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Comparison of the single-cell
and single-nucleus hepatic
myeloid landscape within
decompensated
cirrhosis patients
Lukas Van Melkebeke1,2*†, Jef Verbeek1,2†, Dora Bihary3,4,
Markus Boesch1, Bram Boeckx3,4, Rita Feio-Azevedo1,
Lena Smets1, Marie Wallays1, Eveline Claus5, Lawrence Bonne5,
Geert Maleux5, Olivier Govaere6, Hannelie Korf1‡,
Diether Lambrechts3,4‡ and Schalk van der Merwe1,2*‡

1Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven,
Leuven, Belgium, 2Department of Gastroenterology and Hepatology, University Hospitals Leuven,
Leuven, Belgium, 3Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven,
Leuven, Belgium, 4VIB Center for Cancer Biology, Leuven, Belgium, 5Department of Interventional
Radiology, University Hospitals Leuven, Leuven, Belgium, 6Department of Imaging and Pathology,
Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
Background and aims: A complete understanding of disease pathophysiology in

advanced liver disease is hampered by the challenges posed by clinical specimen

collection. Notably, in these patients, a transjugular liver biopsy (TJB) is the only

safe way to obtain liver tissue. However, it remains unclear whether successful

sequencing of this extremely small and fragile tissue can be achieved for

downstream characterization of the hepatic landscape.

Methods: Here we leveraged in-house available single-cell RNA-sequencing

(scRNA-seq) and single-nucleus (snRNA-seq) technologies and accompanying

tissue processing protocols and performed an in-patient comparison on TJB’s

from decompensated cirrhosis patients (n = 3).

Results: We confirmed a high concordance between nuclear and whole cell

transcriptomes and captured 31,410 single nuclei and 6,152 single cells,

respectively. The two platforms revealed similar diversity since all 8 major cell

types could be identified, albeit with different cellular proportions thereof. Most

importantly, hepatocytes were most abundant in snRNA-seq, while lymphocyte

frequencies were elevated in scRNA-seq. We next focused our attention on

hepatic myeloid cells due to their key role in injury and repair during chronic liver

disease. Comparison of their transcriptional signatures indicated that these were

largely overlapping between the two platforms. However, the scRNA-seq

platform failed to recover sufficient Kupffer cell numbers, and other

monocytes/macrophages featured elevated expression of stress-

related parameters.
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Conclusion: Our results indicate that single-nucleus transcriptome sequencing

provides an effective means to overcome complications associated with clinical

specimen collection and could sufficiently profile all major hepatic cell types

including all myeloid cell subsets.
KEYWORDS

single cell sequence (scRNA-seq), single nucleus RNA sequencing, cirrhosis, transjugular
biopsy, decompensated
Introduction

Cirrhosis represents a major cause of death worldwide and is

characterized as the end stage of progressive liver fibrosis, in which

the hepatic architecture is distorted, resulting in portal hypertension

and loss of hepatic function (1). During the development of the

advanced disease stage, cirrhosis is characterized by severe immune

dysfunction and sustained systemic inflammation that may

precipitate extrahepatic organ failure (2). Hepatic macrophages

play a key role in this regard, as they contribute to both the

progression and resolution of tissue inflammation (3). The recent

application of single-cell RNA sequencing (scRNA-seq) and the

development of a comprehensive human liver atlas have

underscored the presence of a dense and diverse network of

immune cells in the liver (3–5). In light of these findings, we can

now recognize that the hepatic myeloid population is not exclusively

composed of resident Kupffer cells but encompasses multiple

populations of macrophages, even in a healthy state (4).

Furthermore, during the development of cirrhosis, disease

associated macrophage populations emerge that contribute to the

maintenance of inflammation and the propagation of fibrosis (6–9).

Moreover, spatial data enabled the identification and interaction of

immune cells with other cells in their local environment, revealing

signals that could direct niche-specific macrophage functions (9, 10).

Despite these advances , gaining a comprehensive

understanding of human liver immune cells during advanced

cirrhosis is significantly impeded by the challenges associated

with clinical specimen collection and processing. For instance,

fresh tissue necessitates immediate processing and enzymatic

digestion, potentially resulting in the loss of sensitive or

incompletely dissociated cells, along with alterations in gene

expression. Moreover, the size of many structural hepatic cells

may preclude their passage through microfluidic channels,

leading to the non-recovery of their RNA cargo through this

approach (11). Single-nucleus RNA-seq (snRNA-seq), on the

other hand, could serve as an alternative strategy, involving the

isolation of nuclei from frozen tissues, thereby circumventing

the necessity for immediate sample processing. The drawback of

this approach is that smaller subsets of cells, such as crucial

macrophage subtypes, may be overshadowed by abundant

structural cells. Nevertheless, snRNA-seq could still be the
02
method of choice when dealing with specimens of extremely

small size and fragility (12, 13).

In the context of investigating the hepatic landscape in

decompensated cirrhosis, liver tissue can be safely obtained only

through the transjugular route. However transjugular liver biopsies

(TJBs) have an extremely small size ( ± 14.7mm3 compared to

80.4mm3 for 14G tru-cut needle biopsies), and successful

sequencing of these specimens is yet to be demonstrated (14). In

this study, we utilized in-house scRNA-seq and snRNA-seq

technologies along with corresponding tissue processing

protocols. We conducted a comparison of the data obtained from

sequencing transjugular liver biopsies (TJBs) in patients with

advanced cirrhosis. Importantly, we performed a within-patient

comparison of both techniques to eliminate potential differences in

cell subset frequencies arising from distinct disease states or stages

among patients. Beyond assessing the global liver cell landscape,

data quality, and cell recovery, we specifically examined how the

transcriptomic profile of liver myeloid cells could be compared

between the two techniques.

Our findings indicate that both scRNA-seq and snRNA-seq

successfully identify myeloid cells from TJBs, with the gene

signature of specific clusters and myeloid subpopulations being

preserved between both techniques. However, the scRNA-seq

platform failed to recover sufficient Kupffer cell numbers, and

other monocytes/macrophages featured elevated expression of

stress-related parameters. Moreover, our data offers valuable

insights to consider when conducting sequencing experiments in

the context of advanced cirrhosis.
Patients and methods

Patient population and sample collection

Liver biopsies were collected with ethics approval from the

University Hospitals Leuven (ethical committee S64744) after

written informed consent was given by the patient. From 3

patients with decompensated liver cirrhosis, a total of 5 TJBs per

patient were taken with a standard 19G needle (Cook, Limerick,

Ireland). The clinical characteristics are shown in Supplementary

Table 1. All samples were immediately rinsed with an isotonic fluid.
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For each patient, half of the samples were snap frozen in liquid

nitrogen (-196°C) for snRNA-seq at a later timepoint while the

other half was placed in phosphate-buffered saline (PBS) for

immediate transfer for cell isolation and scRNA-seq.
Data availability statement

Raw sequence data has been deposited at the European

Genome-phenome Archive (EGA), under accession number

EGAS50000000073. This study did not generate any new code.
Single-cell RNA-sequencing

Upon arrival, samples were rapidly processed for scRNA-seq.

Samples were transferred to 2mL digestion medium containing

collagenase P (2mgmL−1, ThermoFisher Scientific) and DNAse I

(10U µL−1, Sigma) in DMEM (ThermoFisher Scientific). Samples

were incubated for 15min at 37°C and pipetted up and down for

1min using a P1000 pipette. Next, 3mL ice-cold PBS was added, and

samples were filtered using a 40µm nylon mesh (ThermoFisher

Scientific). Following centrifugation at 300×g at 4°C for 5min, the

supernatant was aspirated and discarded, and the cell pellet was

resuspended in 1ml red blood cell lysis buffer (Roche). Following a

5min incubation at room temperature, samples were centrifuged

(300×g, 4°C, 5min) and resuspended in 1mL PBS containing 0.04%

Bovine Serum Albumin (BSA) and filtered over Flowmi 40µm cell

strainers (VWR) using wide-bore 1mL low-retention filter tips

(Mettler-Toledo). Next, 10µL of this cell suspension was counted

using a LUNA-FL dual fluorescence cell (Logos Biosystems) counter

to determine the concentration of live cells. Libraries for scRNA-seq

were generated using the Chromium Single Cell 3’ library from 10x

Genomics according to the manufacturers protocol. We aimed to

profile 10,000 cells per library (if sufficient cells were retained

during dissociation). The entire procedure, from the moment of

biopsy until loading in the 10x Genomics device, was completed in

<90 minutes. Afterwards, individual cells were emulsified and

amplified with 3′ adaptors while attaching sample indices.

Sequencing was performed using Novaseq 6000 (Illumina).
Single-nucleus RNA-sequencing

Upon collection, samples were immediately snap frozen in

liquid nitrogen. At processing the samples were placed in 1 mL of

TST-buffer (Supplementary Methods) on a petri dish and chopped

into small pieces using a scalpel followed by tissue homogenization

with a Dounce homogenizer (i.e., during 2.5 min with the loose

pestle and 2.5 min with the tight pestle). The homogenized solution

was then filtered through a 40 µm cell strainer (Falcon) and placed

in a 50 mL Falcon tube. Afterwards the filter was washed once with

0.5 mL of ST-buffer (Supplementary Methods). This process was

repeated on a 20 µm, a 10 µm and a 5 µm cell strainer (Falcon).

Afterwards, the sample was transferred to a 15mL Falcon tube
Frontiers in Immunology 03
before being centrifuged at 4°C for 5min at 500g. The pellet was

resuspended in 300µL of PBS containing 1.0% of BSA. Next, 10µL of

this cell suspension was counted using a LUNA-FL dual

fluorescence cell counter (Logos Biosystems) to determine the

concentration of the nuclei. Libraries for snRNA-seq were

generated using the Chromium Single Cell 3’ library from 10x

Genomics according to the manufacturers protocol. We aimed to

profile 20,000 nuclei per library. The entire procedure was

completed in <60 min. Afterwards, individual nuclei were

emulsified and amplified with 3′ adaptors while attaching sample

indices. Sequencing was performed using Novaseq 6000 (Illumina).
Data analysis

General statistics
Normally distributed data are reported as mean ± standard

deviation, while non-normally distributed data are reported as

median with interquartile range. Normality was tested using the

Shapiro-Wilk test. The proportion and absolute numbers of cells

and nuclei, the number of genes per cell/nuclei and the number of

counts per cell/nuclei were compared using a paired sample t-test or

Wilcoxon matched-pairs signed ranked test according to the type of

data. Significance was defined as a two-sided p<0.05. Statistical

analysis and graphs were produced using GraphPad Prism v9.0

(GraphPad Software) or the respective R v4.1.2 packages.

Preprocessing of scRNA-seq and snRNA-seq data
Raw sequencing reads were aligned to the human reference

genome (GRCh38/hg38) and gene-expression matrices were

generated with CellRanger (v3.0.2). Gene-cell matrix was used as

input in Seurat (v4.1.1) for analysis (15). Genes expressed in less

than three cells were excluded. The estimated ambient

contamination fraction was calculated using SoupX (v1.6.2). The

count matrix was filtered for cells exhibiting 800-8,000 genes as well

as <30% mitochondrial genes of the total UMI counts (a

comparable percentage as in other papers in the field of

hepatology (8, 11)). Doublets were identified using DoubletFinder

(v2.0.3) (16). Samples were log-normalized with a scale factor of

10,000 and anchor integrated. The variation between cells in UMI

counts and mitochondrial gene content was regressed out. The

number of reads and saturation per sample is stated in

Supplementary Table 2.

Dimensionality, clustering and differential
gene expression

Unsupervised clustering and differential gene expression

analysis were performed in Seurat. Clustering on the transjugular

liver biopsy samples was done using shared nearest neighbors with

30 principal components based on integrated dataset variability

shown in principal component analysis (PCA). Louvain clustering

with a resolution of 2 was used to determine the number of clusters.

Next, clusters were combined and labeled based on published

marker genes (8, 11, 17). Doublet clusters were identified using

the DoubletScore and removed. Low quality clusters were identified
frontiersin.o
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based on differentially expressed genes and removed. Several cell

types were sub-clustered for further analysis. Each new Louvain

clustering and uniform manifold approximation and projection

(UMAP) reduction utilized dimensions between 10 and 20 for

regression. Markers for each sub-cluster were identified with the

FindAllMarkers functions, and cell types were manually annotated.

Seurat was used together with ggplot2 (v3.3.6) and pheatmap

(v1.0.12) packages to generate heatmaps, violin plots, barplots,

dotplots and UMAP visualizations. Differential gene analysis in

Seurat was performed with Wilcoxon Rank Sum with genes only

present in at least 25% of cells. A correlation prediction score was

calculated in the snRNA-seq and scRNA-seq dataset using the

FindTransferAnchors and TransferData functions of the Seurat R

Package using the scRNA-seq or sn-RNAseq as reference

dataset respectively.

Comparison of scRNA-seq and snRNA-seq
We performed differential abundance analysis on the clusters

and subclusters derived from different techniques, utilizing the

miloR package (v1.2.0) to build a kNN graph (k=30, d=15-30)

and define cell neighbourhoods (prop=0.2) (18). Neighbourhoods

were quantified using countCells after calculating their distance

with calcNhoodDistance (d=15-30). The differential abundance was

evaluated with testNhoods across the conditions and visualized in a

barplot. Significance was defined as an adjusted, two-sided p-value

of <0.05. Spearman correlation was computed for the log2-

transformed gene expression profiles of the cell and nucleus data

(RNA-assay), specifically for the protein-coding genes. The set of

protein coding human genes was downloaded from the Ensembl

database (GRCh38.p14) using the BiomaRt R package. Gene set

scores were calculated using the Addmodulescore function in Seurat

and compared using a Wilcoxon-rank sum test. Single sample gene

set enrichment analysis (ssGSEA) was performed using the R

package GSVA (v1.46.0), and exporting the HallMark, KEGG,

Reactome and Gene ontology (GO) gene sets from the MsigDB

(v7.4) database using the R package GSEABase (v1.60.0). Limma

(v3.54.2) was utilized to identify significantly (adjusted p-value

<0.05, t-score >4) enriched gene sets across the calculated gene

set scores. Plots were generated with ggplot2.
Results

SnRNA-seq and scRNA-seq of TJBs
differentially recover all major hepatic
cell types

SnRNA-seq and scRNA-seq was performed on transjugular

liver biopsy material from the same patient (n = 3) (patients

characteristics included in Supplementary Table 1). Hereby half

of the material was snap-frozen and subjected to snRNA-seq, while

the other half was immediately processed for scRNA-seq

(Figure 1A). Both single-cell and single-nucleus libraries were

prepared using the 10X Genomics platform. Following data
Frontiers in Immunology 04
integration, quality filtering and clustering analysis, we identified

31,410 single nuclei (10,470 ± 3,615 per sample) and 6,152 single

cells (2,051 ± 1,204 per sample) for the two techniques, respectively

(Figure 1B). Cells and nuclei were well integrated across the

different patients (Supplementary Figures S1A, B).

Based on previously canonical described marker genes, all

major hepatic cell types were identified in the integrated dataset

of single cells and nuclei and in both datasets separately

(Figures 1B–D; Supplementary Figures S1C, D) (8, 11, 17). (0.4%)

These main clusters along with their signature genes include

cholangiocytes (KRT7, KRT19, SOX9) (41.4%), hepatocytes

(CYP2A7, CYP2C9, BCHE) (19.1%), endothelial cells (CCL21,

CCL14, FCN2) (17.0%), mesenchymal cells (ACTA2, COL1A1,

PDE1A) (15.6%), NK/T-lymphocytes (CD2, GNLY, KLRB1)

(4.6%), myeloid cells (MERTK, MARCO, VSIG4) (2.3%) and B-

lymphocytes (IGHG1, IGKC, IGLC2) (0.4%) (Figures 1B, E,

Supplementary List 1). All major cell types were present in both

techniques for every individual patient and formed separate clusters

when integrated for each individual technique (Figures 1C, D;

Supplementary Figure S1C, D). However only a limited amount

of hepatocytes was present in scRNA-seq (n=58; 0.9%) compared to

snRNA-seq (n=7,132; 22.7%).

To interrogate the frequencies of the cell types retrieved by both

techniques, we implemented the MiloR package (Figures 1F, G)

(18). This package was specifically designed for differential

abundance testing in single-cell datasets and was tested on data

from human liver biopsies to outperform alternative methods (18).

In the snRNA-seq dataset, we detected a more abundant number of

cholangiocytes (mean logFC=3.37, padj<0.01), hepatocytes (mean

logFC=6.57, padj<0.01), mesenchymal cells (mean logFC=2.91,

padj<0.01) and myeloid cells (mean logFC=1.71, padj<0.01)

(Figure 1G). On the other hand, elevated frequencies of

endothelial cells (mean logFC=1.04, padj<0.01), NK/T-

lymphocytes (mean logFC=2.81, padj<0.01) and B-lymphocytes

(mean logFC=0.41, padj<0.05) were present in the scRNA-seq

dataset (Figure 1G).
Comparison of the hepatic myeloid
landscape detected by snRNA-seq or
scRNA-seq

We next performed a deeper analysis of the myeloid cell clusters

and their frequencies within the integrated scRNA-seq and snRNA-

seq datasets. We observed the presence of three transcriptionally

distinct liver myeloid cell subpopulations (Figures 2A, B,

Supplementary List 1). The first subset was characterized by the

expression of markers associated with liver resident macrophages

(Kupffer cells (5.9%)) (MARCO, NDST3, TIMD4) (Figures 2A, B)

(3). The second cluster we could identify, expressed genes such as

CD9, SPP1, TREM2, reminiscent of lipid-associated macrophages

(LAM, 76.5%) (Figures 2A, B) (3). We further detected a population

of monocytes typically expressing markers such as FCN1, S100A8,
frontiersin.org
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VCAN (17.6%) (Figures 2A, B) (3). The low percentage of

Kupffer cells and high percentage of LAMs in patients with

advanced liver disease is in line with the observations of previous

reports (3, 9).
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The cellular retrieval of the myeloid subpopulations in

both techniques differed notably (Figures 2C-F). In snRNA-

seq, only 10.06 ± 3.40% of all nuclei were monocytes,

compared to 43.45 ± 11.01% of al l scRNA-seq cel l s
A B

C

D

F G

E

FIGURE 1

SnRNA-seq and scRNA-seq of TJBs differentially recover major hepatic cell types. (A) Depiction of the experimental design workflow. (B) Annotated
UMAP plot of 31,410 single nuclei and 6,152 single cells, showing the different cell types. (C) Annotated UMAP plot of 31,410 single nuclei, showing
the different cell types. (D) Annotated UMAP plot of 6,152 single cells, showing the different cell types. (E) Heatmap showing marker gene expression
for the cell types of the full dataset. (F) Boxplot showing the percentage of every cluster in each sample. (G) Barplot showing mean logFC per cell
type as calculated using MiloR. P-value adjusted for multiple testing being the minimum SpatialFDR. * padj<0.05, ** padj<0.01. scRNA-seq, single-cell
RNA-sequencing; snRNA-seq, single-nucleus RNA-sequencing; UMAP, uniform manifold approximation and projection.
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(p=0.052) (Figure 2E). On the other hand, scRNA-seq failed to

recover any Kupffer cells (Figure 2E). MiloR analysis showed

that LAMs (mean logFC=1.12, padj<0.01) and Kupffer cells

(mean logFC=6.18, pad j<0.05) were significantly more
Frontiers in Immunology 06
abundan t i n s nRNA- s e q , wh i l e mono c y t e s (me an

logFC=1.85, padj<0.01) were significantly more present in

scRNA-seq (Figure 2F). Because scRNA-seq was not able to

detect Kupffer cells and retrieved less macrophages, this
A B

C D

E F

FIGURE 2

Comparison of the hepatic myeloid landscape detected by snRNA-seq or scRNA-seq. (A) Annotated UMAP plot of 689 single nuclei and 187 single
cells of the myeloid cells, showing the different subpopulations. (B) Heatmap showing marker gene expression for the subclusters of the myeloid
cells. (C) Annotated UMAP plot of 689 single nuclei of the myeloid cells, showing the different subpopulations (D) Annotated UMAP plot of 187 single
cells of the myeloid cells, showing the different subpopulations (E) Boxplot showing the percentage of every myeloid subpopulation in each sample.
(F) Barplot showing mean LogFC per subpopulation of the myeloid cells, as calculated using MiloR. P-value adjusted for multiple testing being the
minimum SpatialFDR. * padj<0.05, ** padj<0.01, scRNA-seq, single-cell RNA-sequencing; snRNA-seq, single-nucleus RNA-sequencing; UMAP,
uniform manifold approximation and projection.
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technique seems less suitable for studying the hepatic myeloid

cell landscape in TJB from decompensated cirrhosis patients.
Comparison of non-myeloid subclusters
detected by snRNA-seq or scRNA-seq

The NK/T-lymphocytes could be subclustered into CD4+ T-

cells (CD3D, CD3E, CD4) (49.5%), CD8+ T-cells (CD3D, CD3E,

CD8A, CD8B) (24.1%), cytotoxic NK-cells (GNLY, GZMB, KLRF1)

(10.0%) and tissue-resident NK-cells (EOMES, NCAM1, XCL1)

(16.4%) (Figures 3A–C, Supplementary List 1) (19). Due to the

limited total number of NK/T-lymphocytes, these subclusters were

not subdivided further. The B-lymphocyte cluster could be

subclustered into B-cells (CD79A, CD79B, MS4A1) (52.4%) and

plasma cells (IGHG1, IGHA1, JCHAIN) (47.6%) (Figures 3C–E,

Supplementary List 1).

Within the NK/T-lymphocytes, tissue-resident NK-cells (mean

logFC=0.78, padj<0.01) were significantly more abundant in

snRNA-seq, while CD4+ T-cells (mean logFC=0.52, padj<0.0001),

CD8+ T-cells (mean logFC=0.72, padj<0.01) and cytotoxic NK-cells

(mean logFC=0.87, padj<0.01) were significantly more abundant in

scRNA-seq (Figure 3F). In the B-lymphocytes there were no

significant differences in abundance, this could however be caused

by the low number of cells and nuclei (Figure 3F).

The mesenchymal cells could be subdivided into fibroblasts

(FB) (COL4A4, NAV3, PTGDS) (68.7%), hepatic stellate cells (HSC)

(ADAMTSL1, LRAT, RELN) (6.2%) and vascular smooth muscle

cells (VSMC) (MYL9, ACTA2, MYH11) (25.0%) (Figures 4A–C,

Supplementary List 1) (8, 9, 11). As expected, HSCs and FBs

clustered together because they have similar phenotypes, while

the VSMCs clustered separately (Figure 4A) (8, 9, 11). We

observed a high number of FBs compared to HSCs, which is in

line with other data reported from cirrhotic human livers (8, 11).

The endothelial cells could be subdivided into scar-associated

endothelial cells (scarEC; COL15A1, PLVAP, VWA1) (72.2%),

liver sinusoidal endothelial cells (LSEC; CLEC4M, LYVE1,

STAB2) (5.9%), hepatic artery endothelial cells (AIF1L, KLF2,

SOX17) (10.4%), venous endothelial cells (CPE, LHX6, OPCML)

(2.8%) and lymphatic endothelial cells (CCL21, PROX1, TSPAN5)

(8.7%) (Figures 4C–E, Supplementary List 1) (8, 9, 17). The number

of scarECs was elevated compared to the number of LSECs, as was

reported previously in human cirrhotic livers (Figure 4E) (8, 11).

Within the mesenchymal cells, scarECs (mean logFC=3.90,

padj<0.001) and LSECs (mean logFC=1.83, padj<0.05) were

significantly more abundant in snRNA-seq, while VSMCs (mean

logFC=1.15, padj<0.001) were significantly more abundant in scRNA-

seq (Figure 4F). There were no significant differences between both

techniques for the endothelial cell subclusters (Figure 4F).
Comparison of gene signatures in snRNA-
seq and scRNA-seq

After comparing both techniques for cluster and subcluster

recovery, we next evaluated both techniques in terms of cell/nuclei

recovery and gene signatures. The mean number of genes detected
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per nuclei/cell (2,851 ± 188 vs. 2,260 ± 16, p<0.05) was significantly

elevated in the snRNA-seq dataset (Figure 5A). The number of

counts per nuclei/cell was comparable between both techniques

(6,274 ± 1082 vs. 6,669 ± 201, p NS) (Figure 5A).

To investigate if the core marker genes from the different

subsets were comparable between both techniques, we used the

gene signature of the single cells to predict the clustering of the

single nuclei, and vice versa, using Seurat. Based on the gene

signature of scRNA-seq and snRNA-seq, we could correctly

identify the major cell types of 98.8% of the nuclei and 99.8% of

the cells respectively (Supplementary Figures S2A, B). Specifically

for the myeloid cluster, 99.4% of the nuclei and 99.5% of the cells

were correctly predicted. This with a high mean correlation

prediction score, as a measure for the certainty of the prediction,

of 99.2 and 99.4 respectively, showing that the gene signature of

myeloid cells was preserved in both techniques (Figures S2A, B).

In the myeloid subpopulations, we focused on the monocytes

and LAMs since there were no Kupffer cells retrieved in scRNA-seq.

For the monocytes, 100% of all nuclei and 77.6% of all cells were

predicted correctly, with reasonable to good mean correlation

prediction scores of 95.2 and 71.3 respectively (Supplementary

Figures S2A, B). For the LAMs, 91.9% of all nuclei and 98.2% of

all cells were predicted correctly, with good mean correlation

prediction scores of 87.0 and 90.3 respectively (Supplementary

Figures S2A, B). In addition, cell type intrinsic (pseudobulk)

profiles of protein-coding genes were overall similar between

snRNA-seq and scRNA-seq (Spearman correlation r = 0.75 in

LAM and 0.73 in monocytes) (20). We calculated this in the

myeloid subclusters (and not myeloid cluster), to minimize the

effect of the differential abundance of specific subclusters in both

techniques on the gene expression. This shows that also for the

specific myeloid subpopulations, the gene signature was largely

preserved in both techniques.

Nevertheless, also some important differences could be detected.

In this regard, the transcriptomic data set from cells featured an

elevated dissociation-induced stress signature (e.g. FOS, HSPA8,

JUNB) (Figures 5B, C) as well as the expression of ribosomal (e.g.

RPL10, RPS8, RPS27) and mitochondrial (e.g. MT-CO1, MT-ND3,

MT-ND4) genes, similar to previous reports (20). In turn, nuclei

exhibited elevated levels of long non-coding RNA (e.g. AP000331.1,

AP001011.1, AP003086.1) (Figure 5C) (20–22). Furthermore, in a

pathway analysis, immune-cell activation, apoptosis-related,

phagocytosis, complement and stress-related pathways were

increased in scRNA-seq compared to snRNA-seq, both in LAMs

and monocytes (Figures 5D, E). Importantly, we also observed an

elevated dissociation-induced stress signature in all other major

clusters (Supplementary Figure S2C). This is compatible with an

increased dissociation-induced stress in scRNA-seq.
Discussion

The capacity to examine advanced liver disease at the single-cell

level could significantly enhance our comprehension of the

pathophysiology in disorders such as acute-on-chronic liver

failure (ACLF), severe alcoholic hepatitis, and decompensated
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cirrhosis. It is crucial to acknowledge that in these advanced disease

states, obtaining liver tissue safely is only possible through the

transjugular route, resulting in extremely small and fragile liver

biopsy specimens (14, 23). Currently, it remains uncertain whether
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successful sequencing of TJBs can be achieved for downstream

characterization of the hepatic landscape. Therefore, we conducted

an in-patient comparison of snRNA‐seq and scRNA‐seq protocols

on TJBs obtained from 3 decompensated cirrhosis patients.
A B

C D

E F

FIGURE 3

snRNA-seq and scRNA-seq differentially detect subclusters of hepatic lymphocytes. (A) Annotated UMAP plot of 573 single nuclei and 1,143 single
cells of the NK/T-lymphocytes, showing the different subclusters. (B) Boxplot showing the percentage of every NK/T-lymphocyte subpopulation in
each sample. (C) Heatmap showing marker gene expression for the subclusters of the NK/T- and B-lymphocytes. (D) Annotated UMAP plot of 99
single nuclei and 46 single cells of the B-lymphocytes, showing the different subclusters and techniques. (E) Boxplot showing the percentage of
every B-lymphocyte subpopulation in each sample. (F) Barplot showing mean LogFC per subcluster of the immune cells, as calculated using MiloR.
P-value adjusted for multiple testing being the minimum SpatialFDR. ** padj<0.01, **** padj<0.0001. scRNA-seq, single-cell RNA-sequencing; snRNA-
seq, single-nucleus RNA-sequencing; UMAP, uniform manifold approximation and projection.
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By following the appropriate protocol, we were able to

consistently obtain approximately 10,000 single nuclei and 2,000

high-quality single cells per patient. Although the number of nuclei

fell within the expected range, the count of cells tended to be lower
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than reported in the literature, likely attributable to the small size of

the transjugular liver biopsy (11, 24). The data unveiled several

differences that align with findings from comparable studies on the

healthy human liver using whole liver lobes (11, 17). In particular,
A B

C D

E F

FIGURE 4

snRNA-seq and scRNA-seq differentially detect subclusters of mesenchymal cells. (A) Annotated UMAP plot of 5,023 single nuclei and 814 single
cells of the mesenchymal cells, showing the different subclusters. (B) Boxplot showing the percentage of every mesenchymal subpopulation in each
sample. (C) Heatmap showing marker gene expression for the subclusters of the mesenchymal- and endothelial cells. (D) Annotated UMAP plot of
3,666 single nuclei and 2,707 single cells of the endothelial cells, showing the different subclusters. (E) Boxplot showing the percentage of every
endothelial subpopulation in each sample. (F) Barplot showing mean logFC per subcluster of the mesenchymal and endothelial cells, as calculated
using MiloR. P-value adjusted for multiple testing being the minimum SpatialFDR. * padj<0.05, *** padj<0.001. scRNA-seq, single-cell RNA-
sequencing; snRNA-seq, single-nucleus RNA-sequencing; UMAP, uniform manifold approximation and projection.
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the snRNA-seq data showed a higher percentage of parenchymal

and mesenchymal cells, but a lower percentage of endothelial cells

and lymphocytes, in comparison to scRNA-seq (11). Similar to

other studies on human liver biopsies, scRNA-seq revealed
Frontiers in Immunology 10
impaired recovery of hepatocytes, in contrast to snRNA-seq (8,

9). The reduced number of hepatocytes may be attributed to their

vulnerability, rendering them susceptible to cell death during

enzymatic dissociation. Alternatively their size could hinder their
A B

C

D E

FIGURE 5

Comparison of gene expression and gene signatures in snRNA-seq and scRNA-seq. (A) Boxplots comparing scRNA-seq and snRNA-seq for mean
genes and counts per sample. P-value calculated with a paired t-test. (B) Barplot comparing the stress signature between both techniques in
monocytes and LAMs. Significance calculated using a Wilcoxon rank-sum test (C) Violin plot showing the expression of stress-related, ribosomal,
mitochondrial and long non-coding RNA, comparing the snRNA-seq data with the scRNA-seq data. (D) Pathways significantly upregulated in
scRNAseq compared to snRNA-seq in LAMs. (E) Pathways significantly upregulated in scRNA-seq compared to snRNA-seq in Monocytes.
* padj<0.05, **** padj<0.0001 scRNA-seq, single-cell RNA-sequencing; snRNA-seq, single-nucleus RNA-sequencing.
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passage through the microfluidic channels. Furthermore, we

observed significant differences in the retrieval of subclusters,

such as a higher frequency of hepatic stellate cells (HSCs) and

fibroblasts in snRNA-seq compared to a higher frequency of

vascular smooth muscle cells (VSMCs) in scRNA-seq. We

propose that dissimilarities in cellular retrieval between the two

techniques stem from variations in the dissociation protocols

employed. In the case of snRNA-seq, where the goal is to

exclusively recover nuclei, a robust mechanical dissociation

protocol can be employed. Conversely, for scRNA-seq, the

requirement for live cells during library preparation necessitates

the use of a gentler enzymatic dissociation protocol. This method

tends to selectively favour resilient and/or more easily dissociable

cell types, such as lymphocytes.

Overall, we found that snRNA-seq performed well in terms of

sensitivity and classification of all hepatic cell (sub)-types and

exhibited less cell type bias, as has been observed in other types of

human tissues (24, 25). On the other hand, scRNA-seq emerges as the

preferred platform for investigating lymphocytes, benefitting from its

distinct positive selection of these cells. This preference is further

underscored by the low level of B- and T-cell receptor transcripts in

sn-RNAseq data, a finding that is consistent with that of Andrews

et al. (Supplementary Figure S2D) (11). Nevertheless, the snRNA-seq

platform offered an additional advantage, as it decouples sample

procurement from processing and allows multiplexing of samples

collected over time, including biobanked material (24).

Concerning the hepatic myeloid compartment, it remains

uncertain whether nuclei can serve as a viable alternative for

cellular transcriptomes in the context of advanced liver disease

and small sample sizes. This is significant, given that hepatic

myeloid cells play a crucial role in both the progression and

resolution of tissue inflammation and injury processes (3, 9).

Data analysis of the single nuclei sequenced myeloid cells

consistently identify the primary monocyte/macrophage identities

found in cirrhotic livers, including Kupffer cells, LAM, and

monocytes (3). However, it is important to note that the scRNA-seq

platform failed to capture sufficient numbers of Kupffer cells, the most

prominent resident macrophage population in the healthy liver. This

observation may be elucidated by the reduced presence of Kupffer cells

in cirrhotic livers in combination with the limited absolute count of

myeloid cells in our study. Additionally, scRNA-seq tends to favor

cells that undergo easy dissociation, potentially contributing to the

limited representation of myeloid cells in the dataset (3). Generally,

snRNA-seq captured a higher percentage of macrophages compared

to scRNA-seq, but a lower percentage of monocytes. The data further

indicated that the gene signature of the myeloid subclusters was largely

preserved in both snRNA-seq and scRNA-seq, with high mean

prediction scores and good Pearson correlation coefficients when

comparing both techniques. In scRNA-seq, we observed an increase

in the expression of ribosomal and mitochondrial RNA, while in

snRNA-seq, the expression of long non-coding RNA was notable.

However, the most significant difference between both techniques was

the heightened dissociation-induced stress signature in scRNA-seq,

evident both at the gene level and in pathway analysis. This

phenomenon may be attributed to the distinct methodologies

employed in snRNA-seq and scRNA-seq. In snRNA-seq, cells
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undergo rapid freezing and mechanical dissociation, resulting in

their swift demise. In contrast, scRNA-seq involves keeping the cells

alive during enzymatic dissociation until loading, affording them an

opportunity to develop a stress-response. This difference in treatment

timelines could contribute to the observed variations in cellular

outcomes between the two technique. Our findings strongly indicate

that scRNA-seq is less suitable for studying the hepatic myeloid cell

landscape in transjugular liver biopsies (TJB) from decompensated

cirrhosis patients (3).

In summary, our data strongly suggests that snRNA-seq is

superior in recapitulating the hepatic landscape without extensive

population bias. The snRNA-seq platform also overcomes

challenges related to streamlining clinical specimen collection and

downstream experimental procedures, as the procedure can be

performed on frozen tissue. Additionally, our results indicate that

single-nucleus transcriptome sequencing is the platform of choice

for studying myeloid cell populations, as scRNA-seq failed to

recover Kupffer cells, and the remaining monocytes/macrophages

exhibited increased expression of dissociation-induced stress

parameters. Taken together, our data provide essential insights to

be considered when undertaking similar sequencing experiments in

advanced human cirrhosis.
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SUPPLEMENTARY FIGURE 1

Integration of both techniques and patients. (A) Annotated UMAP plot of

31,410 single nuclei, split per patient. (B) Annotated UMAP plot of 6,152 single
cells, split per patient. (C) Annotated UMAP plot of 31,410 single nuclei,

showing the different clusters. (D) Annotated UMAP plot of 6,152 single
cells, showing the different clusters.

SUPPLEMENTARY FIGURE 2

Comparison of gene signatures in major clusters. (A) Barplot showing the mean

prediction identity score per (sub)cluster of nuclei, predicted using the gene
signature of the scRNA-seq data. Score ranging from 0 to 1. Calculated using

Seurat-package (FindTransferAnchors, TransferData). (B)Barplot showing themean
prediction identity scoreper (sub)cluster of cells, predictedusing the gene signature

of the snRNA-seqdata. Score ranging from0 to 1. Calculated using Seurat-package
(FindTransferAnchors, TransferData). (C) Barplot comparing the stress signature

between both techniques in the major celltypes. Significance calculated using a

Wilcoxon rank-sum test. (D) Dotplot showing the expression of T-cell and B-cell
receptor genes in different techniques. The size of the dot shows the percentage of

cells expressing the gene and the color the strength of expression.

SUPPLEMENTARY TABLE 1

Clinical characteristics of patients.

SUPPLEMENTARY TABLE 2

Number of reads and saturation per sample.
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