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Immune responses to both SARS-CoV-2 infection and its associated vaccines

have been highly variable within the general population. The increasing evidence

of long-lasting symptoms after resolution of infection, called post-acute

sequelae of COVID-19 (PASC) or “Long COVID,” suggests that immune-

mediated mechanisms are at play. Closely related endemic common human

coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive

immunity, which can then affect primary SARS-CoV-2 infection, as well as

vaccination responses. The influence of pre-existing immunity from these

hCoVs, as well as responses generated from original CoV2 strains or vaccines

on the development of new high-affinity responses to CoV2 antigenic viral

variants, needs to be better understood given the need for continuous vaccine

adaptation and application in the population. Due in part to thymic involution,

normal aging is associated with reduced naïve T cell compartments and impaired

primary antigen responsiveness, resulting in a reliance on the pre-existing cross-

reactive memory cell pool which may be of lower affinity, restricted in diversity,

or of shorter duration. These effects can also be mediated by the presence of

down-regulatory anti-idiotype responses which also increase in aging. Given the

tremendous heterogeneity of clinical data, utilization of preclinical models offers

the greatest ability to assess immune responses under a controlled setting. These

models should now involve prior antigen/viral exposure combined with

incorporation of modifying factors such as age on immune responses and

effects. This will also allow for mechanistic dissection and understanding of the

different immune pathways involved in both SARS-CoV-2 pathogen and

potential vaccine responses over time and how pre-existing memory

responses, including potential anti-idiotype responses, can affect efficacy as

well as potential off-target effects in different tissues as well as modeling PASC.
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Introduction: the diverse immunology
underlying SARS-CoV-2 and
vaccine responses

The ongoing SARS-CoV-2 (CoV2) pandemic, with its

devastating health and economic effects, has generated an urgent

need to gain more in-depth understanding of the complex and

interdependent immune mechanisms at work in response to both

the virus and to the vaccines that have been developed to combat it.

This has been particularly important given the continual emergence

of new viral variants which increase in their immune evasive

properties, resulting in the need for further vaccine optimization

and periodic application. This need has also been highlighted by the

extreme diversity of immunological effects observed within the

population after CoV2 infection (and reinfection) or vaccination.

At one end of the spectrum, some infected patients can have over-

reactive immune responses resulting in a life-threatening pro-

inflammatory cytokine storm, necessitating the need for immune

suppression (1). Aging and obesity appear be risk modifying factors

on pathogenesis and outcome. Conversely, many younger

individuals can present with relatively asymptomatic infections

with rapid viral clearance and spontaneous resolution (1, 2).

Similarly, immediate adverse immune reactions to the various

vaccines in otherwise healthy adults, while rarer, are also diverse,

with some developing rapid allergic reactions and some, even less

frequently, with potentially serious off-target effects such as

myocarditis and thrombotic events (3). It is still unclear as to

what effects are due to vaccine application versus possible past or

concurrent CoV2 exposure, especially given recent data indicating

that both CoV2 and S protein can be detected in some patients long

after viral infection resolution (4, 5). Finally, a growing body of data

accrued from patients has shown that various symptoms can persist

for many months after infection, called post-acute sequelae of

COVID-19 (PASC) or, more colloquially, “Long COVID,”

indicate that immune-mediated pathways are involved.

Regarding the potential of vaccine-mediated effects, some of

these immune-mediated events may be intrinsic for the type and

construct of vaccine applied (mRNA, adenovirus, inactivated virus,

protein or protein fragment, use of carriers like polyethylene glycol,

etc.), as well potential effects of the antigen targeted (i.e., the spike

(S) protein in CoV2 which can have direct proinflammatory effects

(6)). The immune responses induced to both the virus and vaccines

likely play a driving role as well. The occurrence rate of these

adverse effects are also notable and being increasingly appreciated

as more data are generated. A recent report detailing that 70.79% of

those that who were vaccinated and participated in a questionnaire

had experienced side effects after the second dose of vaccine, while

46.76% of participants that had already experienced infection had

adverse effects after the first injection (7). Another study observed

that elderly patients experienced adverse events at a higher rate than

other groups, with tachycardia, hypertension, and hypotension

being commonly reported, though more serious events, like acute

myocardial infarction and cardiac arrest, were also reported (8).

Long-term effects of CoV2 infection have also been reported, with

men being at an increased risk for cardiovascular complications
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after CoV2 infection (9, 10). Others have also reported similarly

increased occurrence rates of adverse events, at elevated intensity, in

the elderly population with repeated vaccination, with those having

infection prior to vaccination typically having elevated rates of

occurance (11). In comparison to adverse occurrence rates in the

elderly with other common vaccinations (influenza, Td, Hepatitis B,

etc.), adverse events have been reported to be lower than that

observed with SARS-CoV-2 vaccination, though a direct

comparison study has not yet been performed (12, 13). In

addition, others have reported that mRNA SARS-CoV-2 vaccines

have been associated with a higher occurrence of adverse events in

comparison to adenoviral vector and inactivated virus vaccines

(14, 15).

The diverse array of long-term and diverse effects defining

PASC implicate multiple organ systems (cardiovascular,

pulmonary, neurologic) being affected, similar to those reported

with primary CoV2 infection itself (16). Data supporting the

implication of the immune system mediating, at least in part, the

development of PASC, is compelling, even considering the

heterogeneity of immune responses reported. Primary infection

has been demonstrated to cause apoptosis to hippocampal cells, as

well as alteration of the neuronal landscape and cognitive

impairment (17, 18), with preclinical studies also indicating

neuronal inflammation even after clearance of the virus (19).

Spike protein has been reported several months post-infection as

well (5), with data demonstrating that the S protein has the ability to

cross the blood brain barrier and cause inflammation through TLR

triggering and inflammasome activation (20–22). While reports of

possible long-term effects following vaccination have been shown

(23), attributing these solely due to the vaccines is extremely

problematic, given the reliance on clinical data and history. The

presence of concurrent viral infections, such as asymptomatic

CoV2, or common latent infections like Epstein-Barr virus (EBV)

and cytomegalovirus (CMV), or continuous exposure to endemic

hCoVs, can all be affecting immune responses and the symptoms

reported. Additionally, the frequent emergence of CoV2 variants

continuously alters immunologic epitopes targeted, which has

further complicated the picture newer vaccine formulations are

produced to combat them. Some of the initial data suggesting that

pre-existing immune responses may affect CoV2 immunity

revolved around the reported relatively rapid waning of protective

antibody responses (within months), as well as reported reinfection

rates (24, 25). More recent data has also demonstrated with both

viral infection and vaccination that class switching of antibodies to

IgG4 from IgG3 and IgG1 occurs, with IgG4 being a lower affinity

subclass of IgG, compounding the issue of total antibody levels

waning (26–28).

Given the tremendous heterogeneity of immune responses,

pleiotropic pathologies reported, and the emergence of PASC,

how can true mechanistic studies be performed to delineate not

only causation but also treatment options? Unfortunately, most

data regarding both CoV2 infection and vaccines have relied on

imprecise measures of human immune function (primarily serum

antibody levels or cytokines), variables known to be influenced by a

number of clinical factors including underlying medical conditions,

and to reflect in vivo immune function imperfectly as well as being
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highly variable and affected by numerous factors. It is only through

the use of preclinical studies that controlled situations and

experimental conditions can occur that delineate these

different questions.
Preclinical insights gained through
SARS-CoV and SARS-CoV-2 virus and
vaccine modeling

Mus musculus (Mouse)

Preclinical modeling has already provided significant insights

into the mechanisms of SARS-CoV-2 infection and vaccination.

Understanding the advantages and limitations of the different

animal models is critical for determining relevance to the human

condition, especially given species differences in not only immune

biology, but also CoV2 susceptibility.

The inbred laboratory mouse continues to be the bedrock for

biomedical research, particularly immune-based studies, due to

cost, reagent availability, and extensive immune and genetic

characterization that already exists. Mice do, however, have

significant immune differences between strains that need to be

taken into consideration before extrapolating to humans (29, 30).

Laboratory mice are also housed under specific pathogen free

conditions which severely restricts pathogen exposure and results

in, for the most part, a naïve immune repertoire even as they age

(31). Mice are inherently resistant to CoV2 infection due to

differences between mouse vs human angiotensin converting

enzyme 2 (ACE2) (mACE2 and hACE2, respectively) (32, 33).

This has led to the generation and use of transgenic hACE2 and

Cre-Lox induced mouse models, as well as mouse-adapted strains of

CoV2 which produce robust and severe infection pathologies (34).

While mice are resistant to CoV2, they can be infected with

SARS-CoV (CoV) which, while similarly utilizing a S protein that

also binds ACE2, has the capacity to bind mACE2 due to differences

in binding domains (35). Earlier studies with CoV showed that wild

type (WT) young mice, such as BALB/c and C57BL/6, have

minimal pathology following infection. However, it has been

demonstrated that aged BALB/c mice experience pathology

similar to that observed in severe human infection, such as

pneumonia, pulmonary fibrosis, and large inflammatory cytokine

responses, indicating the importance of involving age in preclinical

modeling (36, 37). Vaccine efficacy, using mRNA-based vaccines to

the CoV S protein, also was demonstrated in mice (38–40), with

protective anti-viral antibody responses being produced. However,

the mouse strain used appeared to be critical, as BALB/c mice

following vaccination and then CoV viral challenge exhibited

eosinophilia, lung pathology, and elevated inflammatory

cytokines, events not observed in C57BL/6 (B6) mice (39, 41, 42).

Another recent report supports this, as a group demonstrated that

CoV2 mRNA vaccination of BALB/c mice induced significant

weight loss and elevated inflammatory cytokines 1-2 days post

injection, with histopathology revealing that myocarditis, as

evidenced by apoptosis and necrosis, was observable as far as two
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weeks after initial infection, with further boosting amplifying

myocarditis pathology (43). BALB/c strain mice are skewed

towards producing Th2-mediated immune responses which likely

contributes to these allergic-type effects, while B6 mice are more

skewed towards Th1-mediated responses (44). The vaccine

adjuvant was also shown to play a role, as TLR-triggering

adjuvants skewing to Th1-type cytokines could ameliorate these

allergic effects in the vaccinated mice, while some Th2 promoting

adjuvants have been shown to promote such effects (39). A mouse

adapted CoV2 has also been recently demonstrated these effects in

BALB/c mice mirroring the CoV studies (45). Given that allergic

reactions have been reported after vaccine administration in some

people, with some only experiencing severe adverse events after

boosting (46), this suggests that it is important to use multiple

mouse strains to develop a more complete immunologic picture of

both vaccine and infection effects to be reflective of an

outbred population.

Keratin 18 (K18) hACE2 transgenic mice have the hACE2 gene

put on the cytokeratin 18 promoter, allowing expression of hACE2

(47). K18 mice were originally utilized to study CoV, being used to

study severe pathology that wasn’t producible in young mice. K18

mice infected with CoV and CoV2 experience pathology similar to

humans, such as elevated proinflammatory cytokines and cytokine

storm with severe infection, innate immune infiltrates in the lungs,

and lung and systemic tissue pathology (47–51). Neuropathology

typical of CoV infection is also observable in K18 mice, with

neuroinvasion via the nasal and central nervous system (CNS)

occurring, followed by neuronal death and activation of immune

cells such as microglia and T cells, consistent with human infection

responses as well (52–55). While discussed at greater detail later,

K18 mice have severe pathology that limits modeling of mild or

asymptomatic infection.

Commonly used mRNA vaccines targeting the CoV2 S protein

have been shown to be efficacious in K18 mice by generating robust

antibody responses (56–60). Similarly, IgM (61–65), IgG (26–28,

66–69), and IgA (66, 70–72) mouse antibody kinetics mirroring

those observed in humans have been demonstrated. While the vast

majority of these vaccine studies have centered on antibody

responses, T cell responses have also been characterized (72–74).

While most preclinical studies have focused on vaccine efficacy,

others have demonstrated adverse effects from mRNA and S1

protein vaccination. These adverse effects include weight loss, a

proinflammatory response, acute lung injury, and presence of

immune infiltrates (75, 76) suggesting these models may be

appropriate in delineating immune-mediated effects due solely by

the vaccine.

An issue in using transgenic K18 mice concerns the

overexpression hACE2 due to use of the cytokeratin 18 promoter,

which is present on all epithelial tissues, and can produce pathology

not typical of humans (18, 77). Overexpression of hACE2 in the

nasal passages and neuroepithelium has been shown to allow for

aggressive SARS-CoV-2 neuroinvasion not observed with human

infection (55), while neuropathology, such as neuronal death and

immune infiltrates, has been shown by others to be more severe

than typically seen in humans (52–54). This overexpression also can

lead to more severe organ pathology in what would be considered
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non-critical SARS-CoV-2 targets, such as the spleen and liver (47–

51). These limitations should also be thought of when interpreting

the adverse events that have been demonstrated in K18 SARS-CoV-

2 vaccine models. It should also be noted that K18 mice still

maintain expression of mACE2, which could further alter viral

and vaccine kinetics, as well as the immune response to these

challenges. While K18 mice have shown a dose dependent response

to SARS-CoV-2 (78), studies are still limited and capturing nuances

of human infection may prove to be a challenge in the future due to

the severity of infection. While Cre-Lox and adenovirus hACE2

mouse models, which can be induced to express hACE2 on target

tissues like the lungs unlike K18 mice, may be able to overcome

some of the disadvantages of the K18 mouse model, these also limit

mirroring of the systemic effects of CoV2 infection on tissues

outside the lung (79–81).

Mouse adapted SARS-CoV and SARS-CoV-2 strains have been

generated through reverse genetic engineering (82) and serial

passaging in BALB/c mice (82–86). These compatible strains,

such as MA10, HRB26M, MASCp6, and others, allow for the

infection of young mice, particularly those of a C57BL/6

background, and tend to generate a Th1 skewed immune

response with pathology similar to that seen in humans, with

acute respiratory distress, lung tissue damage, pneumonia, and

lung infiltrates being reported (84, 86). Both non-severe and

severe infections can be modeled in a dose dependent manner,

while mouse age has been shown to exacerbate pathology. Vaccine

efficacy, in the form of antibody responses and resistance to the

mouse adapted strains, has also been shown, using different vaccine

formulations (84, 87, 88). Due to the novelty of these mouse

adapted viruses, limitations have not been as extensively

characterized, though it has been observed that they have a

different tropism than that observed in humans, and that serially

passaging induced mutations could alter viral pathology and the

resulting altered immune responses (84). Further studies need to

performed to establish the exact pathogenesis and immunobiology

of this mouse adapted viruses, with hACE2 mouse models still

primarily being used for vaccine assessment efficacy.
Other small animal SARS-CoV-2
models – Mesocricetus auratus and
Mustela putorius (Syrian hamsters
and ferrets)

While most preclinical small animal CoV2 models use mice,

others have had success using Syrian hamsters and ferrets due to

inherent CoV2 susceptibility. Syrian hamsters offer several

advantages over WT and transgenic hACE2 mouse models, with

hamsters having a structurally similar ACE2 amino acid sequence

and S1 protein binding site to humans (89), allowing for natural

susceptibility to CoV and CoV2 infection (90–92). Because of these

structural similarities, and because Syrian hamsters express ACE2

in the same tissues as humans, viral pathology is fairly similar, with

the virus targeting the respiratory tract and lungs for replication,

while still generating a systemic immune response (93). Viral
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pathology severity is dose dependent, allowing for both lethal and

non-lethal SARS-CoV-2 infection, while other variables that

correlate with disease severity in humans, such as age (91) and

sex (94), have been observed to have similar effects on hamster

outcomes following infection.

Reports on neuropathology have been conflicting, with some

reporting neuronal invasion and pathology, while other have

reported a lack of viral mRNA in the CNS, although neuronal

immune activation and tissue damage have been consistently

reported (19, 91, 95, 96). This neuropathology is more

representative of human infection than what has been observed in

K18 mice, and given similar viral clearance patterns to humans,

hamsters have been used to model PASC (19, 96, 97). A recent

report detailed structural and transcriptional changes to the lungs,

kidneys, olfactory bulb, and olfactory epithelium following CoV2

infection in Syrian hamsters, with an elevated inflammatory

transcriptional profile being observed in the hamsters’ brains 31

days after initial infection (19). This was accompanied by behavioral

and cognitive changes. While not yet extensively performed, these

models may be of particular use to also model PASC pathobiology.

While viral pathology in Syrian hamsters may more resemble

humans, significant immune differences exist, although precise

characterization of these differences has been hampered by

limitations in validated reagents needed to delineate the complex

immune responses occurring. The innate immune response is similar,

with multiple groups reporting an increase in inflammatory cytokines

such as TNF, IL-6, and IL-1B, as well as increase macrophage

presence and activation in the lungs within the first 2-5 days of

infection (91–93, 98). Adaptive immune characterization has been

more difficult, however, due to limitations in hamster specific

antibodies and reagents. While a robust virus specific T and B cell

response has been observed, delineation and characterization of these

adaptive immune responses beyond this has been limited (98).

Infection also generates an antibody response similar to humans

(98, 99). However, there has been acknowledgement on the

limitations of hamsters in modeling human vaccine responses.

Merkuleva, et al. demonstrated with a RBD-based vaccine that

hamsters had a much smaller production of neutralizing antibodies

in comparison to mice, rabbits, and ferrets when given the same

vaccine formulation (100). Another group also demonstrated lower

antibody titers in comparison to other animal models used (101),

offering a potential explanation in Th2 skewing that could exist in

hamsters, although this cannot be determined at this time due to the

aforementioned lack of hamster specific antibodies for in-depth

immune phenotyping.

Ferrets have also been extensively used in respiratory viral

models, due to having a similar respiratory system to humans, as

well as having similar clinical symptoms, such as coughing and

sneezing (102). Ferret ACE2 is structurally similar to humans, and

is also bound by the S1 protein, but actual disease severity has been

shown to be mild, though severity has been shown to increase with

age (not enough to be lethal however) (103–106). Neuropathology

is also observable in ferrets, with viral RNA being detectable in the

olfactory bulb and occipital lobe, though studies have been limited

in regards to the neurological component of infection (107). PASC

pathobiology has not been characterized in ferrets, and there are
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contrasting opinions on whether they are suitable for modeling due

to the lack of disease severity (108, 109).

Studies on ferret immune responses to SARS-CoV-2 infection

are limited, as, similarly to hamsters, immune-specific reagents that

are ferret specific are limited. Current studies have shown the

development of virus specific antibodies, with one study showing

a similar response between mice and ferrets (91, 100, 110). Another

group showed that with infection, a lung transcriptome profile

indicating strong enrichment of genes related type 1 interferons, T

cell activation, and M1 macrophage polarization, was observable,

which was further elevated with age (91). Another group similarly

demonstrated type 1 and type 2 interferon gene upregulation with

infection, noting that this response was delayed in male

ferrets (111).
Non-human primates

Non-human primate (NPH) large animal models offer

significant advantages over mouse models, being closer to

humans on a genetic, physiological, immune, and even behavioral

level. NHPs have similar ACE2 to humans, only differing by a few

amino acids, though the amino acids that do differ are those that

would be used in S1 protein binding. The major disadvantages of

NHP models, in general, is the expensiveness per animal, which

severely limits the numbers of animals that can be used in studies.

This can also make reproducibility of data and statistics difficult due

to limited animal numbers.

NHPs have pathology resembling mild human infection when

inoculated with SARS-CoV-2, with clinical scoring of pneumonia,

weight loss, malaise, and fever being comparable but the reduced

severity of infection is problematic (112, 113). While viral

replication occurs, less efficient S1 protein binding limits

infectivity and pathology. One study did observed coagulation

abnormalities in Chlorocebus aethiops (African Green Monkeys)

that would be associated with more severe human infection, but this

did not seem to impact long-term overall health (114). Vaccine

efficacy has also been demonstrated in NHPs through antibody,

immune, and antiviral responses, although studies are limited and

often of a short duration, and thus adverse events have not been well

documented or even assessed (115–117).
Effects of cross-reactive secondary
viral memory responses on
CoV2 responses

Although the CoV2 pathogen itself may be new to our species,

other human coronaviruses (hCoVs) are not and provide critical

common immunological links. Seven hCoVs exist, all of which use a

spike (S) protein for cellular entry. CoV2 has been linked with the

original CoV due to similarities in virulence, origin, and a high

molecular/genetic homology (76%) in their S-proteins (118–120).

Four other hCoVs (hCoV-229E, hCoV-NL63, hCoV-HKU1, and

hCoV-OC43) are endemic within the population and responsible
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for common seasonal minor respiratory tract infections worldwide,

with the entire population generating immune responses from an

early age (121–123). Significant similarities exist between CoV2 and

these other hCoVs, suggesting potential cross-reactive immune

responses. As with SARS-CoV and CoV2, NL63 also targets the

ACE2 receptor via its S- protein. Furthermore, even stronger

homologies of CoV2 exist with HKU1 and OC43, which are also

beta-coronaviruses, with cross-reactive immune responses having

been reported with both antibody and T cell responses (124–126).

Others have already demonstrated that in addition to having similar

sequence homologies, conservation of epitopes exists between

SARS-CoV-2 and a few of these seasonal coronaviruses (127–

129), while others have shown the potential of cross reactivity

through antibody responses (124, 130, 131), which, taken together

with other epidemiological evidence of cross-protective immunity

(132), illustrates the potential of cross-reactive mechanisms.

Immunological cross-reactivity exists not only among the hCoVs

but even with coronaviruses from other species, as antibodies

capable of neutralizing both human and mouse CoVs have

demonstrated (133). These point to the tremendous potential of

pre-existing cross-reactive secondary responses which can then

affect not only resistance but also primary antigen-specific

response capabilities (119). Furthermore, the endemic nature of

these hCoVs indicates that continuous antigen exposure regularly

occurs, further amplifying this reshaping of immune repertoire.

The tendency of the immune system to preferentially use

immunologic memory from a previous infection when

encountering a different version of the original stimulus has been

referred to as the “Original Antigenic Sin.” This may represent a

means to generate rapidly activated memory responses, even if not

of high affinity, during acute infection, and provides a means to

compensate in situations where optimal primary response

induction is impaired. While not extensively characterized yet, the

concept of original antigenic sin has been implicated in SARS-CoV-

2 immunity, with recent publications supporting the impact this

phenomenon could have on vaccine efficacy and disease outcome

(134, 135). Other viruses, such as influenza, which have been

published on more extensively in the context of antigenic sin, can

potentially offer insight when extrapolated to CoV2. While cross-

reactive antibody (xAb1) and T cell responses in CoV2 have been

characterized, data on their overall role in efficacy of protection,

either positive or negative, have been conflicting. However, many

studies also illustrate the difficulty of relying on one readout

especially with clinical data: use of antibody levels versus cell-

mediated antigen- specific responses by T cells including an

effector arm with CD8+ T cells and a helper arm with CD4+ T

cells as surrogate predictors in ascertaining protection efficacy. The

endemic nature of the hCoVs, with exposure occurring from a

young age, combined with the presence of latent viral infections,

such as CMV and EBV, add to T cell memory inflation over time,

though the exact contribution of hCoVs to this memory inflation

has not been well chracterized (136–139) (Figure 1). Preferential

activation of these cross-reactive responses, even if of a lower

affinity, is due to the tremendous speed advantage that memory

responses have over generation of primary responses from naïve T

cells. A critical question revolves around the effects of these cross-
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reactive pre-existing memory cells on overall efficacy towards the

new pathogen, with the “net” effect highly contingent on host

variables and degree of cross-reactivity. At one end, rapidly

induced cross-reactive secondary immune responses, even though

of lower affinity, may rapidly generate critically needed initial

protection for the host and allow time for more specific primary

responses to be generated, as has been suggested in CoV2 to be

correlated with less severe disease (140), with a report that even

prior responses to other vaccines such as to diphtheria, tetanus and

pertussis (DPT), to be potential sources of protective cross-reactive

responses to CoV2 (141). Another recent study demonstrated that

CoV2 vaccination could induce long-lasting cross-reactive CD4+ T

cell responses, suggesting overall better immune effects (142).

Conversely, recent reports examining antibody response data

from patients and mouse models demonstrated these lower

affinity cross-reactive secondary responses to other hCoVs are not

only less efficacious, but actually compete and inhibit primary

response generation (143, 144), with suggestions that these pre-

existing cross-reactive responses are deleterious in protection (145–

148). These cross-reactive responses also could have a significant

effect on the therapeutic application of convalescent plasma as a

source of protective antibodies, which by themselves are

immunogenic and also affected by anti-idiotype responses (131).

How can one reconcile these potentially opposing effects

being observed?
Aging and immune responses: the
increasing role of memory and cross-
reactive secondary responses to
overall immunity

Normal aging has been well-documented to result in

significantly impaired primary antigen-specific immune
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responses, in part due to massive changes in the naive T-cell pool

caused by thymic involution (149, 150), as well as other alterations

that contribute to immunosenescence (151). Aging and obesity are

also associated with a persistent pro-inflammatory state that

contributes to increased naïve to memory T cell conversion (152–

154). Combined with continuous pathogen exposure throughout

life, this results in a marked skewing towards long-lived tissue

resident memory T-cell numbers from prior antigen responses

(Figure 1). Accordingly, the overall TCR repertoire of the aging

host markedly contracts in part due to continuous expansion of

long-lived memory T cells directed towards common latent viral

infections such as CMV and EBV, further impacting the ability of

the immune system to respond to acute viral infections (154–156).

These memory T cells markedly outcompete the ever-reduced

numbers of naive T cells due to their ability to rapidly respond to

antigen recall, even if of lower affinity. Aging therefore increases

reliance on pre-existing memory T-cell responses by the host when

encountering a new pathogen. This reduced ability to mount new

primary antigen-specific CD4+ T-cell responses would then also

impair the T-cell “help” needed for the generation of high-affinity B

cell and antibody generation, also favoring pre-existing cross-

reactive memory B-cell responses (157–159) (Figure 1). Thus, at

both the B and T cell levels, activated cross-reactive memory

responses can potentially suppress the primary CoV2 response in

both specificity and duration while at the same time initially

resulting in faster responses resulting in protective effects.

However, even if activated, not all of these competitive cross-

reactive responses may be efficacious, given a recent report of

increased production of non-protective hCoV antibodies

following CoV2 infection (160). Similarly, cross-reactive hCoV-

specific T cells were observed in unexposed patients (125, 126), but

it was observed that after infection, the CD4+ T cells were weaker in

response and detectable for shorter time periods (161, 162),

indicative of lower functional avidity. Several of the studies also

correlated the presence of these cross-reactive antibody responses
FIGURE 1

Aging Predisposes to Pre-existing Memory Responses. During aging, there is marked shift towards long-lived memory T cells due to both the
massive reduction of naïve T cell output from thymic involution and constant antigenic exposure throughout life. Some viral pathogens are endemic
and continuous (hCoVs), while others (CMV, EBV) are latent and a also continual source of antigen exposure. The resulting in contraction of the T
cell repertoire due to naive T cell loss and predominance of memory T populations results in an increasingly impaired ability to mount primary
immune responses with age. Some of these pre-existing memory cells can also be cross-reactive to new viral pathogens such as SARS-CoV-2
depending on extent of antigen similarities and affinity of original response., These cross-reactive responses can then be both of lower affinity and
duration. A similar propensity for pre-existing memory B cell responses also occurs with aging, working in concert with long-lived memory CD4+ T
cell help.
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with increased disease severity, suggesting a net negative effect on

protection (143, 144, 163).

While notable differences in antibody responses have been

noted to occur in vaccinated vs naturally infected elderly patients,

age as a factor has not been rigorously assessed in studies, although

there was a report assessing T cell recall responses to OC43 and

NL63, which showed an absence of T cell recall responses in elderly,

but not younger individuals (164), with a caveat that one cannot

rule out impaired function associated with aged T cell responses.

Additionally, while reports on antibody responses and cross-

reactive immune responses have centered on patients following

CoV2 infection (165, 166), assessment of the potential effects of

vaccines on cross-reactive activation have been lacking, although

one study observed no effects of a vaccine on cross-reactive

antibodies versus the virus itself (167). In contrast, activation of

cross-reactive S-protein-specific CD4+ T-cell responses following

vaccination was observed, which notably did not occur in the CD8+

T cell population (142), but the delineation of avidity and duration

of these cells versus primed naïve T cell responses was assessed.

More studies are needed to determine the effects of these, and

potentially other, cross-reactive immune responses following

different vaccination regimens. Outside of cross-reactive T

memory or antibody responses directly competing with the

induction of primary responses, these pre-existing immune

responses can also potentially mediate effects through activation

of cross-reactive anti-idiotype responses. Understanding immune

system dynamics and regulation in the context of aging could be

highly revealing, especially given the potential of therapeutics

already being investigated for restoring immune function and

attenuating dysregulated immune responses in the elderly (168).
Revisiting the network hypothesis:
immunoregulatory effects of anti-
idiotype and cross-reactive anti-
idiotype responses and the role
of aging

Both immunoglobulin and T-cell receptor (TCR) gene

rearrangement results in the appearance of new antigenic

determinants or idiotypes (Ab1 for antibody) to which the

immune system has not been tolerized, which can then also

induce immune responses. These anti-idiotype or Ab2 responses

were postulated by Niels Jerne in the Network Theory as a means of

immune-mediated regulation (169). This has been robustly

demonstrated using inbred mouse models to defined antigens and

monoclonal antibodies, with the bulk of research being performed

in the 1980’s and 1990’s (170–173). The difficulty in demonstrating

physiologically relevant Ab2 responses in humans partly stems

from the tremendous heterogeneity of antigen responses in an

outbred population and reliance on clinical data. Nonetheless,

demonstrat ion of anti- idiotype antibodies have been

demonstrated validating the concept. The immunoregulatory
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effects of anti-idiotype response is due to the ability of Ab2 to

bind Ab1 and neutralize it directly, or to act on the Ab1-producing

B cells resulting in clearance or suppression (174–176). The cascade

does not stop there however, as the Ab2 also induce down-

regulatory “anti-anti-idiotype” or Ab3 responses (177). Some of

the Ab3 are similar with the Ab1 idiotype response being also

capable of binding the original antigen and possibly protective

(178). Ab2 antibodies have even been explored to be surrogates to

the original antigen as a vaccine approach. Furthermore, this

Ab1>Ab2>Ab3 cascade would then allow for continuation of

immune responses long after the antigen itself has disappeared

which may also explain for long-lasting off-target effects of either

infection or vaccination depending on the nature of the original

antigen targeted.

Outside of directly affecting primary Ab1 efficacy, anti-idiotype

(Ab2) responses could also potentially exert immune-mediated

effects on the host which may account for longer-lasting

pathologies following infection and possibly vaccination. A

unique type of molecular mimicry attributed to Ab2 can mediate

agonistic effects of the primary immunogen. It is important to note

that Ab1 responses are polyclonal in nature, and not all Ab1 will

induce the same Ab2 (which are also polyclonal), though some

clones may predominate (Figure 2). The paratope or binding region

of some, but not all, Ab2 can also represent a mirror image of the

original antigenic epitope itself and as such, have the capability of

binding to the cellular ligand targeted by the original antigen target.

Diversity in the anti-idiotypic cascade may also partly explain the

tremendous diversity of immune responses within the general

population to both CoV2 infection and vaccines (179). Attempts

to exploit this antigen-mimicry have included using Ab2 as

surrogates for the antigen (180, 181). In the case of CoV2 or

vaccines, the ACE2 receptor may be bound by Ab2 in a manner

same as the CoV2 S protein (182). Detection of antibodies towards

ACE2 following CoV2 infection in some patients supports this

hypothesis (183). These Ab2 potentially could then mediate various

off-target effects given the diverse expression of ACE2 in many

tissues and cell-types, which, depending on the strength of Ab2

response, could possibly result in pathology (Figure 2) (182).

Another receptor targeted by the CoV2 S protein, neuropilin-1

(NRP1), which is expressed in astrocytes and neurons, should also

be considered in the context of Ab2 antibodies, especially given its

roles in axon guidance and VEGF-A modulation. Studies have

demonstrated that knockout of NRP1 can have detrimental effects,

such as sympathetic nervous system dysregulated sinus bradycardia

and neuronal abnormalities, such as poorly condensed ganglia and

extended neurons (184). It has not yet been established if antibodies

develop against NRP1 during CoV2 infection, however. Because of

this, this review will focus on Ab2 responses in the context of ACE2,

while noting that NRP1 should also be investigated as well.

The kinetics of Ab2 responses to both T-dependent and T-

independent antigens have been extensively studied in mice,

although rats and non-human primates also have been used.

Initial responses to antigen demonstrated delayed Ab2 kinetics of

lower magnitude (185). However, when boosting was applied,
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robust and rapid Ab2 responses were observed, even comparable to

Ab1, while also resulting in lessening Ab1 (185). This network

would then have a major effect on Ab1 efficacy and duration upon

repeated stimulation. Importantly, higher Ab2 responses were also

observed in older mice suggesting aging predisposes to Ab2

suppression (186). Similarly, T cells from aged mice were

observed to play major role in the increased production of Ab2 at

the expense of Ab1 (187). These data would suggest that cross-

reactive secondary responses are induced after pathogen exposure.

It is possible that cross-reactive secondary anti-idiotype (xAb2)

responses may also be induced following CoV2 infection or

vaccination, although this needs to be definitively shown.

Just as cross-reactive idiotype antibodies (xAb1) or T cells can

potentially directly interfere with primary immune response

generation and efficacy, triggered secondary xAb2 responses,

along with induced specific Ab2, could augment this down-

regulatory cascade causing reduction of Ab1 responses. This may

also account for the rapid waning of protective CoV2 immunity

following infection or vaccination. Furthermore, repeated antigenic

challenge (either by re-infection, vaccine boosting, or even

continuous exposure to the original hCoV) may further amplify

these inhibitory pathways (182). Aging may exacerbate these as well

due to impaired primary immune response capabilities. It was

reported that elderly patients following CoV2 infection had no

detectable Cov2 antibodies despite having antigen-specific memory

B cells, pointing to potential effects of Ab2-mediated clearance

being higher in this population (188). It is also worth considering

that autoantibodies to ACE2 have been previously reported in

patients with connective tissue diseases (189). Antigen mimicry

effects by Ab2 could also be affected by cross-reactive memory xAb2

responses based on the recognition of shared epitopes. Pre-existing

xAb2 from prior NL63 infections could then also bind the ACE2
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receptor and contribute to Ab2 effects. Furthermore, the continuous

exposure to endemic CoVs as well as repeated administration of

CoV2 vaccines could further stimulate and preferentially expand

cross-reactive memory (both xAb1 and xAb2) responses,

particularly with aging (Figure 3), possibly resulting in long-term

effects that may contribute to PASC symptoms given the

perpetuating cascades (Ab1, Ab2, Ab3) involved in the Network

Theory. Studies are needed to ascertain if similar anti-idiotype

responses are also induced after vaccinations as well as induction of

comparable xAb2, which could contribute to effects given the

continuous antigenic exposure to these endemic hCoVs.

Determining whether increased Ab2 capable of binding ACE2 are

induced following vaccination given the restricted antigen exposure

versus actual CoV2 infection are also needed.

What are the implications of the anti-idiotype (either induced

by Ab1 or cross-reactive) on viral protection and treatment? Other

than contributing to loss of durability or down-regulation of the

primary responses, they should be considered in immune-based

therapies. As mentioned, therapeutic application of convalescent

sera may be impacted. However, anti-idiotypic responses may have

an even more profound down-regulatory effect when using

monoclonal antibody-based therapeutics given the monoclonal

nature of the therapeutic versus polyclonal Ab1 responses.

Another issue centers on the vaccine formulation and schedule

depending on the individual’s ability to mount primary immune

responses. This also can be important when using vaccines targeting

the original CoV2 S protein due to the continuous emergence of

viral variants which result in increasing selection and loss of

antigenic determinants. This extensive mutation rate of the CoV2

resulting in dominance of viral variants (Delta, Omicron, as well as

the continuing emergence of new variants/subvariants), particularly

within the S-protein, poses another challenge. The continuous loss
FIGURE 2

Anti-idiotype Response and the Network Cascade. The induction of antigen-specific antibody responses results in polyclonal antibodies (Ab1). The
immunogenic nature of the paratope (antigen-binding region) of Ab1 then can result in polyclonal anti-idiotype (Ab2) antibodies capable of binding
and inhibiting Ab1 by forming complexes resulting in Ab1 clearance. The paratope of some of these Ab2 antibodies may be a “mirror” to the original
antigen and then induce anti-anti-idiotype antibody responses (Ab3) which can then regulate the down-regulatory Ab2 but also some of which may
have similar binding as the Ab1 to the original antigen and be protective. This cascade and effects may be contingent on the extent of immunization
or antigen exposure as repeated immunizations can result in greater Ab2 responses as well as effects on aging where cross-reactive Ab2 may also
affect initial Ab1 responses.
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of antigenic epitopes in the S-protein to which immune responses

were initially generated and then expanded with current vaccine

boosting could further limit efficacy due more reliance on the

increasingly lower affinity cross-reactive responses. Continuous

exposure to endemic hCoVs further complicates the picture by

restimulating these memory responses. This has been viewed as a

potential issue given the failure to generate a successful vaccine to

the endemic hCoV viruses over time.

These effects may be even more pronounced in the aged

population with an already impaired priming capability. One group

that focused on PASC in the context of the elderly showed that an

approximated 30% of patients over the age of 65 developed it (190),

while another study showed that Long COVID symptoms were more

severe in elderly patients (191), supporting data gathered by the US

Census Bureau, though it should be noted that the elderly do not have

the highest reported incidence rate of post-COVID symptoms

following infection (192). Within the context of vaccination alone,

the development of Long COVID has not been extensively addressed,

though neuropathic symptoms have been reported, albeit at a lesser

occurrence rate than primary infection without vaccination (193–

195). While evidence suggests that those vaccinated before infection

have protection against Long COVID (196), symptom development

after vaccination alone is a phenomenon that is not understood and

warrants preclinical investigation, particularly in the context of the

elderly. Thus, understanding the immunology of aging in pathogen

resistance is a critical parameter that needs to be incorporated into

not only clinical studies but more importantly, preclinical studies,

given the susceptibility of this population to not only CoV2, but other

viral pathogens as well.
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Understanding the potential roles of
cross-reactive secondary responses
and idiotypic regulation: the
importance of preclinical modeling

Fortunately, many of the issues raised are very testable

hypotheses which can be mechanistically addressed using

appropriate preclinical modeling. Preclinical modeling is essential

for delineating the complex immunological pathways that arise

following infection or vaccination at a mechanistic level, as well as

ascertaining potential off-target effects over time under controlled

settings. Cross-reactive immune responses, including anti-idiotype

responses, on Cov2 and vaccine immunity need to be incorporated

into preclinical modeling (119). It is crucial that these studies

incorporate important variables such as aging, sex, obesity, and

pregnancy, common conditions which all result in significant

immune alterations (197–201). Immunological data involving

preclinical models on CoV2 have been minimal, especially

regarding long-term assessment or dissection of immune

pathways under those different conditions. It is important to also

recognize that while these models will provide answers, they also

have significant limitations since most of these mice are housed

under specific-pathogen free conditions and lack significant

pathogen exposure, resulting in immature immune phenotypes.

In addition, insights on off-target immune-mediated effects can also

be gleaned, but choosing the appropriate model is pivotal.Long-

term studies as well as effects of repeated vaccination are needed,

particularly in aged mice where anti-idiotype responses may be
FIGURE 3

Molecular Mimicry and Potential Anti-Idiotype (Ab2)-Mediated Effects. Ab2 effects can be diverse and not limited to regulation of Ab1 responses. Ab2
are directed towards the Ab1 paratope or antigen- binding region and some can have their paratope be a mirror of the original antigen that is
recognized. As such, these Ab2 can bind the same ligands the antigen which, in the case of SARS-CoV-2 infection or vaccination involving the Spike
protein, can include the ACE2 receptor, resulting in multiple outcomes. If the Ab2 are antagonistic, they can competitively block ACE2 ligands from
binding and inhibit function. The Ab2 upon binding can cause internalization thereby also being inhibitory. Some Ab2 could be agonistic and thereby
stimulate ACE2 function. Finally, Ab2 binding ACE2+ cells can be targeted for attack by innate immune system due to ADCC (antibody-directed cell
or complement-mediated cytotoxicity). A similar paradigm could exist with T cells, although this is much less characterized. Both inhibition and/or
dysregulation of ACE2 function could result in potential pathology given critical role of ACE2 on multiple tissues/cells and in inflammation.
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more dominant. It will also be important to use models in the

context of prior immunization involving other hCoV viral antigens

and repeated stimulation or with viral challenge to allow for

accumulation of memory cells. These memory cells could

potentially have cross-reactive responses, impacting the ability to

later mount successful primary CoV2 antigen responses, which

would require a monitoring of immunoregulatory anti-idiotype

responses. As anti-idiotype responses are detected after CoV2

infection directed towards ACE2 and long-term effects associated

with PASC can result, it is also important to understand the

potential effects these antibodies can exert in such preclinical

models. Publications have already shown that the spike protein

itself can cross the blood brain barrier and cause acute pathology

(202–204), particularly through activation of TLR-4 and NLRP3

inflammasome associated inflammatory pathways and mechanisms

(21, 205). Direct administration of S protein to the hippocampus in

mice has also been shown to induce cognitive defects, behavioral

abnormalities, and neuronal death, acting primarily through glial

activation and the upregulation of inflammatory cytokines like IL-

1B (206). While publications investigating long term pathology in

preclinical models have been limited, a recent preclinical model

publication demonstrated that S protein administration

intracranially produced long term synaptic damage and memory

impairment, accompanied by upregulation of inflammatory

cytokines, such as TNF and IL-6, complement proteins, most

notably C1q, and increased microgliosis, which was also

previously published on in relation to spike protein activation of

the NLRP3 inflammasome (21, 22). Notably, this altered

neurological landscape was associated with impaired cognitive

and memory function, symptoms commonly associated with

PASC (22). While elucidative, other potential immune

mechanisms that could be related to PASC pathology must also

be assessed preclinically.

ACE2 knock-out mice have been reported to develop cardiac

dysfunction and pathology as they age, with predominantly male

mice being affected (207), correlating to recent reports of increased
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susceptibility to cardiac disease in male patients recovering from

CoV2 infection (10). Some tissues from ACE2 knock-out mice also

can display increased inflammatory responses during certain

stimuli (208) indicating that preclinical assessments should

involve various immunostimulatory challenges in CoV2 models,

although confounding issues may arise due to inappropriate

expression of hACE2 in the tissues of these mice (209), as well as

competition with mouse ACE2. Preclinical modeling using multiple

approaches and conditions are needed, and it is crucial to take into

consideration the limitations of each model before attempting to

extrapolate results to the general population.

Preclinical studies on CoV2 responses are urgently needed to

answer questions about potential effects of prior cross-reactive

immunity on primary response generation and duration, tracking

not only anti-idiotype responses but also other immunoregulatory

pathways over time, as well as effects of heterologous and repeated

vaccinations (Figure 4). It would also be pertinent to investigate

these mechanisms in the context of viral infection as well, which is

especially relevant given high reinfection rates reported with SARS-

CoV-2. Such experiments would also allow for assessment of

potential short- and long-term immune-mediated off-target effects

on different tissues, a particularly pressing need given the complex

biology and effects of ACE2 and other molecules by which the CoV2

S-protein can bind. The use of antibodies to ACE2 in mice as well as

more complete characterization of the role of ACE2 on physiologic

functions in various tissues may shed some light on issues

surrounding PASC which is especially important given increased

cardiac risks associated with infection after resolution.

Therefore, increasing basic science investigation on the

potential effects of pre-existing immune responses underlying

prior viral infections and their potential impact on CoV2, as well

as vaccine immune responses in the context of aging, are critical

next steps in the continuing fight against the current, and possibly

future, viral pandemics. Moving forward, given the significant gaps

in knowledge on the effects of both the virus and associated vaccines

on immune responses and effects, preclinical studies should
FIGURE 4

Choosing the Relevant Preclinical Models for CoV2: “Bench to Bedside Back to Bench”. Using young, inbred laboratory mice under SPF conditions
fails to mirror the human landscape. Use of aged and obese mice, different strains, pregnant mice, mice that are prone to various autoimmune and
disease states, and mice that have been exposed to various pathogens (including HCoV antigens) can all provide important insights. Studies in which
repeated vaccinations, including heterologous, are applied and dissection of immune responses, including in different tissues, are assessed. These
preclinical studies can then be linked with large animal models, such as non-human primate (NHP) using similar parameters as aging and obesity,
which more faithfully represent human immune dynamics. The data can then be linked and validated with clinical results which then can drive
questions using the various preclinical models on immune response efficacy and maintenance.
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emphasize human modifying variables such as obesity and aging

combined with repeated stimulation on immune responses and

possible off-target effects. It is only in preclinical models that control

for exposure to the stimulus (virus or antigen) and incorporating

these different variables can result in definitive data. The data

observed with the original SARS-CoV vaccines and infection also

point to potentially immunopathologic responses which were

augmented in aged mice and in some cases, strain-dependent.

Thus, it is perhaps not surprising that similar effects may occur

with CoV2 and vaccines which need to be further delineated. The

models should also be developed to better model PASC and the

potential role of immune responses or the virus and associated

antigens in perpetuating it these long-term effects. As the CoV2

virus continually changes, so do the vaccine formulations to combat

it, and thus these variables also need to be incorporated in the

preclinical models. Basic studies are still needed delineating the

amount of protein being transcribed, by what cells and for how long

as well as what variables affect it. The different components of the

vaccine product need to also be more stringently studies regarding

immune effects. In the case of the mRNA CoV2 vaccines, this

involves understanding the immunogenicity of the NLP carrier, the

mRNA itself, and finally the S protein made, both individually and

as a composite on immune responses. Regarding anti-idiotype

responses, studies in which transfer of anti-S antibodies to mice

and assessing both longevity and generation of anti-idiotype

responses will be revealing. This includes not only effects on

adaptive (T and B cell) but also innate immune components.

Finally, different dosing regimens need to be better assessed in

determining boosting strategies also keeping in mind critical aspects

such as age given the significant differences in immune status of

young, adult, and advanced aged recipients towards any pathogen

or antigenic challenge.
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154. Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute
virus infections with advanced age. Curr Opin Virol. (2021) 46:45–58. doi: 10.1016/
j.coviro.2020.09.007

155. Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, et al. The influence of
age on T cell generation and TCR diversity. J Immunol. (2005) 174:7446–52.
doi: 10.4049/jimmunol.174.11.7446

156. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA.
Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and
impaired immunity to influenza virus. J Exp Med. (2008) 205:711–23. doi: 10.1084/
jem.20071140
frontiersin.org

https://doi.org/10.1371/journal.ppat.1010741
https://doi.org/10.3389/fimmu.2021.750229
https://doi.org/10.3389/fimmu.2021.750229
https://doi.org/10.1126/science.abb7015
https://doi.org/10.1038/s41598-021-93855-9
https://doi.org/10.1038/s41392-020-00269-6
https://doi.org/10.1038/s41586-020-2324-7
https://doi.org/10.1038/s41590-020-00835-8
https://doi.org/10.1126/science.abj0299
https://doi.org/10.1126/science.abl8912
https://doi.org/10.1016/j.cell.2022.03.038
https://doi.org/10.1111/apm.13109
https://doi.org/10.3390/microorganisms9081643
https://doi.org/10.1084/jem.20200537
https://doi.org/10.1002/jmv.1890060309
https://doi.org/10.1016/j.jcv.2018.01.019
https://doi.org/10.1038/s41579-020-00468-6
https://doi.org/10.1126/science.abe1107
https://doi.org/10.1126/science.abd3871
https://doi.org/10.1172/JCI143120
https://doi.org/10.1038/s41591-020-01143-2
https://doi.org/10.1186/s12985-023-02050-x
https://doi.org/10.3390/microorganisms8121993
https://doi.org/10.1038/s41577-022-00809-x
https://doi.org/10.1172/JCI146927
https://doi.org/10.1093/infdis/jiaa185
https://doi.org/10.1126/sciimmunol.abe9950
https://doi.org/10.1172/JCI162192
https://doi.org/10.1016/j.celrep.2022.111496
https://doi.org/10.4049/jimmunol.170.4.2022
https://doi.org/10.1093/cid/ciab1019
https://doi.org/10.1016/j.clicom.2021.12.001
https://doi.org/10.1016/S2666-5247(21)00219-6
https://doi.org/10.1172/JCI143380
https://doi.org/10.3389/fimmu.2020.586984
https://doi.org/10.3389/fimmu.2020.586984
https://doi.org/10.1126/science.abj9853
https://doi.org/10.1126/science.abj9853
https://doi.org/10.1016/j.celrep.2021.110169
https://doi.org/10.1016/j.chom.2021.12.005
https://doi.org/10.3389/fimmu.2020.567710
https://doi.org/10.3389/fimmu.2020.567710
https://doi.org/10.1038/s41467-021-23074-3
https://doi.org/10.1038/s41467-021-23074-3
https://doi.org/10.1128/CDLI.12.11.1317-1321.2005
https://doi.org/10.1038/s41467-020-20095-2
https://doi.org/10.1038/s41467-020-20095-2
https://doi.org/10.1023/a:1006611518223
https://doi.org/10.1111/acel.13671
https://doi.org/10.1111/acel.13671
https://doi.org/10.3109/09513590.2013.852531
https://doi.org/10.1038/s41591-018-0221-5
https://doi.org/10.1016/j.arr.2011.02.001
https://doi.org/10.1016/j.coviro.2020.09.007
https://doi.org/10.1016/j.coviro.2020.09.007
https://doi.org/10.4049/jimmunol.174.11.7446
https://doi.org/10.1084/jem.20071140
https://doi.org/10.1084/jem.20071140
https://doi.org/10.3389/fimmu.2024.1345499
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Collins et al. 10.3389/fimmu.2024.1345499
157. Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L. Age-related defects in
CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med.
(2004) 200:1613–22. doi: 10.1084/jem.20041395

158. Cancro MP, Hao Y, Scholz JL, Riley RL, Frasca D, Dunn-Walters DK, et al. B
cells and aging: molecules and mechanisms. Trends Immunol. (2009) 30:313–8.
doi: 10.1016/j.it.2009.04.005

159. Weksler ME, Russo C, Siskind GW. Peripheral T cells select the B-cell
repertoire in old mice. Immunol Rev. (1989) 110:173–85. doi: 10.1111/j.1600-
065x.1989.tb00033.x

160. Aguilar-Bretones M, Westerhuis BM, Raadsen MP, de Bruin E, Chandler FD,
Okba NMA, et al. Seasonal coronavirus–specific B cells with limited SARS-CoV-2
cross-reactivity dominate the IgG response in severe COVID-19. J Clin Invest. (2021)
131(21):e150613. doi: 10.1172/JCI150613

161. Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, et al. Low-
avidity CD4+ T cell responses to SARS-coV-2 in unexposed individuals and humans with
severe COVID-19. Immunity. (2020) 53:1258–1271.e5. doi: 10.1016/j.immuni.2020.11.016

162. Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS, Choudhury D,
et al. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2
and endemic coronaviruses. J Clin Invest. (2021) 131:146922. doi: 10.1172/JCI146922

163. Meyer-Arndt L, Schwarz T, Loyal L, Henze L, Kruse B, DingeldeyM, et al. Cutting
Edge: Serum but Not Mucosal Antibody Responses Are Associated with Pre-Existing
SARS-CoV-2 Spike Cross-Reactive CD4+ T Cells following BNT162b2 Vaccination in the
Elderly. J Immunol. (2022) 208:1001–5. doi: 10.4049/jimmunol.2100990

164. Saletti G, Gerlach T, Jansen JM, Molle A, Elbahesh H, Ludlow M, et al. Older
adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses
OC43 and NL63. Sci Rep. (2020) 10:21447. doi: 10.1038/s41598-020-78506-9

165. Müller L, Andrée M, Ostermann PN, Jazmati N, Flüh G, Fischer JC, et al. SARS-
coV-2 infection in fully vaccinated individuals of old age strongly boosts the humoral
immune response. Front Med. (2021) 8. doi: 10.3389/fmed.2021.746644

166. Bag Soytas R, Cengiz M, Islamoglu MS, Borku Uysal B, Yavuzer S, Yavuzer H.
Antibody responses to COVID-19 vaccines in older adults. J Med Virol. (2022)
94:1650–4. doi: 10.1002/jmv.27531

167. Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W,
et al. Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection
but not vaccination with stabilized spike. eLife. (2022) 11:e75228. doi: 10.7554/eLife.75228

168. Aspinall R, Lang PO. Interventions to restore appropriate immune function in
the elderly. Immun Ageing. (2018) 15:5. doi: 10.1186/s12979-017-0111-6

169. Jerne NK. Towards a network theory of the immune system. Ann Immunol
(Paris). (1974) 125C:373–89.

170. Kearney JF, Barletta R, Quan ZS, Quintáns J. Monoclonal vs. heterogeneous
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Glossary

Idiotype: The antigenic part of the specific antigen-binding domain within the
variable region of an immunoglobulin (Ab1) or TCR. With most antigens, these
are polyclonal responses consisting of multiple idiotypes of different affinities.

Paratope: The region of an antibody that binds a specific antigen or epitope.

Anti-idiotype: Antibody or T-cell responses directed to idiotypes due to
immunogenicity by being novel proteins arising from gene rearrangements of
immunoglobulin or TCR. Anti-idiotype (Ab2) responses are also polyclonal and
may not be induced to all Ab1 or to the same extent. Some Ab2 paratope regions
may resemble the original antigen as a form of molecular mimicry and are
capable of inducing immune responses similar to the antigen itself. Some of these
Ab2 are therefore also of binding the ligand of the original antigen.

Anti-anti-idiotype: Immune responses (Ab3) targeting the idiotype of anti-
idiotype (Ab2). Ab3 may resemble the Ab1 in specificity due to some Ab2
paratopes mirroring the original antigen.

hCoV: Human coronaviruses known for their characteristic spike (S) protein
which facilitates entry into the target cell. There are seven hCoVs: hCoV-229E,
hCoV-NL63, hCoV-OC43, hCoV-HKU1, MERS-CoV, SARS-CoV, and SARS-
CoV-2 of which 229E, NL63, OC43, and HKU1 are endemic.

Original antigenic Sin: A phrase used to describe a phenomenon in which prior
immune responses to other antigens/epitopes can cross-react (xAb1) and bind to
a new antigen and possibly interfere with primary immune responses (Ab1) to
the new antigen. These can also involve anti-idiotype (xAb2) responses.

Network hypothesis: A theory proposed by N Jerne to explain
immunoregulatory pathways governing antigen-specific B and T cell responses
over time in which immune responses are generated to initial adaptive immune
cell products as a form of down-regulation.

Outstanding questions
Are cross-reactive memory responses beneficial or deleterious in CoV2
protection and does age or obesity influence these effects?
What are the differences between CoV2 infection versus vaccine application on
activation of cross- reactive and anti-idiotype responses?
Do cross-reactive anti-idiotype responses occur after infection or vaccination and
are anti-idiotype responses increased in aging playing a role in the diminution of
protective responses or off-target or long-term pathology?
What preclinical model conditions can best mirror the human scenario and be
used to assess potential roles of cross-reactive memory responses and anti-
idiotype effects?
What vaccine regimens and types are needed in different clinical populations
(age, obesity, comorbid illness as cofactors) to increase immune efficacy and
maintain duration considering the CoV2 variants the arise?

Significance: Cross-reactive memory idiotype and anti-idiotype responses from
prior pathogens may contribute and possibly interfere with the generation of
primary antigen-specific responses to both SARS-CoV-2 infections and
associated vaccines. Due to the predominance of memory T-cell and potentially
anti-idiotypic responses, these effects may be heightened in aging and may also
contribute to off-target effects. Preclinical modeling incorporating these variables
are needed to follow immune responses over time and determine optimal
regimens for vaccine application as well as potential therapeutic strategies to
increase immune efficacy and durability.
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