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Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that typically

presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine

gland ducts and the formation of ectopic germinal centers. The interactions of

lymphocyte homing receptors and addressins and chemokines and their

receptors, such as a4b7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/

CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory

cells to the focal glands and the promotion of ectopic germinal center formation

in SS. A variety of molecules have been shown to be involved in lymphocyte

homing, including tumor necrosis factor-a, interferon (IFN)-a, IFN-b, and B cell

activating factor. This process mainly involves the Janus kinase-signal transducer

and activator of transcription signaling pathway, lymphotoxin-b receptor

pathway, and nuclear factor-kB signaling pathway. These findings have led to

the development of antibodies to cell adhesion molecules, antagonists of

chemokines and their receptors, compounds interfering with chemokine

receptor signaling, and gene therapies targeting chemokines and their

receptors, providing new targets for the treatment of SS in humans. The aim of

this study was to explore the relationship between lymphocyte homing and the

pathogenesis of SS, and to provide a review of recent studies addressing

lymphocyte homing in targeted therapy for SS.
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1 Introduction

Sjögren syndrome (SS) is a common chronic autoimmune disease, associated with

other systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and

rheumatoid arthritis (RA), and may be comorbid with them (1). SS mainly affects the

exocrine glands, especially salivary glands and lacrimal glands, and primarily presents with

dry mouth and eyes (2). In severe cases, patients may show damage to extra-glandular

organs and systems, including the dermatologic, musculoskeletal, pulmonary,
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gastrointestinal, hepatobiliary, hematologic, renal, or neurologic

systems (3). The more serious aspect of SS is the considerably

higher risk of developing malignant non-Hodgkin’s lymphoma

(NHL). It occurs in about 2%-5% cases, and it is the main cause

of a decreased survival in SS (4). Pathological manifestations of SS

exocrine gland tissue include infiltration of CD4+ T and B

lymphocytes, altered follicular structure and fibrosis, hypoplasia

or loss of glandular function (5, 6). In addition, approximately 25 ±

5% of SS salivary gland will have the formation of ectopic germinal

centers (GCs), a specialized site for B cell activation and antibody

maturation in non-lymphoid organs (7, 8).

Chemokines and their receptors play regulatory roles in the

inflammatory response, and abnormal expression of chemokines

has been shown to be associated with the pathogenesis of various

autoimmune diseases, including RA, SLE, and Behcet disease.

However, the association between chemokines and the

pathogenesis of SS has received less attention (9, 10). Chemokines

and their receptors have been recently shown to be involved in the

lymphocyte homing process in SS, and are closely related to the

generation of ectopic lymphoid structures (ELSs), a specialized

microenvironment that forms in response to persistent antigenic

and inflammatory stimuli in non-lymphoid organs (11, 12).

Expression of chemokines promotes the recruitment of lymphoid

tissue inducer cells, causing crosstalk between cells and inducing

GCs (13). GCs have been shown to be predictive of an increased risk

of lymphoma in SS patients. Investigation of the role of chemokines

might give clues for a better understanding of the pathophysiology

of mechanisms of SS and of SS-associated lymphomagenesis,

leading to the identification of new treatment targets in SS.

Therefore, a literature review was performed on SS and homing

mechanisms; a total of 168 papers were selected for discussion. The

aim of this review is to provide an update concerning the targets of

lymphocyte homing in SS.
2 Lymphocyte migration molecules

Lymphocyte migration is a form of lymphocyte homing that

primarily involves the migration of lymphocytes from the

bloodstream to various tissues and organs and is mediated by a

series of molecules (14). The chemokines secreted by the cells of

various organs in the organism bind to the chemokine receptors

expressed by the lymphocytes and promote the binding of the

homing receptors on the surface of the lymphocytes to specific

addressins, which in turn facilitates the migration of the

lymphocytes to the specific tissues and organs. The homing

process involves a cascade of migratory molecules, including

lymphocyte homing receptors such as selectins/integrins,

addressins, chemokines, and their receptors (15). Lymphocyte

homing receptors are a class of molecules expressed on the

surface of lymphocytes, and include L-selectin, P-selectin, and E-

selectin of the selectin family, a4b7 of the integrin family, very late

activation antigen VLA-4 (a4b1), and the lymphocyte function-

associated antigen LFA-1 (aLb2), whose interactions with the

corresponding addressins mediate the processes of adhesion and

efflux between lymphocytes and endothelial cells (16, 17).
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Addressins are adhesion molecules expressed by vascular

endothelial cells, including the immunoglobulin superfamily of

mucosal addressin cell adhesion molecule-1 (MadCAM-1),

intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell

adhesion molecule (VCAM-1), E calreticulin of the calreticulin

family, and a number of unclassified adhesion molecules such as

mucosal vascular addressin (Mad) and peripheral node addressin

(PNAD) (18, 19).

Chemokines are a series of small molecular mass proteins that

play important roles in the generation of lymphoid organs under

physiological and pathological conditions, as well as in the

differentiation, homing, and recirculation of lymphocyte

subpopulations in the immune response (20). Many chemokines

are associated with lymphocyte homing, and they vary from one

tissue site to another. Chemokines are classified into four subclasses,

C, CC, CXC, and CX3C, according to the order of the two conserved

cysteines at their amino-terminal end, of which CC and CXC are

considered to be the two major chemokine subclasses (21).

Chemokines can be expressed constitutively and inducibly. The

vast majority of constitutive chemokines have specific receptors,

whereas inducible chemokines show shared receptors. Each

subpopulation of immune cells shows a different pattern of

chemokine receptor expression, which allows them to respond

differently to chemokines and migrate according to the specific

needs of each environment (22). Chemokines and their receptors

constitute a complex network widely involved in cellular immunity,

growth and development, and inflammation, playing diverse roles in

chronic infectious diseases, autoimmune diseases, and tumors (23).
3 Bioassays for the determination
of chemokines

In recent years, saliva and tears have emerged as promising fluids

for the important diagnosis of SS through the detection of chemokine

biomarkers therein, which has had a tremendous impact on the

development of multiple assay platforms (24). However, bioassays

specifically designed to selectively determine one or more

chemokines are scarce. Methods to determine chemokine levels are

mostly based on immunoassays such as ELISA (25). Western blotting

assays have also been used to study the expression of various

chemokines in biological fluids (26). However, these techniques

have limited sensitivity in detecting very small amounts of target

compounds. Most of the immunoassays require long assay times, do

not allow real-time study of chemokine secretion, and are also

dependent on specific and sensitive immunoreagents, thus not

allowing high-throughput analysis of protein expression in tissues

(27). Proteomics is a promising tool, and tear proteomics has made

relatively less progress than saliva proteomics for technical reasons

(28). Salivary proteomics not only identifies chemokine biomarkers,

but also helps to elucidate the molecular pathways behind disease

pathogenesis, which allows for better stratification of patients and

potentially opens up new avenues for targeted therapies (29).

However, limitations regarding the necessary technologies for saliva

collection and storage and different protocols for proteomic and

molecular analysis need to be urgently addressed (30). In addition,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1345381
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2024.1345381
electrochemical and optical biosensors have been applied for

chemokine determination. Although they are highly sensitive and

selective, they are more susceptible to physical damage and

environmental interferences, and are more expensive to perform

and analyze (31).
4 Lymphocytic infiltration of exocrine
glands in SS

The histologic features of exocrine glands in SS include the

presence of lymphocytic infiltration around ductal cells, with a

minority of other immune cells such as macrophages, dendritic cells

(DCs), and natural killer (NK) cells (32). Inflammatory lesions

usually show focal dense aggregates, and the composition of the

lesion varies with the severity of the infiltrate, with T cells

predominating in mild infiltrates and B cells in severe infiltrates

(33). CD4+ T cells are the main infiltrating T cells, with helper T cell

(Th)1, Th2, Th17, and follicular helper T (Tfh) cells (34). Th1

cytokines are represented by interferon (IFN) and tumor necrosis

factor (TNF), whose expression has been associated with glandular

tissue damage; Th2 cells play a key role in maintaining B cell

function; Th17 cells mainly secrete interleukin (IL)-17, which can

induce the expression of a variety of cytokines, such as pro-

inflammatory cytokines, chemokines, and matrix metalloproteins

(MMPs); and Tfh cells are essential for GC formation and B cell

activation (35–37). Although CD4+ T cells are a key factor in the

immunopathogenesis of SS, various studies have shown that CD8+

T lymphocytes contribute to vesicular damage in exocrine glands

(38). CD27+ memory B cells, marginal zone B cells, and plasma

cells are all key B cell subpopulations involved in the pathogenesis

of SS, and play a role in promoting SS pathogenesis in terms of

antigen presentation and cytokines (39).

In summary, the pathological changes in SS are lymphocytic

infiltration of exocrine glands, whereas chemokines and their

receptors are involved in causing aggregation of lymphoid cells

and induction of the chronic inflammatory response. The levels of

the chemokines CCL19, CXCL8, CXCL9, CXCL10, CXCL11, and

CXCL17 have been shown to be significantly increased in the saliva

or tears of SS patients, and those of the chemokines CCL5, CCL17,

CCL21, CCL22, CCL25, CXCL1, and CXCL12 have been shown to

be upregulated in the salivary glands of SS patients. In addition,

both CXCL13 and CX3CL1 levels were elevated in the serum of SS

patients. Thus, aberrantly expressed chemokines in SS patients

selectively induce and regulate lymphoid cell subsets, which

regulate the circulation of lymphocytes between target tissues,

blood, and secondary lymphoid organs to form ectopic GCs and

participate in their disease processes.
5 Lymphocyte homing and SS

Multiple chronic inflammatory diseases and autoimmune

diseases such as SS, RA, multiple sclerosis, and Crohn’s disease

involve the entry of lymphocytes in the blood into the lymphoid
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tissues or inflammatory sites. Selectins mediate initial and rolling

adhesion is the first step in the process: the mobile lymphocytes

initially tether to the vascular wall, and then roll along the wall

surface of the blood vessel. After activation by chemokines, the

stimulation of cell surface integrins is the second step. Integrins

mediate stable adhesion and migration is the third step: activated

a4b7, VLA-4, and LFA-1 on the surface of lymphocytes bind tightly

to the adhesion molecules MAdCAM-1, VCAM-1, and ICAM-1,

respectively, expressed on endothelial cells, which reduces the

rolling speed of lymphocytes and promotes the occurrence of firm

adhesion, eventually resulting in migration to specific tissues.
5.1 Abnormal expression of lymphocyte
homing receptor and addressin

5.1.1 L-selectin/PNAD
L-selectin/PNAD L-selectin is a cell adhesion molecule

expressed on the surface of naïve and central memory T cells,

and is involved in the initial attachment of lymphocytes to high

endothelial venules (HEVs) in lymph nodes. PNAD, a sulfated and

fucosylated glycoprotein, is expressed on HEVs, and facilitates the

entry of naïve T cells into lymphoid organs at non-mucosal tissue

sites. L-selectin/PNAD is involved in the tethering and rolling of

lymphocytes along the HEV in lymphoid tissues. The salivary levels

of soluble L-selectin and IL-7 have been shown to be higher in

Indian patients with SS (40). SS patients with higher serum

concentrations of circulating L-selectin are more likely to have

Raynaud’s phenomenon, autoimmune thyroiditis, and elevated

levels of rheumatoid factor (RF) (41).

5.1.2 a4b7/MAdCAM-1
a4b7 belongs to the integrin family, and is expressed on initial T

and B lymphocytes, NK cells, monocytes, macrophages, and

eosinophils. MAdCAM-1, the predominant ligand for a4b7, is
expressed by mucosal endothelial cells of mesenteric lymph

nodes, Peyer’s patches, and associated lymphoid tissues (42).

a4b7/MAdCAM-1 mediates rolling adhesion of lymphocytes to

the capillary lumen on mucosal tissues, followed by stable adhesion

to endothelial cells. One study revealed a significant increase in the

a4b7-negative cell population in IL-17-expressing cells in the

salivary glands, peripheral blood, and spleen of aged NOD mice,

and the marked increase in a4b7-negative IL-17-expressing cells in
the salivary glands may be involved in the onset and development of

SS (43).

5.1.3 VLA-4/VCAM-1
VLA-4 is a heterodimer of a4 and b1, also known as leukocyte

integrins or CD49d/CD29, which is expressed on the surface of

most lymphocytes, monocytes, eosinophils, and basophils, while

VCAM-1 is a member of the immunoglobulin superfamily that is

expressed widely in macrophages, DCs, myeloid fibroblasts, and

myocytes. VLA-4 selectively promotes stable adhesion of

lymphocytes through the specific binding of VCAM-1. Animal

experiments verified that the vascular endothelium in the
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inflamed region of the lacrimal gland in nonobese diabetic (NOD)

mice express VCAM-1 and PAND, and that the majority of

lymphocytes in the inflamed glands express a4 integrin, L-

selectin, and LFA-1 (44). VCAM-1 staining indicated that

VCAM-1 may be more important in determining the distribution

of B than T lymphocytes in lymphocytic infiltration of non-

lymphoid tissue in SS patients, and thus GCs may form by

immigration of B cells via VCAM-1+ vessels at the center of T

cell aggregates (45).

5.1.4 LFA-1/ICAM-1
LFA-1 is composed of a-chain CD11a and b-chain CD18,

which are distributed on the surface of T and B lymphocytes,

monocytes, macrophages, and neutrophils, playing important roles

in lymphocyte passage through the vascular endothelium. ICAM-1

also belongs to the immunoglobulin superfamily, and is distributed

on the surface offibroblasts, vascular endothelial cells, and activated

lymphocytes. LFA-1/ICAM-1 mainly mediates the migration of

lymphocytes toward the transvascular endothelium, and their

eventual passage through the vascular endothelium to the site of

injury. It has shown that in the lacrimal gland of NOD mice, LFA-1

and ICAM-1 are upregulated in lacrimal acinar cells and infiltrating

lymphocytes (46). Previous study has also reported that ICAM-1

expression on epithelial cells is moderately upregulated in the

salivary gland microenvironment of SS patients (47). Tissue

biopsies of salivary glands from SS patients have suggested that

cytokine-mediated upregulation of VCAM-1 and ICAM-1

promotes the recruitment of T cells expressing VLA-4 and LFA-1

(48). Further in vitro experiments revealed that TNF-induced

apoptotic human salivary gland cells significantly upregulated

ICAM-1 and CCL20 expression, and ultimately triggered

apoptosis and tissue destruction (49).
5.2 Abnormal expression of chemokines
and their receptors

5.2.1 CXCL13/CXCR5
CXCL13, a member of the CXC chemokine family, also known

as B cell-attracting chemokine-1 (BCA-1) or B lymphocyte

chemoattractant (BLC), is the major active chemokine on mature

B cells. CXCL13 is constitutively expressed in secondary lymphoid

organs such as the spleen and lymph nodes. CXCR5 is the

corresponding receptor for CXCL13, and is predominantly

expressed on the surface of B and Tfh cells. CXCL13 and CXCR5

are associated with B lymphocytes, Tfh cell homing, and the

formation of B cell follicular zones in lymphoid organs. CXCL13

is recognized as a biomarker of SS severity and correlates with

disease activity, including clinical parameters. Its expression in

human serum and saliva has been proven to increase with disease

progression (50), with a marked increase in the number of CXCR5-

expressing cells infiltrating focal salivary gland and interstitium

(51). CXCL13 has also been identified as a biomarker for

histological involvement in SS. Recent studies have shown that

elevated serum levels rather than saliva levels of CXCL13 in SS
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patients are correlated with the histomorphometric features of the

salivary glands, including the size of aggregates and the formation of

GCs (52, 53), as well as with the risk and incidence of NHL (54, 55).

CXCL13 plays a crucial role in lymphocyte neogenesis,

maintenance of secondary lymphoid tissue structure, and immune

response (56). It is also involved in the initiation and organization

of ELSs. In inflammatory tissues, heightened CXCL13 expression

regulates the infiltration and localization of B cells, as well as their

movement within ectopic GCs (57). Furthermore, CXCL13 can

attract Tfh cells towards B cells in ELSs, facilitating B-cell help (58).

Collectively, CXCL13 is currently the most extensively studied and

most promising chemokine in SS, and may serve as a reliable

biomarker for monitoring and diagnosis of SS.

5.2.2 CXCL12/CXCR4
CXCL12 was originally discovered as a pre-B cell growth factor,

and is indispensable in lymphangiogenesis. It can be secreted by

bone marrow stromal cells, and is therefore also named stromal

cell-derived factor-1 (SDF-1). Human CXCL12 is chemotactic for

CD4+ T lymphocytes, monocytes, neutrophils and DCs, all of

which also express CXCR4. CXCL12/CXCR4 is an important

chemokine for the aggregation of B cells into lymphoid follicles,

and for the survival of malignant B cells in the salivary glands of

mucosa-associated lymphoid tissue (MALT) lymphoma (56).

CXCL12 was predominantly observed in ducts and malignant B

cells infiltrating the salivary glands of SS patients with MALT

lymphoma; levels of CXCL12 were elevated in MALT lymphoma

and isolated tumor cells (56). Upregulation of CXCL12, along with

elevated CXCR4 expression on CD4+ effector memory T (TEM)

cells, has been observed in epithelial cells adjacent to lymphocyte-

infiltrated areas of salivary and lacrimal glands in alymphoplasia

(aly)/aly mice (59). An in vitro Transwell migration assay verified

that the migration of (aly)/aly mice CD4+ TEM cells was

significantly elevated in response to CXCL12, and the migration

response increased with increasing CXCL12 concentration (60).

5.2.3 CCL21/CCR7
CCL21, also known as exodus-2 and secondary lymphoid

chemokine (SLC), is a small homeostatic cytokine belonging to

the CC chemokine family. Human CCL21 is highly expressed in

secondary lymphoid tissues such as the lymph nodes, appendix, and

spleen. CCR7 is expressed predominantly on the surface of T cells, B

cells, activated NK cells, and DCs, where is it frequently involved in

promoting migration. CCL21 binding to a specific receptor, CCR7,

synergistically regulates the initiation of immune response and

induction of immune tolerance. High levels of CCL21/CCR7

expression in the salivary glands of SS patients were associated

with elevated erythrocyte sedimentation rate (ESR), IgG and RF

levels, anti-Ro/SSA and La/SSB antibody titers, and a higher focus

score and European League Against Rheumatism SS disease activity

index (ESSDAI) value on biopsy (61, 62). In patients with extra-

glandular manifestations of SS, the prevalence of lymphadenopathy

increased with elevated CCL21 levels (63). It has been shown that a

strong up-regulation of CCL21 takes place in correlation with the

presence of a high number of activated T cells infiltrating the glands,
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which suggested a prominent role for CCL21 in the SS-associated

lymphomagenesis by recruiting and chronically activating T cells,

which, once stimulated, provide a stimulus for the expansion and

survival of B cells within the reaction zone (56). Hence, CCL21 is

directly involved in the construction of ectopic reactive

lymphoid tissue.

5.2.4 CCL25/CCR9
CCL25, the thymus-expressed chemokine (TECK), is expressed

primarily in the thymus and intestinal epithelial cells, but can also be

produced by parenchymal cells, and migrates immature T cells to the

thymus for maturation and release. CCL25 is found in the oral

mucosa of patients with SS, and is primarily produced by epithelial

cells (64). CCL25 binds to the chemokine receptor CCR9, which is

expressed on the cell membranes of lymphocytes, monocytes, DCs,

and neutrophils. CCR9-expressing cells were observed in the vicinity

of epithelial cells in mucosal tissues (65). A study investigating the

local and systemic CCL25/CCR9 axis in SS patients found that the

levels of CCR9-expressing Th cells and their ligand CCL25 were

increased in the salivary glands of SS patients; enhanced CCL25

expression attracted circulating CCR9-expressing Th cells (66). These

CCR9-expressing Th cells were highly responsive to IL-7; secreted

high levels of IFN-g, IL-21, and IL-17; and effectively stimulated B

cells, confirming that the CCL25/CCR9 axis plays an important role

in the immunopathology of SS (65).

5.2.5 CX3CL1/CX3CR1
CX3CL1 is the only member of the CX3C subfamily of

chemokines, and its specific endogenous receptor is CX3CR1.

CX3CL1 exists in a membrane-bound and a shed form, and the

membrane-bound form can be expressed on epithelial cells and

vascular endothelial cells (67). It was shown that CX3CL1

induction, cleavage and recruitment of CX3CR1-expressing

immune cells were associated with cathepsin S activity, which was

significantly and specifically increased in SS patient tears (68).

Soluble CX3CL1, which is cleaved from membrane-bound

CX3CL1 by proteases including cathepsin S, mediates chemotaxis

of CX3CR1 expressing cells. CX3CR1 is predominantly expressed

on monocytes, macrophages, neutrophils, T cells, and activated NK

cells. CX3CL1/CX3CR1 is closely associated with leukocyte capture

and adhesion and chemotaxis of inactivated peripheral CD8+ T

cells, NK cells, and monocytes. CX3CL1 levels were found to be

significantly elevated in lacrimal gland acinar cells, and the levels of

CX3CR1-expressing T cells and macrophages were significantly

increased in the lacrimal glands of NOD mice (68). In addition,

CX3CL1 protein levels were elevated in the serum of SS patients;

transcriptional profiling of peripheral B cells showed upregulation

of CX3CR1 expression (69); and histological assessments showed

upregulation of the mRNA levels of CX3CL1 and CX3CR1 in the

salivary glands of SS patients (70). Moreover, serum CX3CL1 levels

were significantly higher in SS patients with extra-glandular

manifestations than in those without extra-glandular

manifestations (71). As a contributor to the formation of ectopic

GC in SS, CX3CL1/CX3CR1 may become a new tool for the

evaluation and diagnosis of SS.
Frontiers in Immunology 05
In addition to these chemokines and their receptors, salivary

gland ductal cells and inflammatory cells of SS patients showed

reduced expression of CCL28 mRNA and increased expression of

CCL21/CCR7, CCL5/CCR1 and CXCL1/CXCR2, accompanied by

more severe histopathologic damage (72, 73). SS patients showed

low levels of CCL2, but markedly high levels of CXCL17 and

CXCL8 in their tears or saliva, with CCL2 associated with

positive ocular tests (74–76). Another immunohistochemical

study demonstrated that the ratio of CCL2 and CCL12 mRNA

transcripts in the lacrimal gland lesion cells of MRL/MpJ mice

increased with age and disease extent (77). Furthermore, the

expression levels of CXCL9, CXCL10, CXCL11, and CXCR3 also

increased in the tear film and ocular surface of SS patients, with the

levels of CXCL11 and CXCL10 correlating with worsening ocular

symptoms (78). CCL22 and CCL17 were detected in human salivary

gland ductal epithelial cells by immunohistochemical analysis, and

CCR4 was detected on lymphocytes heavily infiltrated in the glands

(79). CCL19/CCR7 expression was found to be up-regulated in the

salivary glands of SS patients compared to non-SS (61).

Subsequently, in SS model mice, CCL22 was found to enhance

the migratory activity of CD4+ T cells by increasing the expression

of CCR4 on T cells to enhance salivary gland T cell responses (80).

CXCL9 and CCL19 expression were significantly upregulated in the

lacrimal glands of NODmice, and their expression was regulated by

IFN signaling (81). The chemokines and their receptors mentioned

in the available literature and their main findings in SS patients

(Table 1) and murine models (Table 2) are listed.
6 Lymphocyte homing and SS
extra-glandular damage

SS is a diffuse connective tissue disease that can involve all

systems of the body, and may present with extra-glandular organ

involvement, such as interstitial lung disease (ILD), interstitial

nephritis, annular erythema, primary biliary cirrhosis, and

arthritis. This extra-glandular organ involvement may be related

to lymphocyte leakage to the corresponding tissues and organs.

Bronchus-associated lymphoid tissue is common in patients with SS

lung complications, and the development of this tissue is associated

with increased expression of lymphoid tissue chemokines such as

CXCL13 and CCL21 (87). In mice injected with the stimulator of

interferon gene agonist that showed lymphocytic infiltration in the

peri-bronchial regions, the lungs showed increased expression of

multiple chemokines (88). The atypical chemokine receptor CCX-

CKR regulates the bioavailability of CCL19, CCL21, and CCL25.

Lymphocyte infiltration has been observed in the salivary glands

and liver of CCX-CKR gene-deficient mice with an increased

incidence of SS-like liver lesions (89). SS patients with annular

erythema showed strong expression of LFA-1/ICAM-1 on

endothelial cells and monocytes, which may explain why most

lymphocytes are localized around blood vessels (90). Additionally,

LFA-1 and ICAM-1 showed higher expression in activated T cells in

the joint fluid of patients with SS-associated arthritis (91). SS

patients often present with reduced corneal innervation and
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TABLE 1 Chemokines and the predominant cell types they recruit as pertinent in patients with SS.

Main findings Reference

CCL2 in SS tear and correlates with positive ocular tests. (74)

CCL3/4 protein expression in association with GC-
ike structures.

(82)

mRNA expression of CCL5/CCR1 in pSS circulating
cells.

(66)

serum CCL11 expression is associated with GC-
ike structures.

(53)

CCL17/CCR4 infiltration in SS salivary gland. (79)

CCL19/CCR7 expression in the salivary glands of SS
atients compared to non-SS.

(61)

CCL21/CCR7 expression is associated with anti-SSA/SSB
iters, elevated ESR, IgG, RF and ESSDAI.

(61, 62)

CCL22/CCR4 infiltration in SS salivary gland. (80)

CCL25 and CCR9-expressing Th cells in the SS
alivary gland.

(43, 65)

CCL28 in SS serum. (72)

CXCL1/CXCR2 expression in the SS salivary gland. (73)

CXCL8 in SS tears and saliva. (75)

CXCL9/10/11 and CXCR3 expression on ocular surface
n SS.

(78)

CXCL12 in MALT lymphoma and is associated with
nfiltrating epithelial and malignant B-cell components.

(56, 59)

CXCL13/CXCR5 expression in association with
ymphocytic infiltration and GC-like structures.

(50, 51)

(Continued)
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Chemokines
Source
cells

Receptors
adhesion
molecules

Effector
cells

Tissues and
organs

infiltrated

Related
Cytokines

Related
Pathways

CCL2 MCP-1
endothelial
cells

CCR2 ND T cells lacrimal gland ND ND

CCL3/4 MIP-1a/b
macrophage
derived DCs

CCR1,
CCR5

ND T,NK cells salivary gland ND ND

CCL5 RANTES
macrophage
derived DCs

CCR1 ND T,NK cells salivary gland ND ND

CCL11 Eotaxin-1
endothelial
cells

CCR3 ND
B
cells,
eosinophil

salivary gland ND ND

CCL17 TARC macrophages CCR4 ND Th2 cells salivary gland ND ND

CCL19 ELC DCs CCR7 ND B cells salivary gland BAFF LTBR

CCL21 SLC DCs CCR7
L-
selectin/PNAD

T cells salivary gland ND ND

CCL22 MDC
Macrophages,
endothelial
cells

CCR4 ND Th2 cells salivary gland ND ND

CCL25 TECK epithelial cells CCR9
a4b7/
MAdCAM

Th17 cells salivary gland,gut IFN-g, IL-17 PI3K/AKT

CCL28 MEC epithelial cells CCR10 ND CD4+T cells salivary gland ND ND

CXCL1 GRO-a
macrophages,
epithelial cells

CXCR2 ND
Tregs,
neutrophils

salivary gland ND ND

CXCL8
(human
only)

IL-8
macrophages,
Endothelial
cells

CXCR1 ND
CD8+T,
DCs,
neutrophils

salivary gland ND ND

CXCL9 MIG

macrophages CXCR3 ND
NK,CD8+T,
Th1 cells

salivary gland IFN-g JAK/STATCXCL10 IP-10

CXCL11 I-TAC

CXCL12 SDF-1 DCs CXCR4
LFA-1/
ICAM-1

B cells lacrimal gland TGF-b NF-kB

CXCL13 BLC follicular DCs CXCR5
VLA-4/
VCAM-1

Tfh,B cells
Salivary gland,
lacrimal gland

TNF-a, IFN-g
JAK/STAT,
NF-kB
↓

↑
l

↑
B

↑
l

↑

↑
p

↑
t

↑

↑
s

↓

↑

↑

↑
i

↑
i

↑
l
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TABLE 1 Continued

ce
ls

Receptors
adhesion
molecule

Main findings Reference

CXCR8 ND ↑CXCL17 in SS tears and saliva. (76)

age,
ial CX3CR1 ND

↑CX3CL1/CX3CR1 expression in association with
lymphocytic infiltration and GC-like structures.

(68–71)

with murine models of Sjögren’s-lik

Source
cells

Receptors
ys

Main findings Reference

e
Macrophage,
DCs

CCR2 ↑CCL2 mRNA transcript ratio in the lacrimal gland. (77)

DCs CCR5
↓CCR5 expression was accompanied by an increase
in inflammatory chemokines.

(83)

e monocytes CCR2
↑CCL12 mRNA transcript ratio in the
lacrimal gland.

(77)

e macrophages CCR4
Presence of CCL17 and CCL22 in the
lacrimal gland.

(77)

DCs CCR7
↑CCL19 and CCL21 mRNA precedes the
development of ELSs.

(84)

macrophages CXCR3
↑CXCL9 and CXCL10 expression in the
lacrimal gland.

(81)

(Continued)
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Chemokines
Sou
cel

CXCL17
DMC/
VCC-1

DCs

CX3CL1 Fractalkine
macroph
endothel
cells

ND, not determined.

TABLE 2 Chemokines associate

Chemokines
Murine
models

CCL2 MRL/MpJ mi

CCL3/4/5 NOD mice

CCL12
(mouse only)
MCP-5

MRL/MpJ mi

CCL17/22 MRL/MpJ mi

CCL19/21 C57BL/6 mice

CXCL9/10 NOD mice
r

d

c

c

c

Effector
cells

Tissues and
organs

infiltrated

Related
Cytokines

Related
Pathways

T cells lacrimal gland IL-18, IL-12 p38/MAPK

NK,
Th1 cells

salivary gland IFN-g ND

disease and their chemotactic effects.

Effector
cells

Tissues and
organs infiltrated

Related
Cytokines

Related
Pathwa

Th2 cells lacrimal gland IL-4 ND

Th1 cells salivary gland IL-12 ND

Th2 cells lacrimal gland IL-4 ND

Th2 cells lacrimal gland IL-4 ND

B cells salivary gland BAFF LTBR

Th1 cells lacrimal gland IFN-g JAK/STAT
s

e
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corneal epithelial cell proliferation. Corneal epithelial cell

proliferation in SS model mice has been reported to be associated

with increased expression of CXCL1 in corneal epithelial mRNA

(92). Another case-control study noted that female patients with SS

showed elevated levels of CXCL10 in endocervical swab samples

and increased lymphocytic infiltration in the vagina, which may

account for vaginal dryness (93).
7 Lymphocyte homing targeted
therapy in SS

Recent advancements in the field of lymphocyte homing have

provided new insights into the pathogenesis of SS. Consequently,

antibodies to cell adhesion molecules, antagonists of chemokines

and their receptors, compounds that interfere with chemokine

receptor signaling, and gene therapies targeting chemokines and

their receptors have been gradually identified, providing new targets

for human treatment of SS.

Retinoic acid is an important factor in maintaining intestinal

homeostasis through direct regulation of effector cytokines (94).

Inhibition or upregulation of retinoic acid leads to differential

expression of CCR9 and a4b7 in Th17 cells (95). There are data

suggesting that SS patients have lower retinoic acid concentrations

and higher IL-17 expression levels in their serum compared to

healthy controls, and NOD mice treated with retinoic acid showed

reduced numbers of a4b7-negative Th17 cells and lower levels of

IL-17 in vivo (43). These findings demonstrate the therapeutic

potential of retinoic acid in SS, but more clinical validation

is needed.
7.1 Antibodies to cell adhesion molecules

A study evaluating the efficacy of blocking cell adhesion

molecules in vivo found that the combination of the ICAM-1

antibody with the anti-LFA-1 antibody prevented autoimmune

lacrimal gland disease in SS model mice (96). Thus, the ICAM-1/

LFA-1 pathway may play a key role in the development of T-cell-

mediated inflammation in the lacrimal gland. On the basis of this

finding, another study introduced a new tool, the multivalent

biopolymeric nanoparticle (IBP-SI), which can inhibit the

adhesion of lymphocytes to cells expressing high levels of ICAM-

1 in vitro, disrupt the interaction between ICAM-1 and LFA-1, and

can be utilized as an in vivo assessment tool or a potential

therapeutic agent (46).
7.2 Anti-TNF-a treatment

TNF-a is a pro-inflammatory cytokine that is secreted in high

amounts in many autoimmune or inflammatory diseases such as

RA, Crohn’s disease, and SS (97). TNF-a promotes the expression

of pro-inflammatory cytokines such as CXCR3, and promotes

lymphocyte infiltration into the target organs, leading to the

development of these diseases (98). TNF-a also destroys glands
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by inducing apoptosis of human salivary gland cells either alone or

in combination with other inflammatory cytokines (49). Among

patients with SS, TNF-a expression is elevated in salivary glands

and serum (99). TNF-a-dependent activation of the exogenous

apoptotic pathway was found to lead to upregulation of ICAM-1

and CCL20 in human salivary gland endothelial cells in vitro, which

in turn promoted the infiltration of tissues by immune cells, mainly

CD8+ lymphocytes (49). A study using SS model mice showed that

TNF-a expression in the submandibular gland increased with the

spontaneous development of SS-like exocrinopathy in NOD mice,

and was accompanied by major infiltration of T and B cells (100).

Thus, TNF-a may be an important pathogenic mediator in the

pathogenesis of SS. Laboratory studies suggest that anti-TNF-a
treatment may have a therapeutic effect on SS (100, 101). NODmice

administered neutralizing anti-TNF-a antibodies during the pre-

morbid phase of the disease showed a marked improvement in

salivary secretion, suggesting that the clinical signs of SS were

alleviated (102). Another study in NOD mice revealed that TNF-

a blockers could reduce the number of infiltrating T and B cells in

the submandibular gland by downregulating the local expression of

CXCL9 and CXCL13, and thereby alleviate glandular injury (100).

Nevertheless, the findings from clinical trials investigating the

efficacy of anti-TNF-a treatment in SS have been disheartening.

Several randomized, double-blind, placebo-controlled studies

examining the effectiveness of anti-TNF drugs such as infliximab

and etanercept have failed to demonstrate any evidence of their

efficacy in SS (103, 104). Consequently, further investigation is

warranted to ascertain the potential usefulness of anti-TNF therapy

in the clinical management of SS.
7.3 Inhibition of JAK/STAT signaling:
baricitinib, CP-25

Type I interferon (IFN-a and IFN-b) and type II interferon (IFN-

g) target genes are upregulated in the peripheral blood and salivary

glands of SS patients, and play central roles in SS pathogenesis (105).

In the salivary glands of SS patients, DCs are the main source of IFN-

a, whereas CD4+ T cells and NK cells are themain producers of IFN-g
(106). Recent studies have shown that IFN-a and IFN-g are involved
in the aggregation of infiltrating immune cells in the salivary glands of

SS patients through the Janus kinase (JAK)-signal transducer and

activator of transcription (STAT) signaling pathway by promoting the

production of CXCL13 and CXCL10, respectively (107, 108). The JAK

family of cytoplasmic protein tyrosine kinases includes JAK1, JAK2,

JAK3, and tyrosine kinase 2. JAK binds to type 1 and type 2 cytokine

receptors and transmits extracellular cytokine signals to activate STAT

proteins, which translocate to the nucleus and regulate the

transcription of effector genes (109). JAK-STAT signaling is initiated

by over 50 cytokines binding to their respective receptors on the cell

surface (110). Therefore, JAK is an excellent target for the treatment of

various cytokine-mediated diseases. Baricitinib is a selective JAK1/2

inhibitor approved for the treatment of moderate-to-severely active

RA (111). Baricitinib has been shown to inhibit IFN-g-induced
CXCL10 expression and attenuate immune cell chemotaxis through

inhibition of JAK/STAT signaling (112). Very recently, the efficacy
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and safety of baricitinib for active SS patients have been explored in a

pilot non-controlled trial. Baricitinib contributes to improving disease

activity and main clinical manifestations, promising for the treatment

of SS (113). The main active ingredient of total paeoniflorin is

paeoniflorin (Pae), which has been used clinically for the treatment

of autoimmune diseases (114). Paeoniflorin-6’-O-benzene sulfonate

(CP-25) is a drug obtained by esterification of Pae that shows better

lipid solubility and bioavailability than Pae (115). In vitro studies have

revealed that CP-25 can negatively regulate the JAK1-STAT1/2

pathway, counteracting CXCL13 secretion and downregulating

CXCL13 expression, and impede the migration of lymphocytes to

the salivary glands (116, 117). These findings provide an experimental

basis for the evaluation of CP-25 as a potential drug for the treatment

of SS.
7.4 LTBR antagonists:
baminercept, Rituximab

B cell-activating factor (BAFF), also known as B lymphocyte-

stimulating factor, is involved in B cell survival and humoral

immune response, and plays a key role in B cell homeostasis

(118). Elevated levels of BAFF have been observed in the serum,

saliva and salivary glands of SS patients (119). In addition, higher

levels of BAFF have been observed in the salivary glands of patients

with GCs (120). In vivo experiments confirmed that NOD mice

treated with soluble BAFF receptor (BAFFR) and anti-CXCL13

antibody do not develop salivary dysfunction, and that blocking

BAFFR attenuates SS disease progression and may be an effective

therapeutic strategy for SS (121). The lymphotoxin-beta receptor

(LTBR) pathway has been associated with the appearance of ELSs at

sites of chronic inflammation in a variety of autoimmune diseases,

and has been shown to regulate the expression levels of CXCL13,

CCL19, and PNAd (122, 123). Evidence from animal models and SS

patients suggests that CXCL13 and the LTBR receptor pathway are

required for the development of ELSs and may be effective

therapeutic targets for SS (124). Blockade of LTBR reduced

CXCL13 protein expression in the lacrimal gland of NOD mice,

and CCL19 expression was significantly inhibited in the infiltration

zone of salivary glands (125). LTBR antagonists inhibited HEV

addressin expression and lymphocyte infiltration in the diseased

glands, with beneficial effects on tear and saliva secretion and the

integrity of the ocular surface (126). Baminercept is a lymphotoxin-

beta receptor IgG fusion protein (LTBR-Ig). A multicenter trial

suggested that baminercept significantly reduced the plasma levels

of CXCL13 and altered the number of circulating B and T cells in SS

patients, but failed to significantly improve glandular and extra-

glandular disease in SS patients (127). Further observations with

expanded samples are needed in future studies. Rituximab (RTX), a

chimeric humanized monoclonal anti-CD20 antibody, inhibits B

cell activation, proliferation and differentiation, and acts as a B cell

scavenger. A prospective, multicenter, follow-up study

demonstrated that B cell depletion therapy with RTX could

restore B cell disorders by decreasing salivary gland LTB mRNA

levels, modulating CXCL13/CXCR5 interactions, eliminating ELSs,

and decreasing immune infiltration and lymphoid organization in
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target tissues (128). However, a double blind study has also

demonstrated that RTX does not yield a substantial improvement

in SS-related symptoms and immunological parameters of SS, and

that the association is primarily limited to fatigue (129). Hence,

further researches are justified to clarify the therapeutic efficacy of

RTX in the treatment of SS.
7.5 Blockade of NF-kB pathway:
AMD3100, A20

NF-kB plays a key role in the regulation of many inflammatory

processes of immune cells (130). Two NF-kB signaling pathways

exist in the immune cells: a classical pathway initiated by the NF-

kB1 complex and an alternative nonclassical pathway initiated by

the NF-kB2 complex (131). A previous study showed that activation

of the NF-kB2 pathway in (aly)/aly mice negatively regulates TGF-b
signaling, whereas TGF-b upregulates the expression of CXCR4

and regulates the migration of T cells toward autoimmune targets,

leading to damage similar to that seen in the early histopathological

stages of SS (132). The CXCR4 antagonist AMD3100 inhibits

autoimmune lesions in (aly)/aly mice by reducing TEM cell

infiltration (60). Knockdown of the NF-kB pathway inhibitor A20

in mouse submandibular gland epithelial cells resulted in

upregulation of CXCR4 expression, triggering T lymphocyte

infiltration and formation of immune foci (133). NF-kB2 controls

the migratory activity of TEM by regulating the expression of

CXCR4, which may be a potential therapeutic target for the

treatment of SS.
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Notably, progress in the field of lymphocyte homing has led to

the development of novel targets and drugs with therapeutic

potential. For example, abatacept treatment reduces the number

of activated circulating Tfh cells, thereby contributing to the

attenuation of Tfh cell-dependent B cell hyperactivity in SS (134);

disintegrin and metalloproteinase-17 (ADAM17) inhibitors

abrogate CXCL1/CXCR2 interactions to block the inflammatory

response in SS (135); miR-744-5p may be a potential therapeutic

target to ameliorate ocular inflammation in SS patients with dry eye

(136); and poly (ADP-ribose) polymerase family member 9 (PARP-

9) is a regulator of immune cell infiltration during SS progression

(137). Nevertheless, most of these candidates are still in the

preclinical stage, and more research efforts are needed to obtain

evidence for their use in SS treatment. In summary, the

development of new targets that can modulate lymphocyte

migration molecules is a promising strategy for the treatment of

SS (Figure 1).
8 Conclusions

Lymphocyte homing is a complex process involving multiple

molecules, and the migration associated with this process is

extensive and multisite. SS pathogenesis is mainly related to the

abnormal infiltration of lymphocytes into exocrine glands, and SS

treatments targeting lymphocyte homing are a hotspot of current

research. In the pathogenesis of SS, the interaction of lymphocyte

homing receptors and addressins such as L-selectin/PNAD, a4b7/
MAdCAM-1, VLA-4/VCAM-1, LFA-1/ICAM-1, and chemokines
FIGURE 1

Targeted therapy with chemokines and their effector cells. The inflammatory environment of SS exocrine glands shows infiltration of T and B
lymphocytes around ductal cells with a few other immune cells such as monocytes, granulocytes, DCs, and NK cells. As chemokine effector cells,
they are able to express specific chemokine receptors that bind to the corresponding chemokines, thus showing chemotactic properties. Drugs with
the potential to prevent chemokine effector cells from infiltrating into tissues and organs have been investigated on this basis. Jak inhibitor CP-25
could downregulate CXCL13 expression, and impede the migration of lymphocytes to the salivary gland. Baricitinib, another Jak inhibitor, suppressed
IFN-g-induced CXCL10 expression and attenuated immune cell chemotaxis. PARP-9 inhibitor also downregulated CXCL10 and reduced immune cell
infiltration during SS progression. CTLA4-Ig treatment inhibited CD80/86 and reduced the number of activated circulating Tfh cells. LTBR
antagonists reduced CXCL13 protein expression. NF-kB pathway inhibitors downregulated CXCL12 receptor expression in monocytes. TNF-a
blockers could downregulate the local expression of CXCL9. The use of a miR-744-5p antagomir decreased the levels of the CCL5 in the
inflammatory milieu. ADAM17 inhibitors abrogated CXCL1/CXCR2 interactions to block the inflammatory response.
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and their receptors such as CXCL13/CXCR5, CXCL12/CXCR4,

CCL21/CCR7, CCL25/CCR9, CX3CL1/CX3CR1 regulate

lymphocyte migration to the corresponding tissues and organs.

Studies have shown that a variety of molecules are involved in

lymphocyte homing, including TNF-a, IFN-a, IFN-b, and BAFF,

and the process mainly involves the JAK-STAT signaling pathway,

the LTBR pathway, and the NF-kB signaling pathway. Blocking

lymphocyte homing can alleviate the disease, but considering the

complexity of this process, the specific molecular mechanisms need

to be explored more deeply to identify more specific molecules to

provide targeted therapy for SS treatment.
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