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Exosomes are small extracellular vesicles (sEVs) secreted by cells. With advances

in the study of sEVs, they have shown great potential in the diagnosis and

treatment of disease. However, sEV therapy usually requires a certain dose and

purity of sEVs to achieve the therapeutic effect, but the existing sEV purification

technology exists in the form of low yield, low purity, time-consuming, complex

operation and many other problems, which greatly limits the application of sEVs.

Therefore, how to obtain high-purity and high-quality sEVs quickly and

efficiently, and make them realize large-scale production is a major problem in

current sEV research. This paper discusses how to improve the purity and yield of

sEVs from the whole production process of sEVs, including the upstream cell line

selection and cell culture process, to the downstream isolation and purification,

quality testing and the final storage technology.
KEYWORDS

small extracellular vesicles, purification, scale-up, industrialization, therapeutics
1 Introduction

sEVs are nanoscale vesicles secreted by cells with a lipid bilayer membrane structure. It

was first discovered in 1983 in sheep reticulocytes in culture and was named “exosome” in

1987 (1). sEVs are generally considered to be between 30-150 nm in size (2). At first people

considered cellular metabolic wastes and not taken seriously. sEVs are widely found in

almost all tissue cells and body fluids (3) and are rich in lipids, proteins, and nucleic acids

(4). sEVs can travel between cells and carry a wide range of substances from the parent cell

for intercellular communication (5), playing an irreplaceable role in physiological and

pathological situations. Compared to traditional stem cell therapies, the small size of sEVs

makes it easier for them to be endocytosed by cells to transfer their cargo to recipient cells,

and because sEVs are less immunogenic, they can be administered repeatedly (6).

sEVs are widely used in biomedicine in three main directions. The first is the extraction

of sEVs in the pathologic microenvironment as biomarkers for disease diagnosis (7). The
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second is that small extracellular vesicles themselves contain a

variety of cytokines, proteins, messenger RNAs (mRNAs),

microRNAs (miRNA), long non-coding RNAs (IncRNAs), lipids,

metabolites and even DNA fragments (8), that produce therapeutic

effects (9). The third is the ability of sEVs to transport drugs (10).

However, due to current technological limitations, it remains a

major challenge to obtain high purity, high quality and sufficient

doses of sEVs for clinical use.

sEVs were demonstrated to play vital roles in intercellular

communication in normal physiological processes and in the

pathogenesis of disease, including cancer neurodegenerative,

diseases and cardiovascular diseases. sEVs of different origins

have different roles to play (11). For example, sEVs of immune

cell origin fight disease primarily by promoting immunity, whereas

sEVs of stem cell origin promote tissue regeneration. In addition,

due to the different purity and activity of sEVs obtained from

different isolation methods, the results of their use in disease

therapy are not exactly the same (12). The efficacy of sEVs

obtained by immunoaffinity capture may not be as good as those

obtained by other isolation methods due to the difficulty of

removing the antibodies used for capture. Size exclusion

chromatography is gentle, and the sEVs obtained are more pure

and active, and are used for better results in disease treatment.

The purity and yield of sEVs are affected by multiple conditions,

mainly the choice of cell line (sample sources), cell culture, isolation

techniques, storage, etc.
2 Sample selection and
cultivation methods

Different samples contained different sEV content and isoforms.

Different cells and cultures produce different sEVs.
2.1 sEV-producing cells and MSCs
source selection

The vast majority of cells in the body can produce sEVs (13),

which are found throughout our body. The sources of sEVs are

mainly divided into two main categories, one is the direct extraction

of sEVs from body fluids secreted by the human body, such as

serum (14), lymph, cerebrospinal fluid (15), bile (16), plasma (17),

urine (18), breast milk (19), saliva, etc., and the other is the

extraction of sEVs from the supernatants of a variety of cell

culture media (20). However, since natural body fluids, especially

plasma, contain cellular debris, apoptotic vesicles, microvesicles,

and plasma proteins, which are not easily separated from sEVs due

to their overlapping sizes and biochemical properties, resulting in a

low purity of the isolated sEVs (21). The urine has fewer interfering

particles than the plasma, but a low concentration of sEVs (21). It’s

obvious sEVs obtained from urine are more pure, but because of

their low concentration, they require a larger volume than in plasma

extraction to obtain the same mass.

In contrast, in vitro cell culture supernatants are easier to obtain

and the quality of sEVs obtained is more stable, so most of the
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existing techniques are extracted and isolated from conditioned cell

cultures (22, 23). Stem cells with high productivity have been used

for the longest time for in vitro cell culture, with mesenchymal stem

cells (MSCs) being the most used (24). Depending on the source,

MSCs can be categorized into bone marrow MSCs, adipose MSCs,

human umbilical MSCs, dental pulp MSCs and so on (25). Stem

cells from different sources proliferate at different rates on their own

and produce sEVs of varying quantity and quality (26), among

which human umbilical MSCs produce the largest number of sEVs

and the largest size (27), meanwhile, human umbilical MSCs are

able to be stably cultured in serum-free medium (28), which

effectively avoids the contamination by the impurities in serum in

the subsequent isolation process, and is conducive to the large-scale

production of sEVs.
2.2 Cell culture

The occurrence and secretion of cellular sEVs are influenced by

multiple conditions. On the one hand, small molecules can influence

sEV production and secretion. For example, thrombin pretreatment

enhances the ability of MSCs to produce extracellular vesicles and the

quality of extracellular vesicles is not affected (29). Adiponectin

stimulates the production and secretion of sEVs by binding to T-

cadherin on MSCs (30). N-methyldopa and norepinephrine can

triple the sEV production of MSCs (31). Melatonin-treated sEVs

enhance the regenerative potential of MSCs (32). In addition, external

environments such as magnetic field (33), flow and stretch (34),

ultrasound (35), PH (36), hypoxia (37), temperature (38), and light

(39) affect the synthesis and release of sEVs.

To further obtain higher yields and quality of sEVs, Three

dimensional culture systems are being used for sEVs production.

The three dimensional culture improves sEVs production by

increasing cell-cell-cell matrix interactions (40). Common three

dimensional culture methods are hanging droplet culture and

microporous array method, the hanging droplet culture is simple

and easy to execute, but the yield is limited and there are limitations

for sphere size adjustment, so mass production with hanging

droplet culture will be time-consuming (41). The microporous

array method inoculates cells into a series of small wells to which

cell growth-promoting materials can be added to promote cell

proliferation and sEV synthesis, In addition, the microporous

array method is easier to produce three dimensional spheres than

the droplet method and has a higher throughput (42), which means

microporous array method more suitable for mass production. In

addition, artificial sEVs with low cost, high yield and stable quality

are expected to be a powerful alternative to natural sEVs (43).
3 sEV isolation and purification

3.1 Common isolation techniques

Common isolation techniques include ultracentrifugation,

ultrafi l tration, immunoaffinity capture, size exclusion

chromatography and precipitation.
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Ultracentrifugation is the classical method for sEV isolation

(44). At the same time, it is also the most widely used isolation

technique (45). Ultracentrifugation is based on the separation of

sEVs and impurities in the samples with different densities and sizes

(46), the dead cells, cellular debris, and large extracellular vesicles in

the samples are successively removed by different rotational

speeds, and finally obtain the sEVs in the supernatant (45).

Ultracentrifugation can process a large number of samples at one

time and is easy to perform, but produces less pure and time-

consuming sEVs because of the different subtypes of sEVs have

overlapping density ranges (47). Formation of a density gradient

medium with sucrose or iodixanol in combination with

ultracentrifugation improves the purity of sEVs, but prolonged

incubation with high sucrose concentrations impairs the structure

of sEVs (48). In addition, the polymer density layer is expensive and

not suitable for sEV scale-up.

Ultrafiltration is based on the isolation of different extracellular

vesicles with different sizes, which can only pass through a series of

semi-permeable membranes with defined pore sizes (49). However,

since extracellular vesicles are deformable, vesicles that do not

conform to the size can also be deformed to pass through the

pore resulting in sEV impurity, so they are only used for

preliminary isolation (50).

Immunoaffinity capture is an sEV isolation technique based on

antigen-antibody interactions, in which immobilization of a specific

antibody allows for specific binding of an antigen unique to the surface

of the sEV, and thus capturing the sEVs (51). However, the overlap of

antigens between different subpopulations and the difficulty of

removing capture antibodies can affect later functional assay studies

of sEVs, that not conducive to subsequent sEV research

and applications.

Size exclusion chromatography (SEC) is also an isolation

method based on sEV size, where large particles are unable to

enter the gel pores and small sEVs are allowed to enter, which is a

milder separation method that yields sEVs with higher purity and

activity (52). However, the resolution of SEC decreases when the

particles are close to or larger than the upper limit of the pore size,

and so SEC is often used in conjunction with ultracentrifugation

(53) and ultrafiltration (54) to improve the purity of sEVs.

Precipitation is sEVs under the action of polyethylene glycol

usually, the solubility decreases leading to the precipitation of sEVs,

and then sEVs can be obtained by low-speed centrifugation (55),

which is easy to operate, does not require special equipment, and is

conducive to the preparation of large-scale, but is prone to the

introduction of impurities leading to the sEVs are not high

purity (56).
3.2 sEVs isolation kits

As the demand for sEVs increased, a variety of commercial kits

rapidly emerged. Kits principle is based on traditional sEV

separation methods such as ultrafiltration, sedimentation and so

on. Commercial kits do not require special equipment, with the

advantages of simple operation and short time consuming, and can

isolate sEVs from most common body fluids and cell culture
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process a large number of samples at once, so they are not

suitable for high-volume processing. Furthermore here are

significant differences in the purity and quantity of sEVs collected

by different kits (47). For example, the yield of sEVs obtained with

the invitrogen kit is dozens of times more than that obtained with

conventional ultracentrifugation, but the purity of the output

sEVs is unsatisfactory, and the sEV isolation kit requires pre-

separation before use, which makes the experimental process

cumbersome (58).
3.3 Emerging sEVs isolation technologies

Although there are many techniques for sEV isolation and

purification, all of the above techniques have significant drawbacks

and are not suitable for large-scale production of sEVs (Table 1).

Microfluidics is an emerging method for sEV isolation, which is a

technique for controlling fluids in micrometer-sized channels that

relies on a range of sEV properties including immunoaffinity,

density, and size, and it overcomes the limitations of traditional

methods by offering advantages such as low cost, small size, speed,

sensitivity, labeling-free, and high recoveries (57). It is expected to

replace traditional methods in the future and play an important role

in the industrialized mass production of sEVs in the future.

The EXODUS system separates and purifies sEVs by two

coupled oscillators generating a dual-frequency transverse wave

on the membrane, which produces sEVs at a rate, purity, and

throughput that are far superior to the others (68). Asymmetric-

flow field-flow fractionation technology (AF4) is label-free, fast,

highly reproducible, highly recoverable and high resolution, which

helps to separate different sEV isoforms (64). However, because

AF4 separates based on particle size, it is not able to separate sEVs

that have the same size, but are actually different. Double tangential

flow size screening-based microfluidic chip greatly improves sEV

recovery rate and purity. Its sEV recovery rate up to 77.8, acquired

sEVs can be directly used for sEV analysis (65). Capture of sEVs by

altering temperature was devised by Kenichi Nagase (71).

Whether it is the traditional separation technology or the

microfluidic technology in the last two years, it has not fully

achieved the ideal separation effect. Based on the properties of

sEVs and downstream applications, it may be a useful idea to

combine different isolation methods to get better separation effect.

The combination of different techniques may offer the possibility of

efficiently obtaining high-purity and high-yield sEVs.
4 Quality testing and control of sEVs

Since the present technologies does not allow for a good

isolation of sEVs from other impurities, the subsequent

assessment of the purity and quality of the sEVs obtained is

particularly important. Different subtypes of sEVs contain

different proteins, lipids, and nucleic acids because of the different

cells of origin of the sEVs (72).
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These differences of different sEVs have an important role in the

assessment of sEV subtypes, such as the tetraspanins (CD9, CD63,

CD81) that are often used to differentiate subpopulations of

extracellular vesicles and to assess sEV purification (73).

Commonly used techniques for sEV detection include nano-flow

cytometry (74), flow cytometric analysis (75), ELISA (76),

transmission electron microscopy and so on. These techniques

are used to assess the quantity and purity of sEVs in samples. To

provide a better platform for the use of sEVs in the clinic.
5 Storage of sEVs

From the current study, the storage conditions of sEVs

including temperature, storage time and even the number of

freezing and thawing cycles have a great impact on the

concentration, purity and function of sEVs (77). Common storage

conditions in the laboratory are 4°C, -20°C, and -80°C., the

concentration and purity of sEVs decreases accordingly with

increasing temperature and storage time. For commercial and

clinical use, long-term storage of sEVs is generally required.

Because -80°C can effectively inhibits biologically active proteins

and reduces the loss of sEVs, -80°C is usually considered to be the

optimal temperature for sEV storage (78). However, this storage

method usually makes sEVs susceptible to “frostbite”, mainly due to

osmotic imbalance, so cryoprotectants are usually added during the

freezing process to maintain protein stability and prevent osmotic
Frontiers in Immunology 04
damage (79). Commonly used cryoprotectants such as trehalose

prevent aggregation by avoiding internal icing of sEVs, while the

addition of trehalose contributes to the colloidal stability of sEVs

(80). It has been shown that the addition of human albumin and

trehalose during storage helps to improve long-term storage of

sEVs, maintain freeze-thaw stability, and increase sEV recovery

when diluents are used downstream (81).

However, -80°C is not suitable for the transportation and

application of sEVs, and not all factories and laboratories have

-80°C storage conditions. Therefore, freeze-drying and spray-

drying are used for the preservation of sEVs, and studies have

shown that freeze-drying can be used for long-term preservation at

4 °C (82), reducing storage requirements and costs for sEVs. In

addition, repeated freezing and thawing can lead to a decrease in the

number of sEVs and an increase in their size (83), so we should

avoid repeated freezing and thawing process as much as possible to

ensure the quality of sEVs during storage and transportation.
6 Laboratory and scale-up of sEVs

In the past few years, the clinical application of sEVs has

become more and more widespread, however, in order to achieve

significant clinical therapeutic effects require a certain dose of sEVs,

but with the current production technology of sEVs, the production

of sEVs is not high (84). With the increasing demand for sEVs, the

traditional method of isolating sEVs from body fluids, such as
TABLE 1 Comparison of different isolation techniques.

Classification Isolation technique
Process
time Advantages Disadvantages References

Centrifugation
techniques

Ultracentrifugation 3-6h
Simplicity of operator
Single processing sample is large
Most commonly used separation techniques

Low purity
Time-consuming

(45, 47, 48, 59)

Size-
based techniques

Density
gradient centrifugation

24h
Higher purity compared to
differential centrifuges

Long incubation time leads to
destruction of sEV

(48, 60, 61)

Ultrafiltration 1-3h
Wide range of application
Suitable for primary screening

Low purity
Not suitable for plasma

(49, 50)

Capture-
based techniques

Size
exclusion chromatography

0.5-2h
The obtained exosomes
have high activity
High purity

Complicated operation
High cost and
expensive instruments

(52–54)

Magnetic beads and
immunoaffinity capture

4h
High purity
High resolution
high recoveries

Low yield
Bound antibodies are
not easily removed

(48, 51, 62, 63)

Polymer-
based techniques

Commercial kits 0.5-3h
No special equipment required
Easy operation
Short time-consuming

Low production
High cost
Laboratory only

(47, 57 ,58)

Microfluidics-
based
techniques

Size-based microfluidics 0.5-1h
Label-free, fast, highly reproducible, highly
recoverable and high resolution

Not able to separate sEVs
that have the same size

(64–66)

Immunoaffinity-based
microfluidic separation

0.5-1h
Low cost, small size, speed, sensitivity,
labeling-free, and high recoveries

Bound antibodies are
not easily removed

(57, 66, 67)

Dynamic microfluidics 0.5-1h
High rate, purity
Simple microchannel structure
Controllable process

High demands on
the manipulator

(66, 68–70)
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human plasma, is obviously unable to meet the demand for the use

of sEVs, so the large-scale production of sEVs is crucial. Less mature

cells such as MSCs are often used in industry for culture to obtain

sEVs (85). In reality, serum-free medium is usually used for stem

cell culture due to the high content of endogenous extracellular

vesicles in fetal bovine serum (86), which is not conducive to later

isolation and purification. Studies show that switching from serum-

containing to serum-free media produces sEVs that exhibit stronger

therapeutic effects (87). However, it has been shown that the use of

serum-free media leads to an increase in reactive oxygen species and

emergency-related proteins (88). However, it is undeniable that

serum-free medium it is favorable to improve the purity of sEVs

and reduce the unknown side effects of sEVs during

clinical application.

In addition sEV production is related to the surface area to

which cells can attach in the bioreactor. Therefore microcarriers are

particularly important in bioreactors, which are generally spherical
Frontiers in Immunology 05
in shape to provide a larger value-added area for adhesion (89). A

variety of bioreactor systems are used for large-scale production,

such as hollow-fiber membranes (90), three-dimensional stirred-

tank bioreactors (91).

Of course, the production of sEVs from the general laboratory

to industrial mass production is not a simple process, which not

only involves the selection of cell lines in the early stage, cell culture,

but also includes the isolation and purification of the latter, quality

control, storage (Figures 1, 2). And importantly tighter control of

lot-to-lot consistency of sEVs is not easy (92). There is still a long

way to go for sEV purification and scale-up.
7 Discussion

sEVs have a wide range of applications and are currently used in

the diagnosis and treatment of diseases, cosmetic skincare and scalp
FIGURE 1

Flowchart of sEVs preparation.
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care for hair regrowth. In particular, stem cell-derived sEVs show

great potential for clinical therapy. sEVs can travel between cells for

the purpose of intercellular communication. In addition, due to the

small size of sEVs, it is easier to transfer cargo to recipient cells by

endocytosis, and the low immunogenicity allows repeated

administration. These properties determine that sEVs are more

likely to produce good therapeutic results.

Despite the widespread use of sEVs, their use is limited in

several ways. Currently, a major challenge in the field of sEV

research focuses on the isolation and purification of sEVs and

how to achieve large-scale production to meet the needs of society.

Due to technological limitations, various methods currently have

drawbacks, initially people tried to build on their strengths and

avoid their weaknesses by combining different isolation methods,

and then emerging technologies such as microfluidics were invented

and incorporated into the existing isolation techniques, which

resulted in an effective improvement of sEV purity and yield. In

addition, with the use of advanced technologies such as serum-free

media and bioreactors for sEV production, the yield of sEVs has

been effectively increased, but nevertheless, there are still many

challenges in the large-scale production of sEVs.
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