncogenes and cell senescence-related genes as well as several

cancer-related biological bioprocesses and KEGG pathways.
POU4F1 is highly expressed in COAD and is
related to cancer progression

Among these DRGs in the constructed risk model, POU4F1 had

the highest normalized Z score (Figure 7A). POU4F1 expression

was greater in COAD tumor tissues than in normal tissues in the

TCGA-COAD dataset (Figure 7B). Additionally, an increased

expression of POU4F1 was detected in paired normal tissue

specimens (Figure 7C). A survival analysis revealed that patients

with lower POU4F1 expression had a longer overall survival in both

the GSE395852 (Figure 7D) and TCGA-COAD (Figure 7E)

datasets. When considering disease-specific survival and disease-

free survival, a better prognosis was found for patients with low

POU4F1 expression (Supplementary Figures S6A, B). A further

correlation analysis revealed that POU4F1 expression was

significantly correlated with multiple oncogenes in both the

TCGA-COAD and GSE39582 datasets (Figure 7F, Supplementary

Figures S6C, D), indicating that POU4F1 may serve as an oncogene

in COAD. Additionally, POU4F1 expression was positively

correlated with multiple cell senescence-related genes in both the

TCGA-COAD and GSE39582 datasets (Figure 7G, Supplementary

Figures S6E, F).
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POU4F1 promotes cell proliferation,
migration, and disulfidptosis in COAD

To evaluate the biological function of POU4F1 in COAD cells,

we constructed shRNA plasmids to knock down POU4F1 and a

plasmid to overexpress POU4F1 (Supplementary Figure S7). The

CCK-8 assay demonstrated that POU4F1 knockdown significantly

inhibited the proliferation of SW480 (Figure 8A) and HCT116

(Figure 8B) cells. Conversely, POU4F1 overexpression significantly

promoted proliferation (Figures 8C, D). Additionally, the EdU assay

revealed that POU4F1 knockdown attenuated COAD cell

proliferation, while POU4F1 overexpression increased

proliferation (Figures 8E, F). The Transwell migration assay

indicated that POU4F1 knockdown significantly reduced the

number of migrated cells, while POU4F1 overexpression

significantly increased the number of migrated cells (Figures 8G,

H). During cell senescence, the b-galactosidase (b-gal) staining

assay demonstrated that POU4F1 knockdown significantly

promoted b-gal expression (Figures 8I, J). To further evaluate the

synergistic role of POU4F1 in disulfidptosis, we used a glucose-

deprived medium to culture COAD cells. The results of the CCK-8

assay revealed that POU4F1 knockdown significantly attenuated

cell death induced by glucose deprivation, while POU4F1

overexpression significantly amplified cell death (Figures 8K–N).
Discussion

Colorectal adenocarcinoma (COAD) has emerged as a

significant global medical challenge attributed to environmental

factors and genetic mutations and has an alarming increase in

younger patients. Advances in gene sequencing technology and the

accessibility of public genetic databases have enabled us to predict

COAD prognosis by quantifying molecular prognostic markers and

constructing prognostic models (16). Disulfidptosis, which is a

newly recognized form of regulated cell death in cancers with

high SLC7A11 expression under glucose starvation conditions, is

a novel therapeutic strategy for treating malignant tumors (7, 8). In

this study, we developed a prognosis prediction model based on

disulfidptosis-related genes using LASSO and Cox regression

analyses. Subsequently, we identified a key gene in this model,

namely, POU4F1, for further functional analysis.

Risk prediction models have been developed for various

cancers, including cervical cancer, bladder cancer, and colorectal

cancer, based on disulfidptosis-related genes (DRGs). For colorectal

cancer specifically, a previous study constructed a risk prediction

model based on genes, achieving an AUC of 0.567 at 1 year (17).

Another study developed a model based on four lncRNAs, with an

AUC of 0.679 at 1 year (18). In comparison to these studies, our

research established a risk prediction model with an AUC of 0.793

using DRGs based on DRGs obtained from CRISPR Cas9 screening

results that Gan et al. published. The superiority of our model was

further validated using internal testing and external validation sets,

which achieved AUC values of 0.781 and 0.762, respectively. The

robustness and practicality of our model were assessed using a
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nomogram, which demonstrated an improved prediction accuracy

with an AUC of 0.845 based on the risk score. These results

highlight the favorable predictive accuracy and practical value of

our DRG prognostic model.
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The tumor microenvironment (TME) has garnered significant

attention due to its crucial role in tumor immunosuppression,

distant metastasis, and drug resistance (19). The TME is

primarily composed of tumor cells, infiltrating immune cells,
A B
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C

FIGURE 5

The DRG risk score correlated with immune cell infiltration and immune checkpoint gene expression. Lollipop plots showing the correlation
between the risk score and the infiltration of immune cells calculated by the XCELL algorithm based on the GSE395852 (A) and TCGA-COAD
(B) datasets. (C) Heatmap showing the intersection of the correlated immune cell types in the TCGA-COAD and GSE39582 datasets. Lollipop plots
showing the correlation between the risk score and the expression of immune checkpoint genes based on the GSE395852 (D) and TCGA-COAD
(E) datasets. (F) Heatmap showing the intersection of the correlated immune cell types in the TCGA-COAD and GSE39582 datasets. DRGs,
disulfidptosis-related genes; COAD, colon adenocarcinoma.
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FIGURE 6

DRG risk score correlated with cancer progression. (A) Lollipop plots showing the results of GSEA for the biological processes associated with the
DRG risk score. (B) GSEA plots showing that the risk score is related to DNA replication initiation and cytochrome complex assembly. (C) Lollipop
plots showing the results of GSEA of the KEGG pathways associated with the DRG risk score. (D) GSEA plots showing that the risk score is related to
DNA replication and base excision repair. (E) The volcano plot shows the results of the correlation analysis between the DRG risk score and
oncogenes extracted from the ONGene database. Scatter plots showing the correlation between the risk score and MIR99AHG (F), RUNX1T1 (G),
MEIS1 (H), and PRDM6 (I). (J) The volcano plot shows the results of the correlation analysis between the DRG risk score and cell senescence-related
genes extracted from the ONGene database. Scatter plot showing the correlations between the risk score and EPHA3 (K), NOTCH3 (L), CPEB1 (M),
and MYLK (N) expression. GSEA, gene set enrichment analysis; DRGs, disulfidptosis-related genes.
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cancer-related stromal cells, endothelial cells, and other

components (20, 21). Among the various stromal cells within the

TME, cancer-related fibroblasts (CAFs) are recognized as key

contributors that exhibit tumor-promoting effects and participate
Frontiers in Immunology 13
in multiple stages of tumor development through various pathways

(22, 23). Tumor endothelial cells, another important type of stromal

cell in the TME, have been reported to release “angiocrine factors”

that promote tumor progression (24). Through a correlation
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FIGURE 7

POU4F1 is highly expressed in COAD and is related to cancer progression. (A) Lollipop plot showing the normalized Z scores of the DRGs in the risk
model. Boxplots showing the differential expression of POU4F1 in the whole TCGA-COAD dataset (B) and paired samples (C). Survival analysis of
POU4F1 for overall survival in the GSE39582 (D) and TCGA-COAD (E) datasets. Heatmaps showing the intersection of the oncogenes (F) and cell
senescence-related genes (G) correlated with POU4F1 in the GSE39582 and TCGA-COAD datasets. DRGs, disulfidptosis-related genes; COAD, colon
adenocarcinoma. * p<0.05,** p<0.01,***p<0.001
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analysis, we found that the risk score derived from our model was

positively correlated with the stromal score and the infiltration of

endothelial cells and CAFs. Additionally, the risk score was

correlated with the expression of several immune checkpoint

molecules, including BTLA, CTLA4, and SIRPA. Immune

checkpoint genes regulate the immune system by either

stimulating or suppressing immune responses, and this regulatory

mechanism is widely observed in tumors under physiological

conditions (25). Gene set enrichment analysis (GSEA) revealed
Frontiers in Immunology 14
potential biological processes associated with the risk score. Our

findings indicate that the risk score is correlated with DNA

replication, cytochrome complex assembly, and base excision

repair. Moreover, we observed a positive correlation between

the risk score and the expression of multiple oncogenes and

cell senescence-associated genes. Cellular aging, characterized by

permanent cell cycle arrest, is characterized by various physiological

and pathological processes, such as tissue remodeling, injury,

cancer, and aging. While cellular aging acts as an effective barrier
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FIGURE 8

POU4F1 promotes cell proliferation, migration, and disulfidptosis in colon adenocarcinoma (COAD). (A–D) A CCK-8 assay was used to measure the
effect of POU4F1 knockdown or overexpression in SW480 and HCT116 cells. Representative images (E) and the quantified results (F) of the EdU cell
proliferation assay for COAD cells with POU4F1 knockdown or knockdown. Representative images (G) and the quantified results (H) of the Transwell
cell migration assay for COAD cells with POU4F1 knockdown or knockdown. Representative images (I) and the quantified results (J) of the b-
galactosidase staining assay for COAD cells with POU4F1 knockdown or knockdown. (K–N) A CCK-8 assay was used to measure the cell death
induced by glucose deprivation in COAD cells with POU4F1 knockdown or knockdown. Compare with shNC, # p<0.05, ## p<0.01, ### p<0.001;
compare with Blank, * p<0.05, ** p<0.01, *** p<0.001.
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to prevent tumors, there are instances where aged cells can support

tumor progression (26). These results suggest that our risk

prediction model based on DRGs has potential as an indicator for

predicting immune microenvironment homeostasis, evaluating

immune checkpoint blockade therapy, and assessing the

biological functional status of tumors. Although this study

proposes a prognostic prediction model based on DRGs and

preliminarily validates the role of POU4F1 in COAD, these

findings remain hypothetical and require additional experimental

validation and clinical research to confirm their effectiveness in

practical clinical applications.

Among the 20 DRGs included in our risk prediction model, we

focused on POU4F1, which demonstrated the highest normalized Z

score based on CRISPR screening. Our aim was to investigate its role

in regulating biological functions and cell death in COAD cells.

Previous studies have identified POU4F1 as a factor that induces

resistance to trastuzumab in breast cancer cells by mediating the

ERK1/2 pathway (27). As a transcription factor, POU4F1 has been

shown to transcribe and regulate the expression of MEK in

melanoma, thereby reactivating the MAPK pathway and leading to

resistance against BRAF inhibitors (28). Our findings indicate that

POU4F1 may act as an oncogene due to its upregulation in COAD

tumors and its positive correlation with the expression of oncogenes.

Furthermore, survival analysis revealed that a high POU4F1

expression was associated with a poor prognosis in COAD patients.

Further in vivo assays indicated that POU4F1 knockdown

significantly attenuated cell proliferation and migration while

increasing cell senescence in COAD cells. Our research highlights

the nuanced roles of SLC7A11 and POU4F1 in COAD, where

SLC7A11 overexpression may inhibit metastasis, in contrast with

the ability of POU4F1 to facilitate tumor growth and migration,

suggesting that gene functions vary significantly across cancers due to

unique genetic and epigenetic landscapes (29). We further evaluated

the regulatory effect of the DRGs on disulfidptosis by culturing the

cells in a glucose-deprived medium. The results demonstrated that

POU4F1 knockdown inhibited glucose deprivation-induced cell

death, while POU4F1 overexpression promoted cell death. These

results revealed that POU4F1 has important effects on the

proliferation, migration, and senescence of COAD cells as well as

disulfidptosis. In summary, our study revealed and validated a risk

prediction model based on DRGs in COAD patients. Furthermore,

we have provided evidence that POU4F1 promotes cell proliferation,

migration, and disulfidptosis in COAD.

In conclusion, our study revealed and verified a risk prediction

model based on disulfidptosis-related genes (DRGs) in COAD

patients. The risk score is related to immune microenvironment

homeostasis, expression of immune checkpoints, and tumor

biological functions. POU4F1, a crucial component of this model,

has been confirmed to promote cell proliferation, migration, and

disulfidptosis in COAD cells. This prognostic model not only

enhances our understanding of COAD progression mechanisms

but also provides a new tool for the stratified management of

colorectal cancer patients, allowing clinicians to more accurately

predict patient prognosis and formulate personalized treatment
Frontiers in Immunology 15
plans, thereby improving treatment outcomes and patient

survival rates.
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