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Tuberculosis (TB) and tumor, with similarities in immune response and

pathogenesis, are diseases that are prone to produce autoimmune stress

response to the host immune system. With a symbiotic relationship between

the two, TB can facilitate the occurrence and development of tumors, while

tumor causes TB reactivation. In this review, we systematically sorted out the

incidence trends and influencing factors of TB and tumor, focusing on the

potential pathogenesis of TB and tumor, to provide a pathway for the co-

pathogenesis of TB comorbid with tumor (TCWT). Based on this, we

summarized the latest progress in the diagnosis and treatment of TCWT, and

provided ideas for further exploration of clinical trials and new drug development

of TCWT.
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1 Background

In recent years, the stubbornly high global incidence of TB and tumor renders the two

as public health problems that threaten human health and as major factors in the global

disease burden (1–3). In the past two decades, the number of new TB patients stays

basically high. It is estimated that the year 2022 saw 10.6 million new TB patients in the

world, with an incidence rate of 133/100,000 (3). TB is also the world’s leading cause of

death from a single infectious source, with 1.3 million deaths globally in 2022 (3). There are

many epidemiological evidences showing that TB coexists with tumors, where TB is a

susceptible factor for tumor, and tumors can augment the incidence risk of TB (4–6). TB is

attributed to an increased risk of cancer mortality, and TB patients have higher comorbidity

and mortality with tumor (7, 8). Many epidemiological evidences show that TB is closely

related to tumors, and the risk of TB patients comorbid with lung cancer, pleural

mesothelioma, Hodgkin’s lymphoma and other cancers is higher than that of the normal
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population (5, 9). Studies (10) have shown that cancer itself is an

independent risk factor for developing active mycobacterium TB

infection, however, this risk varies greatly among different cancer

types, with lung cancer and hematologic malignancies having a

higher risk (11, 12).

TB and tumor are bidirectional related diseases, and there is a

causal relationship between them. TB facilitates the occurrence and

development of tumors, and tumor causes TB reactivation, and

there is a symbiotic relationship between the two. Studies have

shown that both tumor patients and TB patients are prone to

generate autoimmune stress reactions to the host immune system.

With similarities in immune response and pathogenesis, TB and

tumor can facilitate disease progression and anti-tumor or

elimination of mycobacteria through immune cell reactions such

as T cells (13, 14). Immunotherapy targeting T cells has also been

applied to the treatment of TCWT (15). In this paper, a systematic

study was conducted on the disease risk, mechanism, diagnosis and

treatment of patients with TCWT, and the relationship between the

two disease mechanisms was clarified to provide clinical decision-

making basis for the treatment of TCWT.
2 Prevalence trend of TCWT

Studies have found that TCWT is on the rise, with 2.33% of

global cancer (tumor) incidence attributed to TB (6, 16, 17). Studies

have shown that TB patients have a high risk of developing cancer

(18). The overall incidence of cancer induced by TB was 1.60(95%

CI, 1.28-2.01) (19), and the incidence of lung cancer was higher in

TB patients, which was about 3.0 (95%CI,2.35-3.32) (20). TCWT

boosted mortality risk, with standardized mortality rates of

respiratory cancer, blood cancer and head and neck cancer being

5.45, 3.70 and 2.58, respectively (21). The risk of TCWT varies in

different regions. In European and American countries, the risk

probability of TCWT mainly includes lung cancer, esophageal

cancer, head and neck cancer, hepatobiliary cancer, Hodgkin’s
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lymphoma, etc. (17, 22–24), as shown in Figure 1. In Asian

countries represented by China, high-risk tumors of TB patients

are mostly manifested in diseases of respiratory system, blood

system, cervical cancer, head and neck tumors and others (18, 25,

26), as shown in Figure 2.

TB is associated with the pathogenesis of tumors, and can lead

to tumor occurrence, showing a positive correlation (23). Meta-

analysis has shown that TB is an independent risk factor for cancer,

and the risk of cancer in TB patients is significantly increased

compared with the normal population (27). A retrospective study

showed that of 3776 TB patients followed up, 86 (2.3% of the

population) developed lung cancer (28). A Danish national cohort

study (29) showed that TB patients had an increased long-term risk

of developing cancer compared to the general population. There is a

50% increased risk of lung cancer two years after TB (9). A long-

term follow-up study in Taiwan suggested that the proportion of

malignant tumors in newly diagnosed TB patients increased year by

year, from 9% in 2005 to 13% in 2015 (18).

Tumor has an activation effect on TB, and immunotherapy in

tumor patients will cause the latent mycobacterium TB to

react ivate , promote the cont inuous pro l i fera t ion of

mycobacterium TB in the body, and secrete immunosuppressive

factors to inhibit the immune function of the body (30, 31). It causes

a significant increase in the risk of active TB in tumor patients, with

an incidence rate that is 9-13 times that in tumor free patients (11,

32, 33). A clinical study (34) showed that the median incidence of

latent TB infection in patients treated with infliximab after

antitumor therapy was 12.1 times higher than in patients treated

with etanerceib. Multiple studies (35–37) have shown that cancer

patients are at twice the risk of developing TB compared with the

general population. Patients with lung cancer are 6 times more

likely to develop TB than those without lung cancer (31). The risk of

TB in gastric cancer patients was 2.63 times that of the general

population (IRR 2.63, 95% CI 1.96-3.52) (38), and the risk of TB in

adult patients with blood tumors was 3.3 times that of the general

population (IRR 3.53; 95% CI 1.63-7.64) (12).
FIGURE 1

Top 10 TB-attributed cancer risks in European and American countries.
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In summary, an array of epidemiological investigations have

shown that TB and tumor have mutually promoting effects, and

more and more epidemiological studies have proved the comorbid

relationship between the two, suggesting that studies on the

pathogenesis and molecular mechanism of the two should be

reinforced to provide support for public health security and

alleviate the global disease burden.
3 The mechanism of TB and tumors

3.1 Possible mechanisms of
TB- induced tumorigenesis

3.1.1 T cells
T cells play a key role in regulating tumor growth and metastasis.

Among them, CD4+ T cells can be differentiated into Th1, Th2 and

regulatory T cells (Tregs) according to different functions and

markers. Th1 regulates immune cell function by increasing the

activity of silence-message regulatory factor-associated enzyme 1

(SIRT1) dependent on nicotinamide adenine dinucleotide (NAD),

thereby exerting anti-tumor effects (39). Th2 is generally believed to

play an anti-tumor role through the expression of eosinophilic and

eosinophilic chemotactic factor (ECF), and some scholars have also

proved that TH2 can play a pro-tumor role through the secretion of

cytokines IL-4 and IL-5 (40). More researchers profess the

importance of Th1/Th2 imbalance leading to impaired immune

function and augmented escape of tumor cells, thus promoting

tumor formation (41). At the same time, studies have shown that

Th1/Th2 imbalance in peripheral blood is closely related to TB

nosogenesis (42). TB patients show reduced Th1 response and/or

enhanced Th2 response (43), and the severity of the disease is closely

related to Th1 response, the lower the Th1 response, the more severe

the disease (44). To delve into the potential mechanism, Cao et al.

compared the immune response of T cells in patients with active

pulmonary TB and mice treated with MTB and lung cancer cells, and

proved that MTB may inhibit Th1 immune response through the

programmed cell death protein 1 (PD-1)/programmed death ligand 1
Frontiers in Immunology 03
(PD-L1) signaling pathway. This may lead to Th1/Th2 imbalance and

further promote lung cancer metastasis (45). In recent years, studies

on the pathogenesis of Tregs in cancer have also attracted the

attention of many researchers (41). Tregs can protect tumor cells

by inhibiting cytotoxic T lymphocytes (CTL) mediated apoptosis

(39, 41, 46). Furthermore, Jie et al. found that Tregs was closely

related to the occurrence of TB, and the results showed that the

percentage of Tregs in peripheral blood of patients with active TB was

significantly higher than that in the latent TB group or control group

(Tregs: 11.44 +/- 2.69% vs. 7.54 +/- 1.56% vs. 4.10 +/- 0.99%, p < 0.05)

(47). The possible mechanism is that MTB can enhance the

polarization ability of Tregs by driving the high expression of

BTLA in dendritic cells (48). The increase of Tregs activity can lead

to immunosuppression and a decrease in the number of Th1 cells,

which are conducive to the occurrence and progression of skin cancer

(49). In addition, it has been proved that the production of Tregs and

its inhibitory properties can also be regulated through the expression

of PD-1 and the binding of PD-1 to PD-L1 (46). For this reason, the

treatment of immune checkpoint inhibitors (ICIs) combined with

PD-1 or PD-L1, especially for cancers such as non-small cell lung

cancer, has shown remarkable efficacy, and may also be of great

significance for the treatment of lung cancer caused by TB

(46) (Figure 3).

3.1.2 Myeloid derived suppressor cells
MDSC is a group of heterogeneous cells from bone marrow,

which can inhibit immune cell response through reactive oxygen

species (ROS) molecules and other pathways, and it has been proved

by abundant evidences that it plays an important role in promoting

tumor malignant growth and metastasis in tumor immunity (50–53).

The reason: On the one hand, in the tumor microenvironment,

MDSC exerts an inhibitory effect to produce excess ROS, while

MDSC up-regulates the production of ROS in the high-

concentration ROS environment. ROS can produce highly

destructive hydroxyl radicals, resulting in the damage of DNA,

proteins and lipids in the body. At the same time, oncogenes jun

and fos are also activated, which eventually lead to the occurrence of

tumors under the action of various factors (5, 54–56). On the other
FIGURE 2

Top 10 TB-attributed cancer risks in China.
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hand, in order to maintain an immunosuppressor environment,

MDSC secretes a series of chemokines, thereby playing a role in

the recruitment of Tregs and thus promoting the development of

tumors (41, 46, 57). In addition to its role in tumors, MDSC has

gradually been shown to play an important role in many chronic

infectious diseases, especially in TB (58). Studies have shown (59) that

under abnormal conditions of chronic infections such as TB,

excessive production of MDSC will be caused to inhibit host

protective T lymphocyte response. The possible mechanisms are as

follows: First, MDSC changes the polarization direction of monocytes

and macrophages by producing ROS, thereby inhibiting the anti-

inflammatory response; On the other hand, studies have shown that

MDSC inhibits the immune response of T cells and effector B cells by

inducing cells such as Tregs (58). Therefore, it is very possible that

MDSC is produced after infection with Mycobacterium TB, and

MDSC ultimately promotes the occurrence and development of

tumors through up-regulation of ROS and recruitment of Tregs.

3.1.3 Macrophages
Tumor-associated macrophages (TAMs) are one of the major

tumor-infiltrating immune cell types and are generally divided into

one of two functional contrast subtypes, classically activated M1

macrophages and replacement-activated M2 macrophages. The

former usually exerts anti-tumor functions, including directly

mediated cytotoxicity and antibody-dependent cell-mediated

cytotoxicity (ADCC) to kill tumor cells; the latter promotes the

formation and metastasis of tumor cells by inhibiting the anti-

tumor immune response mediated by T cells. When the body is

exposed to MTB, macrophages play an important role as the main

innate immune cells (60, 61). The relevant mechanism of action

may be as follows: First, it has been found that IL-37 induces the

polarization of macrophages towards M2-like phenotype during

MTB infection (62, 63), which may further promote the occurrence

and metastasis of tumor cells. Secondly, MTB toxic factor ESAT-6
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can drive the polarization of macrophages towards pro-

inflammatory M1 phenotype, and subsequently towards anti-

inflammatory M2 phenotype, and can also drive the

transformation of activated M1 phenotype into M2 phenotype

(64), which may play a role in promoting tumor. In addition, in

the process of inflammation, activated macrophages will gather at

the site of MTB infection and produce a large amount of active

nitrogen and ROS, etc. ROS promotes the occurrence and

development of tumors by activating oncogenes jun and fos (54,

55). Some scholars used a mouse model infected with MTB to test

the effect of macrophage depletion on the occurrence of lung cancer,

and the results showed that the incidence of lung cancer in TB mice

with macrophage depletion was significantly lower than that in

control TB mice without macrophage intervention (65).

3.1.4 Epidermal growth factor receptor signaling
EGFR belongs to the ERBB family of tyrosine kinase receptors.

The EGFR signaling cascade is a key regulator of cell proliferation,

differentiation, division, survival, and cell proliferation, and has

been shown to play an important role in regulating the

proliferation, survival, and differentiation of tumor cells, and is

highly expressed in more than 60% of Nonsmall Cell Lung Cancer

(NSCLC) (66). In recent years, more and more researchers have

provided evidence that MTB can cause tumors through the EGFR

pathway: Nalbandian et al. found that MTB infected macrophages

induce the production of highly efficient epidermal regulatory

hormone (EREG), thus activating the EGFR signaling pathway

through EREG and promoting cancer progression (5, 67).

Meanwhile, studies have demonstrated in mouse models that

MTB infection can stimulate the expression of EREG in a toll-like

receptor 2 (TLR2) -dependent manner, and EREG binds to EGFR in

membrane or soluble form to stimulate downstream signal

transduction, thereby inducing activation and mutation of k-ras

gene, leading to the occurrence of lung cancer (67, 68) (Figure 4).
FIGURE 3

Mechanism of T cell influence on tumor cells and possible mechanism of MTB causing tumor.
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In addition, EGFR mutations are often directly or indirectly

associated with the pathogenesis of some cancers with high global

morbidity and mortality, such as lung cancer, pancreatic cancer and

head and neck cancer (69–73). Approximately 15% of Caucasian

patients and 30%-40% of Asian patients with lung adenocarcinoma

carry EGFR mutations (74). Among them, the two major classical

mutations are exon 19 deletion and exon 21 L858R mutation, with the

incidence of 44% and 41%, respectively (75). EGFR mutations are

highly prevalent in tumors, and TB can cause high EGFR mutations.

Luo et al. (70) found that patients with lung scar cancer or old TB had a

higher incidence of EGFR mutation (p =0.018), especially exon 19

deletion (p<0.001), in patients with lung adenocarcinoma than those

without TB focal points. This was also fully demonstrated in a

retrospective study of nearly 500 patients with lung adenocarcinoma

(76), with a higher frequency of EGFRmutations in the TB group than

in the non-TB group (56% vs 34%, p=0.038). A study in Taiwan

evaluated the correlation of EGFR mutation outcomes in 275 TB

patients (77), with 191 patients (69.5%) having a high EGFR mutation

in their study. Although it is certain that TB can induce EGFR

mutation and increase the risk of tumor development, the exact

molecular mechanism remains to be further elucidated. TB not only

affects the mutated status of EGFR, but also affects the treatment

response of patients treated with EGFR tyrosine kinase inhibitors

(TKIs). At present, EGFR-TKI targeted therapy has become the

standard first-line treatment for patients with advanced EGFR-

mutated NSCLC, which can significantly improve their prognosis

(78). Simultaneous use of antituberculosis drugs and TKIs in a

comorbidities patient for EGFR-mutated lung cancer patients with

active TB has shown a safe and alternative treatment strategy (79).
3.2 Possible mechanisms of
tumor-induced TB

3.2.1 Tumor effect
Cancer is largely regarded as a disease caused by gene mutation

and gene alteration, and the metabolic changes of tumor cells driven by

oncogenes can limit the immune response of the body by affecting the
Frontiers in Immunology 05
tumor microenvironment (TME), thus causing serious adverse effects

on the normal immune defense function of the body (80, 81). At

present, themechanism of TB induced by tumor itself is not completely

clear. The possible mechanisms are as follows: First, there is a high level

of adenosine triphosphate (ATP) in TME, and CD73 decomposes ATP

through dephosphorylation, and finally produces adenosine (82).

Adenosine has a significant inhibitory effect on immune response

(83) and can also play a protective role in extracellular bacteria and

fungi, including MTB, by mediating type 3 immune effects (84). In

addition, studies on lung cancer patients and mouse models have

proved that lung cancer can lead to the loss of microbial diversity, the

reduction of the total amount of bacteria and the change of bacterial

composition, which can lead to the imbalance of microbial flora,

resulting in the reduction of the stability of the body’s immune

homeostasis, and thus increase the host’s susceptibility to various

pathogens (85, 86). Studies have shown that up to 50%-70% of lung

cancer patients are complicated by lung infection during the course of

the disease (87). Wessels et al. ‘s study on children showed that the risk

of TB among children with malignant tumors was indeed higher than

that of ordinary children, and the risk ratio reached 11 times (88).

3.2.2 Chemotherapy
Platinum-based chemotherapy is recognized as the standard

treatment for patients with stage II and III non-small cell lung

cancer (NSCLC) and is often considered for stage IB patients with

tumors ≥4cm (87). Chemotherapy drugs have an effective killing

effect on tumor cells, but they also affect the immune system of

patients. Investigation in TB endemic areas found that TB infection

was common in systemic chemotherapy (89). On the one hand,

chemotherapy can produce immunosuppressive effects on cellular

immunity and immunoglobulin, affecting the normal immune

function of patients. Chemotherapy, on the other hand, can cause

neutropenia and leukopenia by inhibiting bone marrow function,

leading to a state of severe immune deficiency with symptoms such as

cough, hypoxia, dyspnea, and fever. In addition, although

chemotherapy-induced pulmonary toxicity is rare in clinical

practice, it can be manifested as hypersensitivity reaction,

interstitial pneumonia, non-cardiogenic pulmonary edema, pleural
FIGURE 4

Possible mechanism of MTB causing tumor through EGFR pathway.
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effusion, obliterated bronchiolitis, tissue pneumonia and progressive

pulmonary fibrosis. The above diseases all affect the normal immune

defense function of the normal lung, thereby increasing the

susceptibility of the lung to bacteria including MTB (90). Clinically,

there have been reports of patients with non-small cell lung cancer

infected with MTB after receiving standard chemotherapy based on

bisplatin and pulmonary TB during postoperative chemotherapy for

gastric cancer (91, 92). Another study, which recruited 1,809 cancer

cases and 1,809 control subjects and followed them for 3 years,

showed that immunosuppression of cancer or anti-cancer

chemotherapy increased the risk of TB reactivation, especially in

cancer patients with age-cured TB (93).

3.2.3 Immunotherapy
As new immune checkpoint inhibitors continue to enter clinical

trials, ICIs is becoming one of the most important immunotherapy

therapies. lCIs mainly inhibits immune checkpoint proteins by

blocking CTLA-4, PD-1 and PD-L1. At present, immunotherapy

of PD-1/PD-L1 has significantly prolonged the survival of patients

with advanced lung cancer, and has become the standard treatment

choice for the first and second line of advanced lung cancer (94).

However, when ICIs are selected, they also affect immune function,

which may increase susceptibility to MTB infection. There are two

possible reasons for this: First, because ICIs works by blocking

CTLA-4, PD-1, and PD-L1 to inhibit immune checkpoint proteins,

model studies in knockout mice have demonstrated that conditions

in which CTLA-4 and PD-1 are absent may lead to imbalanced

immune homeostasis, resulting in reduced host immunity (95–97).

Studies have shown that immunocompromised people with latent

infections have a higher rate of active TB. Therefore, ICIs leads to a

decrease in the body’s immunity, which may be one of the reasons

for an increased susceptibility to MTB infection. In addition,

pneumonia caused by ICIs is the most common pulmonary toxic

reaction, which may also be one of the reasons for the increased

susceptibility to MTB infection (98–100). Macrophage apoptosis

plays an important role in pneumonia. Through the mutual

influence and stimulation of inflammation and apoptosis, the

apoptosis of macrophages is accelerated while the inflammation is

aggravated (101). After MTB enters the body through the

respiratory tract, the body mainly plays a defense role through

macrophages and other cells. Therefore, apoptosis of macrophages

increases the risk of TB and latent TB reactivation. Through

comparative analysis of the function of macrophages at different

stages of pneumonia in mice, it was found that macrophages’ ability

to phagocytic bacteria was still poor several weeks after the

inflammation subsided (102).
4 Progress in diagnosis and treatment
of TCWT

4.1 Progress in the diagnosis of TCWT

At present, the research on the diagnosis technology and

treatment plan of TCWT is limited by the variety of tumor types

and the uncertain site of TB, and there is no standardized detection
Frontiers in Immunology 06
means and diagnostic technical guide for patients with TCWT.

There are differences in the pathogenesis of TB combined with

different tumors, which may lead to differences in detection and

diagnosis techniques. For example, early clinical symptoms and CT

results of TB and lung cancer are similar, and TB detection

technology plus conventional detection technology cannot

accurately diagnose (103–105).

Studies on the differential diagnosis of TB combined with

malignant tumor FDG-PE/CT carried out in South Korea,

Singapore and other countries have shown that FDG-PET/CT has

a good diagnostic effect on lung cancer, lymph node and other

malignant tumors. Meanwhile, FDG-PET/CT can be used for

targeted screening of patients with latent TB infection before

immunosuppressive therapy. A useful tool for assessing and

excluding active disease sites (104, 106–108). Su Hongjian et al.

detected the expression levels of LINC00665 and miR-589-3p in the

serum of participants by real-time fluorescent quantitative PCR.

Combined diagnosis has better diagnostic value for lung cancer

complicated with TB than single detection (109). A study on the use

of tumor biomarkers in the diagnosis of pulmonary TB and lung

cancer found that the combined detection of CEA, CYFRA21-1 and

NSE had diagnostic value for high-risk lung cancer patients with

pulmonary TB, with a specificity of 89.9% and a sensitivity of 94.9%.

ROC curve analysis showed that CEA+ CYFRA21-1+ NSE had the

highest diagnostic accuracy (AUC=0.972) (103). In addition, Han

Dongmei et al. used chemiluminescence immunoassay to detect

tumor markers in participants. Serum tumor markers combined

with CT have a good diagnostic effect on lung cancer complicated

with TB (110). Xu Yang et al. used electrochemiluminescence to

rank the clinical diagnostic value of patients, from low to high, CEA,

CA125, CT and combined diagnosis, among which CT combined

with CEA and CA125 in the diagnosis of lung cancer combined

with TB had better clinical value (107).

In recent years, RNA and proteomics technologies have also

been widely used in the diagnosis of TB and tumor (111–113). Liu

et al. used miRCURYTM LAN microRNA to identify fresh

peripheral blood mononuclear cells (PBMCs) from microscopic

smear-positive pulmonary TB patients and healthy people, and

miRNAs in patients with active TB were significantly up-regulated

compared with healthy people (114). Other scholars can obtain Ts-

RNA from sncRNAs of fresh peripheral blood mononuclear cells

(PBMC), which is helpful for early diagnosis of lung cancer and TB

(112, 115). At the same time, some studies have applied miRNA as a

new biomarker to the diagnosis and prognosis of cancer diseases,

and achieved good results (116). This study suggests that RNA

biomarkers can be used as a new diagnostic technique in patients

with TCWT. Sun et al. used proteomic techniques to compare the

proteomic features and plasma protein biomarkers of patients with

TB (n=15), patients with latent TB (n=15), and healthy people

(n=15). A total of 31 overlapping proteins with significantly

different expression levels were identified in patients with PTB

compared with LTBI and healthy people. Among them, the

diagnostic model composed of a1-antichymotrypsin (ACT), a1-
acidic glycoprotein-1 (AGP1), and e-cadhrin (CDH1) had a

sensitivity of 75.0% (21/28) and 81.8% (27/33) for PTB and lung

cancer, respectively (111). This also suggests that protein can be
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used as a new diagnostic technology for patients with TCWT, and

provides a possibility for optimizing and improving diagnostic

technology for subsequent patients with TCWT.
4.2 Progress in diagnosis of TCWT

The current anti-TB treatment mainly applies WHO TB

guidelines to patients with active TB, and the combination of

isoniazid, rifampicin and pyrazinamide is used for 6-9 months

(117). If patients are resistant to drugs, the medication regimen

needs to be adjusted, and 2-5 sensitive or unused anti-TB drugs

should be selected. The whole process of supervised chemotherapy

management was implemented to complete treatment for 18-24

months (118, 119). Relatively speaking, cancer treatment means are

more diversified, including surgery, chemotherapy and radiation

therapy, targeted therapy, immunotherapy, cell therapy and other

therapies, which can bring significant benefits to patients (120, 121).

Studies have shown that anti-TB drugs (isoniazid) can cause the

decrease of white blood cells and platelets, resulting in liver damage,

and cause chemotherapy response in tumor patients, which may act

as a suppressant of the therapeutic effect (122, 123). Another study

has shown that when chemotherapy and anti-TB therapy for

malignant tumors are carried out simultaneously, the treatment

of patients is effective and safe (124). It is suggested that the

treatment of patients with TCWT is more complicated and

uncertain, and the etiology, pathogenesis and therapeutic drug

interaction of the two diseases should be comprehensively

considered in the formulation of treatment plan (89, 124). For

patients with latent TB complicated with lung cancer, anti-TB

therapy is generally not required, but only anti-tumor therapy.

For patients with active TB, anti-tumor chemotherapy and anti-TB

therapy are required (121). Patients with urinary TB complicated

with bladder cancer are prone to misdiagnosis or missed diagnosis,

which is likely to delay the treatment time and lead to inappropriate

treatment options (125). For patients requiring surgical resection of

the tumor, preoperative tumor chemotherapy and anti-TB

treatment should be synchronized, and anti-TB drugs should be

continued after surgery (126), which is conducive to enhancing the

therapeutic effect.

In a study of mycobacterium TB infection in mice, mice co-

expressed other inhibitory receptors (including PD-1) and were

effectively treated with anti-TIM-3 monoclonal antibodies against

TB, suggesting that targeting TIM-3 may have significant

therapeutic effects in both TB and lung cancer patients (127). In

addition, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),

lymphocyte-activating gene-3 (LAG-3), and glucocorticoid-induced

TNF receptor (GITR) have gradually become a hot spot for drug

therapy to find new targets for TCWT (128). For TCWT, the

interaction between drugs should be considered when the anti-TB

treatment is synchronized with the targeted therapy of tyrosine

kinase inhibitors (TKI). For example, rifampicin can accelerate the

metabolism of TKI drugs such as gefitinib, while isoniazid has an

inhibitory effect. In order to improve clinical effect, appropriate

targeted drugs or immune drugs should be selected according to the

drug sensitivity results of patients (129).
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In recent years, people have paid more and more attention to the

immune evasion of tumor cells and the immunotherapy of

Mycobacterium TB, and immunotherapy has gradually become the

main treatment methods in the field of tumor, and immune checkpoint

inhibitors (ICI) and PD-1/PD-L1 inhibitors have been applied to the

treatment of tumor patients with TB (130, 131). Studies have shown

that PD-1 is highly expressed in pathological sections of patients with

TB complicated with lung cancer (132). Blocking PD-1 may activate T

cell function and enhance immune response to tumor and MTB, and

PD-1 blocking therapy has important clinical significance in improving

the prognosis of patients with TCWT. At the same time, patients with

tumor combined with TB should be cautious about using immune

checkpoint inhibitor (ICI) or PD-1/PD-L1 treatment. Recent evidence

suggests that tumor patients treated with immune checkpoint

inhibitors (ICI) may promote TB reactivation or accelerated

progression of TB infection (133). Another literature review

discussed the incidence of TB caused by PD-1/PD-L1 therapy in

tumor patients. Compared with tumor patients receiving PD-1/PD-

L1 blocking therapy, the incidence of TB was 35 times that of the

general population, reaching every 2,000 cases/100,000 people (134).

Clinical use of PD-1/PD-L1 inhibitors may significantly increase the

risk of TB reactivation and death in patients (135). Based on this, in

clinical practice, clinicians should take comprehensive consideration

and risk assessment to develop immunotherapy programs for TCWT,

so as to improve the quality and safety of patient diagnosis and

treatment. In summary, in the clinical treatment of patients with

TCWT, it is necessary to consider the comorbidities to develop joint

treatment strategies, and select appropriate treatmentmethods to play a

synergistic or positive role in TB and tumors.

At present, a number of nanomedicine (preparations) have been

approved for the treatment of advanced non-small cell lung cancer

and other tumors (136, 137). Studies have also shown that

nanoparticles have a higher biological distribution in the tumor

region and a stronger tumor inhibitory effect (138). In addition,

nanotherapy has also been applied to anti-TB therapy, and the nano

drug delivery system can further improve the efficacy of anti-TB

drugs (139, 140). A variety of nanotechnology has been carried out

to study the diagnosis and treatment of TB, and the research results

show that the efficacy is good (141–143). Nanotechnology offers

more possible strategies for the diagnosis and treatment of TCWT.

Currently, nano-dose inhalers have been developed for the

treatment of lung cancer and TB, and can also be applied in

patients with TB and lung cancer (144). In the future, these new

technologies will play an important role in the treatment of patients

with TCWT, especially for patients with TB combined with

malignant tumor, which will help improve the treatment effect of

patients and bring greater benefits to patients.
5 Summary

With the progress of science and technology and the

diversification of treatment methods, more and more diagnostic

methods and advanced treatment technologies have been applied

to clinical diagnosis and treatment. The diagnosis, treatment and

prevention of TCWT should also be forward-looking, and the
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application of new diagnostic technologies such as single-cell

technology and proteomics in the diagnosis of TB and tumor

patients should be actively explored. In the treatment of TB and

cancer patients, it is also necessary to actively explore the clinical

practice of advanced therapies such as cell therapy and

nanotechnology in their diagnosis and treatment, and carry out

efficient scientific treatment technologies that are leading,

improving and popular. Through systematic literature analysis, we

mainly studied the pathogenesis, mechanism, diagnosis and

treatment of patients with TCWT. The results showed that TB

and tumors interact and influence each other, suggesting that TB

and tumor should be diagnosed and treated from a holistic

perspective of comorbidities. Integrated and individualized

treatment protocols should be developed for patients with an eye to

effectively improve the therapeutic effects, and provide ideas for the

follow-up clinical research of TCWT, the development of diagnostic

technology and the improvement of integrated treatment protocols.
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