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IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising

only 3-5% of antibodies circulating in the bloodstream. These antibodies possess

unique structural features, notably their ability to undergo a process known as

fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-

molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily

block and exert immunomodulatory effects, particularly in the context of IgE

isotype-mediated hypersensitivity reactions. In the context of disease, IgG4

antibodies are prominently observed in various autoimmune diseases combined

under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include

myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase

(MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal

proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and

encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are

a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly,

both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-

CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying

immunopathologies. This review aims to provide a comprehensive exploration of B

cells, antibody subclasses, and their general properties before examining the

distinctive characteristics of IgG4 subclass antibodies in the context of health,

IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic

strategies for these conditions, with a special focus on leveraging insights gained

from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our

understanding of the pathogenesis of IgG4-mediated diseases and identify

promising possibilities for targeted therapeutic intervention.
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1 Introduction

A prerequisite for selecting effective therapies is a profound

understanding of the underlying (immuno-) pathology. Many

existing therapies, while exhibiting efficacy, are often expensive and

may induce side effects that significantly compromise the overall

quality of life for patients (1). Therefore, a deeper understanding of

the immunopathology is necessary to make informed treatment

decisions and to identify therapies that are both effective and

efficient in a personal-tailored manner. To gain deeper insights into

immunopathology, a valuable approach is to employ reverse

translational medicine. In reverse translational medicine, scientific

discoveries are informed by clinical observations (2). The clinical

observation this review is based on is the remarkable effect of anti-

CD20-mediated B cell depletion therapy (BCDT) in disorders with a

prevalence of IgG4 subclass antibodies (3–12). This effect is not

exclusive for IgG4-mediated diseases where antibodies are the major

effectors of pathology like in IgG4 autoimmune diseases (IgG4-AID);

IgG4-related disease (IgG4-RD) also responds well to anti-CD20-

mediated BCDT (13). In this review will first explore B cells, antibody

subclasses, and their properties in general, before we specifically

highlight the unique features of IgG4 subclass antibodies in the

context of IgG4-AID and IgG4-RD. In the concluding segment of

this review, we will examine potential therapies for these diseases,

with a particular focus on exploring insights derived from anti-CD20-

mediated BCDT.
2 Insights into B cell functions and
antibody diversity

In autoimmune diseases, the immune system malfunctions,

targeting the body’s own structures. While the immune response

involves a variety of cells, some of these autoimmune diseases are

characterized by a prominent role of B cells and their effector

molecules - the autoantibodies. B cells originate in the bone marrow

and undergo several stages of development before maturing into

antibody-secreting cells (ASCs), namely plasmablasts and plasma

cells (14, 15). The distinct developmental stages of B cell subsets can

be identified by surface markers that are expressed at varying levels

throughout the maturation process (16). These surface markers are

the basis for several B cell targeting therapies, which we will further

explore in the section on therapeutic interventions.

In addition to their function as ASCs, B cells play diverse roles in

the immune system. They contribute to antigen presentation, cytokine

secretion, and the regulation of immune responses (17–19). B cells play

a crucial role in modulating T cell responses in both health and disease.

Both B and T cells originate from common precursors in the bone

marrow, but T cells undergo their final maturation in the thymus (20).

B and T cells constitute the adaptive immune system. While B cells

contribute to the humoral immune response, T cells serve as the

effectors of the cellular response (15). Through antigen presentation, B

cells contribute to the negative selection of autoreactive T cells in the

thymus, regulate the extent of primary CD4+ T cell responses, and

contribute to T cell memory generation (21–23). Antigen presentation
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by B cells contributes to the immunopathology in several T cell-

mediated diseases, including autoimmune hepatitis, rheumatoid

arthritis and multiple sclerosis (24–28). Furthermore, B cells are

essential for the formation and maintenance of humoral

immunological memory, which is crucial for a rapid and effective

response upon re-exposure to pathogens (29–31). These memory B

cells constitute a crucial reservoir for the generation of ASCs and the

corresponding antibody repertoire (14, 31). Throughout the

progression of an immune response to an external antigen, B cells

undergo affinity maturation, enhancing the affinity of antibodies they

produce (32–34). This heightened affinity arises from the interplay of

clonal selection and the somatic hypermutation (SHM) process,

leading to the gradual accumulation of antibodies with successively

greater affinities.

Within the human serum, there is a constant presence of

approximately ≈ 9-15 g/L of various IgG subclass antibodies

circulating throughout the body (35). These antibodies are

polyclonal which means they display diverse specificities,

recognizing individual distinct antigens. The interaction between

an antibody and its corresponding antigen is highly specific. The

segment of the antibody directly involved in this antibody-antigen

interaction is termed the variable region (Figure 1A), whereas the

constant region - the basis for the categorization of antibodies into

isotypes and subclasses - is linked to the antibody’s effector and

pathogenic function as well as maturation state (Figures 1B, C) (36).

Antibodies are categorized into IgD, IgM, IgE, IgA, and IgG isotypes

(37). IgD and IgM are primarily linked to B cells during the naive

stage, while antigen-experienced B cells predominantly employ the

other isotypes (38).
3 The divergent properties of IgG1-4
subclass autoantibodies and unique
features of IgG4

The diseases highlighted in this review predominantly involve

autoantibodies belonging to the IgG subclass, which can be further

divided into IgG1, IgG2, IgG3 and IgG4 (37). Each subclass has

distinct structural and functional properties, leading to varied

effector functions including complement activation, opsonization

(= presenting antigens to phagocytes), antibody-dependent cell-

mediated cytotoxicity (ADCC) and neutralization of toxins (37).

The most abundant subclass is IgG1 (≈ 65-70%) (39); opsonization,

ADCC and complement activation are among the predominant

effector functions of IgG1 antibodies (37, 40). IgG2 (≈ 20-25%)

antibodies, in contrast, are less effective in complement activation,

but potent in opsonization of encapsulated bacteria (39–41). The

third most common subclass is IgG3 (≈ 5-8%); IgG3 antibodies are

very potent effectors of the immune system and activate the

complement cascade, induce ADCC and neutralize toxins (39,

41, 42).

Notably, the least common subclass IgG4 (≈ 3-5%) stands out

among these subclasses due to its unique ability to undergo the

process of fragment antigen binding (Fab)-arm exchange (39, 43).

IgG subclass antibodies are normally dimers with two identical
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binding sites (Figure 1A). Fab-arm exchange enables IgG4 subclass

antibodies to exchange (half)-molecules with other IgG4 antibodies,

resulting in bispecific antibodies with two distinct variable regions

(Figure 1C; on the left). Fab-arm exchange requires the CH3-domain

of the IgG4 antibody (see Figure 1A) and a reducing environment. As

this reaction does not require any additional proteins or co-factors, it

results in a highly dynamic process during which IgG4 antibodies

constantly exchange arms in vivo which generates an ever-changing

repertoire of hetero-bivalent IgG4 antibodies (43). Fab-arm

exchanged-bispecific IgG4 antibodies cannot cross-link antigens

and do not form immune complexes (37). In addition, structural

differences in the CH2 domain of IgG4 antibodies are responsible for

its low affinity toward C1q from the complement cascade and

activating Fcg receptors (44, 45). However, a recent study revealed

that elevated levels of IgG4 antibodies can activate the complement

cascade (46). Both variable and constant region glycosylation were

found to influence this process. Nonetheless, the biological relevance

of this finding remains uncertain. Thus, IgG4 subclass antibodies are

generally considered immunomodulatory and referred to as ‘blocking

antibodies’ and might function as ‘antigen sink’ (45, 47–49). The

blocking function is evident in the context of insect venom or house

dust mite hypersensitivity. Antigen-specific IgG4 block the binding of

sensitizing IgE to the allergens and consequently prevent allergic
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symptoms (50). In a similar manner, IgG4 can also prevent

hypersensitivity reactions during chronic helminth infections (51,

52). The role of IgG4 subclass antibodies in IgG4-AID and IgG4-RD

is further delineated for each specific condition in the

subsequent chapter.

The generation of IgG4 most frequently occurs in situations of

chronic antigen exposure and might be associated with a

continuous germinal center reaction and consecutive rounds of

class switch recombination that eventually terminates with a class

switch toward IgG4 (53–55). This distinctive property renders IgG4

antibodies particularly prevalent in conditions involving recurrent

antigen exposure, as evident in beekeepers and antibodies

recognizing bee-related toxins (47, 56–59). The process of class

switch to IgG4, similar to the generation of IgE, is regulated by the

cytokines IL-4 and IL-13 and necessitates co-stimulation by CD40

(60). Importantly, IL-10 has been shown to reduce IgE secretion

and increase IgG4 production and might be directly involved in

regulating class switch recombination toward IgG4 (60). More

recently, a specialized subset of follicular T helper (Tfh) cells was

discovered in tertiary lymphoid tissues of patients suffering from

IgG4-related disease. These Tfh cells express the markers BCL6,

CXCR5, and ICOS as well as the cytokines IL-4, IL-21, and IL-10

and therefore might crucially regulate the switch to IgG4 (61).
A B

C

FIGURE 1

Structure of antibodies, isotypes and IgG subclasses. (A) Antibodies are dimeric structures that consist of two identical antigen-binding sites, known
as the variable region (VH and VL). This region, called the fragment-antigen binding (Fab) region, is formed by the combination of the light chain and
the heavy chain and is the antigen binding site of the antibody. The hinge region connects the Fab region to the constant region (Fc region, CH1-
CH3), which determines the antibody’s isotype and function. (B) The isotypes of IgM and IgD are associated with less experienced, or “naïve,” cells.
IgM is found as a pentamer. (C) IgG, IgA, and IgE are linked to more matured antibodies. IgA has the ability to form dimeric structures, while IgG has
four subclasses: IgG1, IgG2, IgG3, and IgG4. IgG4 subclass antibodies can undergo Fab-arm exchange, allowing them to become bispecific. Figure
created with Biorender.com.
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4 Features of autoantibodies in IgG4-
mediated diseases

IgG4 subclass antibodies are notably predominant in IgG4-

AID and IgG4-RD (3–10). A summary of the clinical and

epidemiological characteristics of the diseases can be found in

Table 1. This review focuses on the immunopathology of these

diseases and the properties of the corresponding antibodies in the

context of disease.
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4.1 MuSK myasthenia gravis

The autoantibodies in myasthenia gravis (MG) target structures

at the muscle endplate of the neuromuscular junction (NMJ)

hindering neuromuscular transmission (100, 101). These

autoantibodies disrupt the interaction between the ligand

acetylcholine and the acetylcholine receptor (AChR) at the NMJ.

They achieve this by directly targeting the AChR or structures

within the muscle-specific tyrosine kinase (MuSK)/Low Density
TABLE 1 Comparison of characteristics of IgG4 subtypes of MG, CIDP, Pemphigus and IgG4-RD.

MG Nodo-
paranodopathies

Pemphigus Encephilits IgG4-RD

Antigenic
Target of IgG4
Subclass
Autoantibodies

MuSK Neurofascin-155,
contactin-1/caspr-1,
pan-neurofascins

PV: Desmoglein 1, Desmoglein 3
PF: Desmoglein 1

LGI1, CASPR2 –

Relevance of
Fab-
arm exchange

Increases
pathogenicity
of autoantibodies

Decreases pathogenicity
of autoantibodies

PF: Increase of pathogenic effect
PV: monovalent autoantibodies
are pathogenic, pathogenic
capacity most likely not influenced
by valency

– most likely present;
disease not
autoantibody-
mediated

Prevalence
(per 100,000)

2.2 to 36.7
(62, 63)

0.8 to 8.9
(64)

0.4 to 30
(65)

LIG1: 8.3
(66) CASPR2: -

0.8 to 1.4
(67)

Age of Onset before the age of 40
(68, 69)

40-60
(70, 71)

PV: 40-60
(72, 73)
PF: 50-60
(74)

40-60 (mean age of 43-44)
(75, 76)

50-60 (mean age of
onset 56,5)
(67)

Male to
Female Ratio

Predominantly
female
(68, 69)

Predominantly male
(64, 77–79)

Predominantly female (PV)
(80, 81)
Equally distributed (PF)
(74)

Predominantly male
(75, 82)

58% female
(67)

Genetic Factors HLA class II genes:
HLA DQB1*05,
DRB1*14 and
DRB1*16
(83–89)

No clear genetic
predisposition
90)

HLA class II genes
(72, 91–95)

LIG1: HLA-DRB1*07:01,
DQA1*02:01,
DQB1*02:02
(96, 97)
CASPR2:
HLA-DRB1*11:01,
DQA1*05:01,
DQB1*03:01
(97, 98)

HLA-DRB1 and
FCGR2B regions
(99)

Location
of Pathology

Neuromuscular
junction

Axon of nerves at the
Nodes of Ranvier

Skin and mucous membranes Brain No specific site;
Autoimmune-
mediated
fibroinflammatory
lesions

Clinical
Presentation

Muscle weakness,
increased
fatigability

Progressive
Weakness, Numbness

Skin Blisters, Lesions, Rash LGI1: limbic encephalitis with
faciobrachial dystonic seizures
CASPR2: limbic encephalitis,
Morvan’s syndrome, peripheral
nerve hyperexcitability
syndrome, ataxia and distinct
movement disorders

Organ-specific and
Systemic Involvement

Therapy Corticosteroids, PE,
iVIG, Immuno-
suppressants, RTX

Corticosteroids, PE,
iVIG,
Immunosuppressants,
RTX

Corticosteroids,
Immunosuppressants, RTX

Corticosteroids, PE, iVIG,
Immuno-suppressants, RTX

Corticosteroids, RTX
MuSK, muscle-specific tyrosine kinase; PF, pemphigus foliaceus; PV, pemphigus vulgaris; PE, plasma exchange; iVIG, intravenous Immunoglobulin; RTX, Rituximab.
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Lipoprotein Receptor-Related Protein 4 (LRP4) pathway, critical for

the proper clustering and functionality of AChRs (102). The

consequence of this interference is the disruption of signaling

from nerves to muscles and patients present clinically with

increased fatigability and muscle weakness (100, 101). MG is a

very heterogeneous disease consisting of several different subtypes.

These subtypes are partly categorized by the target antigen that the

antibodies detect. So far, three main target antigens have been

identified and validated: AChR (103, 104), MuSK (105), and LRP4

(106, 107). Although all of these subtypes are unified under the term

MG, each disease has distinct clinical and immunological features

(59). The immunological differences are further apparent in the

subclass usage of each subtype. While AChR, and LRP4

autoantibodies are mostly of the IgG1, IgG2 and IgG3 subclass

(59, 106, 108), MuSK is predominantly IgG4 (4–6). Interestingly,

antibodies of the IgG1-3 subclasses in MuSK MG impact the

clustering of AChRs (109, 110), resulting in a reduction of

clustered AChRs. The precise mechanism underlying this effect

remains to be fully elucidated and seems to be divergent from IgG4

MuSK autoantibodies (110).

The isolation and characterization of monoclonal autoantibodies

(mAbs) against MuSK has significantly advanced our understanding

of MuSK-MG (12, 111–114). The knowledge that plasmablasts are a

source for MuSK autoantibodies and the development of

mechanisms for the enrichment of this specific B cell population

(111–114), were instrumental for the generation of MuSK mAbs

(111, 113, 114). The ectodomain of MuSK consists of three Ig-like

(Ig1-3) domains and a frizzled domain (115, 116). Previous findings

revealed that the majority of MuSK autoantibodies recognize the Ig-

like domain 1 on the MuSK receptor, as observed with human

polyclonal sera (117). These polyclonal autoantibodies were proven

to be pathogenic in vitro and in vivo via passive transfer (118–120),

directly inhibiting the interaction between MuSK and LRP4 (109,

117). More recently, mAbs detecting the Ig-like domain 2 were also

shown to have pathogenic capacities (113). The impact of valency on

the pathogenicity after Fab-arm exchange of MuSK autoantibodies

was initially demonstrated in sera-based experiments (121) and

subsequently confirmed with human MuSK mAbs (112, 122, 123).

It has further been shown that affinity maturation plays a crucial role

in the pathogenic development of MuSK mAbs and that a high

affinity coupled with monovalency is essential to reach a pathogenic

threshold necessary for the potent disruption of AChR clusters at the

NMJ (122). MuSK autoantibody titer correlates well with disease

severity inMuSKMG (5, 6, 124–126), might be a potential biomarker

to detect relapse in MuSK MG (114, 127) and treatment success with

BCDT (114, 124).
4.2 Nodo-paranodopathies with
autoantibodies targeting NF155, CNTN1,
and CASPR1

Chronic inflammatory demyelinating polyradiculoneuropathy

(CIDP) is a progressive autoimmune peripheral neuropathy, where

the main target is the myelin sheath of peripheral nerves (128, 129).

Over the last decade, antibodies targeting the proteins located in the
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nodes of Ranvier and the paranodal region have been identified and

reported to be present in 2-15% of patients clinically diagnosed with

CIDP (10, 130). Although these patients are generally diagnosed

clinically as CIDP, there is a growing consensus on classifying

seropositive CIDP patients under nodo-paranodopathies instead of

CIDP, as there are distinct immunopathological and clinical

characteristics between IgG4-mediated nodo-paranodopathies and

CIDP (131–133).

These antibodies target mainly neurofascin 155 (NF155),

neurofascin 186 (NF186), neurofascin 140 (NF140), contactin-1

(CNTN1), and contactin-associated protein 1 (CASPR1) (8, 10,

134–138). In the majority of patients with nodo-paranodopathy, the

dominant immunoglobulin subclass is IgG4, particularly for anti-

NF155, anti-CNTN1, and anti-CASPR1 (8, 10). These proteins

function as cell adhesion molecules. NF155 proteins are located

mainly on the myelin loops of Schwann cells and bind to the

CNTN1-CASPR1 complexes that are found on the axolemma. The

resulting tripartite protein complexes attach the myelin loops

strongly to the axon in the paranodes, resulting in formation of

the largest junctions known in the body. Antibodies against CNTN1

and CASPR1 bind to the epitopes found in domains that interact

with the partner proteins, therefore abolishing the formation of

tripartite complexes and leading to disruption of paranodal

junctions, resulting in conduction deficits (10, 139). A

distinguished feature of anti-NF155 IgG4 antibodies is that these

antibodies do not prevent the interaction of its target protein with

its partners. Instead, binding of these antibodies leads to the

formation of NF155 clusters on Schwann cell surface, resulting in

depletion of proteins necessary for the formation of the paranodal

complex (140). In summary, unlike classical CIDP, IgG4 antibodies

against paranodal antigens do not cause inflammation or

demyelination, but rather cause paranodal detachment and

disturbance of nodal electrophysiology leading to conduction

blocks and potentially axonal degeneration.

Further examination of patient sera with anti-NF155 antibodies

revealed that pathogenic monospecific bivalent IgG4 antibodies are

present in the sera. The effect of monovalency on pathogenicity is

variable in nodo-paranodopathies. In contrast to MuSK MG, the

decreased valency of anti–Neurofascin-155 IgG4 subclass

autoantibodies resulting from Fab-arm exchange strongly

diminished the effect of pathogenic antibodies (141). In CNTN1

autoantibodies, however, monovalency showed similar pathogenic

capacities in comparison to their divalent counterparts (142).

Similar to MuSK MG, the autoantibodies titers in nodo-

paranodopathies correlate well with clinical diseases severity (137,

143, 144).
4.3 Pemphigus with autoantibodies
targeting Dsg1 and Dsg2

Pemphigus is a group of autoimmune bullous diseases

characterized by a pathogenic autoimmune response, primarily

driven by autoantibodies targeting two key desmosomal adhesion

proteins (145). Desmogleins are Ca2+-dependent transmembrane

proteins situated in keratinocyte desmosomes and play a crucial role
frontiersin.org
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in maintaining the integrity and cohesion of keratinocytes within

the epidermis (146). Dsg1 is primarily located in superficial layers,

while Dsg3 is found in basal and parabasal layers of the skin (147).

The two main subgroups of pemphigus are pemphigus vulgaris

(PV) and pemphigus foliaceus (PF), the latter being less common

(3, 7, 9).

Pathogenic autoantibodies in pemphigus are of the IgG1 and

IgG4 sublcass. These antibodies specifically identify epitopes situated

within the EC1 and EC2 domains of Dsg1 and Dsg3 (148). The

interaction of these autoantibodies results in the obstruction of cell-

cell adhesion, leading to the development of skin blisters (3, 149).

This pathological mechanism has been substantiated in vitro, wherein

the antibodies prompt the separation of cell sheets in cultured human

keratinocytes and human skin explants (150–152). Clinical evidence

underscores the pathogenicity of IgG4 in comparison to other serum

IgG fractions, as eliminating IgG4 from PV sera has been observed to

lead to a 81% reduction in dissociation in keratinocyte assays (7). In

cases of active disease, both PV and PF patients typically manifest

enriched desmoglein reactive IgG4 and IgG1, while individuals in

remission and certain healthy relatives of pemphigus patients may

solely exhibit IgG1 (149, 153–155). Additionally, the passive transfer

of maternal antibodies to the fetus induces a transient neonatal form

of pemphigus [201]. Polyclonality and epitope specificity affect the

pathogenic effect of autoantibodies in PV (156). Beyond impeding

cell-cell adhesion, the autoantibodies can also modulate signal

transduction pathways that influence cytoskeleton rearrangement

and cell adhesion in keratinocytes (152, 157, 158) For instance, the

activation of p38 mitogen-activated protein kinase (p38MAPK) plays

a vital role in causing the loss of cell cohesion. Blocking p38MAPK in

the human epidermis has been shown to prevent blistering.

Therefore, the specific morphological alterations induced by

pathogenic IgG in mucocutaneous PV such as widening between

desmosomes and the decrease in desmosome size are at least partially

associated with p38MAPK signaling (152, 157). Monovalency

resulting from Fab-arm exchange was shown to increase the

pathogenic effect of patient-derived autoantibodies in PF (159). The

effect of valency in PV seems less pronounced (160, 161). Monovalent

single-chain variable-region fragments of autoantibodies derived

from PV patients’ demonstrated pathogenic capacity in vivo (151)

as well as Fabs of patient-derived mAbs (161). In pemphigus, there is

no direct correlation of autoantibody titer to disease severity and as

such, the titer cannot be used to monitor disease activity directly

(162, 163).
4.4 LGI1/CASPR2-antibody Encephalitis

Antibody-mediated encephalitis is a heterogeneous group of

disorders caused by more than 21 different antibodies (164). Among

these, anti-LGI1 and anti-CASPR2 encephalitis are related to IgG4

as the dominant immunoglobulin subtype (165). LGI1 is a synaptic

protein that binds to presynaptic metalloproteinase domain-

containing protein 23 (ADAM23) and postsynaptic ADAM22.

ADAM23 positions voltage-gated potassium channels in the

presynaptic terminal and AMPA receptor in the postsynaptic

membrane. Antibody binding disrupts LGI1-ADAM22/ADAM23
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complexes on the cell surface leading to diminished AMPAR and

voltage-gated potassium channel (VGKC) clusters. Loss of

inhibitory VGKC complexes heightens neuron excitability, while

AMPAR loss impairs long-term potentiation. The AMPAR loss is

believed to directly contribute to the memory deficits observed in

individuals with anti-LGI1 encephalitis (166, 167). CASPR2 serves

as a transmembrane cell adhesion protein that interacts with Kv1.1

and Kv1.2 VGKCs in the juxtaparanodal region of myelinated

peripheral nerves. In addition to its distribution in the nodes of

Ranvier across the central and peripheral nervous systems, CASPR2

is also found in the synapses of the limbic system and basal ganglia

(164). In mice, intrathecal infusion of anti-CNTN2 IgG, comprising

a mixture of IgG1 and IgG4, purified from individuals with anti-

CASPR2 encephalitis, were observed to induce memory deficits.

This effect was attributed to hindering CASPR2/TAG1 interaction

and reducing the surface levels of CASPR2, Kv1.1, and AMPAR,

similar to LGI1 antibodies (168). CASPR2 antibodies exert their

pathogenicity mainly through blocking (169), while studies showing

the effect of monovalency on pathogenicity are currently missing. In

LGI1 encephalitis the effect of valency on the pathogenic capacity

has also not been investigated in detail yet. Similarly, the correlation

of the autoantibody titer in the bloodstream with clinical disease

severity is unknown. Levels of autoantibodies found in the

cerebrospinal fluid might serve as a more accurate indicator in

these pathologies of the central nervous system.
4.5 IgG4-RD

IgG4-RD is an immune-mediated systemic condition

characterized by fibroinflammatory lesions in various organs;

these lesions can mimic malignancies, infections, and

inflammatory disorders, often accompanied by elevated IgG4

levels, though not always (170, 171). Recognized as a distinct

disease only since 2003, early diagnoses of IgG4-related disease

were often incidental findings during surgical resections of lesions

initially suspected to be malignant (172, 173). IgG4-RD is

characterized by three major histopathological findings: a dense

lymphoplasmacytic infiltrate, fibrosis, at least focally in a storiform

pattern, and obliterative phlebitis. Additionally, a diagnosis requires

an increased number of IgG4 plasma cells in the tissue (174). The

2019 American College of Rheumatology/European League Against

Rheumatism (ACR/EULAR) established comprehensive criteria for

diagnosing and investigating IgG4-RD. These criteria include: (1)

involvement of at least one of 11 possible organs, (2) a total of 32

exclusion criteria, and (3) eight weighted inclusion criteria (175).

Regarding the underlying immunopathology, CD4+ cytotoxic T

lymphocytes play a pivotal role, constituting a major subset in both

tissue and circulation. These cells secrete pro-fibrotic cytokines such

as IL-1b, TGF-b1, and IFN-g, along with cytolytic molecules like

granzymes (176, 177). Among this population, the dominant

effector subset is characterized by CD27lo CD28lo CD57hi cells

with clonal expansion, and activated CD8+ T cells expressing

granzyme-A are also observed (178). A recent study on tertiary

lymphoid organs in IgG4-RD revealed a significant infiltration of a

Tfh subset that is LAG3 and IL-10 positive (61). Activated B cells
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and plasmablasts may interact with these CD4+ T cell subsets,

contributing to fibrosis and inflammation in IgG4-RD (176).

Notably, a study highlighting dominant plasmablast clones

identified galectin-3 autoantibodies, present in a subset of patients

and correlated with galectin-3 plasma levels (179). Unlike

autoantibody-mediated autoimmune disorders, the direct

involvement of B cells in IgG4-RD pathology remains unclear

and requires further investigation. The circulating IgG4

antibodies in IgG4-RD most likely are predominantly monovalent

due to Fab-arm exchange. Interestingly, the levels of IgG4 subclass

antibodies is not always elevated in these patients (170, 171).
5 Therapeutic Interventions

The standard treatment for autoimmune diseases previously

involved broad immunosuppressive drugs (180). While these

therapies improve symptoms, their effectiveness is often limited

by adverse side effects. Moreover, not all patients respond to these

conventional treatments. Interestingly, patients who do not respond

to standard therapies have shown positive responses to treatments

originally used in B cell malignancies, such as anti-CD20 mediated

BCDT (3–12). Studying the efficacy of anti-CD20 mediated BCDT

has provided valuable insights into potential therapies for B cell

pathologies. Additionally, distinct therapies influence the B cell

repertoire differently as observed in patients that received

mycophenolate mofetil and anti-CD20-mediated BCDT (181),

highlighting the potential benefits of combination therapy. In this

chapter, we will first examine anti-CD20 mediated BCDT and then

explore new therapeutic approaches.
5.1 Anti-CD20-mediated BCDT

Originally developed for treating B cell malignancies, anti-

CD20 mediated BCDT has proven effective in managing diverse

autoimmune conditions, including multiple sclerosis, PV,

rheumatoid arthritis, CIDP, and MuSK MG (124, 135, 182–184).

Anti-CD20 mediated BCDT exhibits remarkable efficiency in IgG4-

AID and IgG4-RD (3–12).

Many MuSK MG patients enter stable remission for several

years following anti-CD20 mediated BCDT, with significantly

reduced or non-detectable MuSK autoantibody titers (124, 125,

185). However, relapses can occur in some patients over time (68,

185–187). In these cases, the MuSK autoantibody titer may increase

months before clinical-detectable relapse (114, 125, 127). During

relapse, frequencies of plasmablasts and memory B cells are

elevated, with disease-related autoantibody-expressing B cells

identified within these populations (111, 113, 114, 188–190).

Consequently, MuSK MG patients treated with anti-CD20

mediated BCDT undergo cycles of remission followed by phases

of clinical relapse. Most patients with IgG4-mediated nodo-

paranodopathies are unresponsive to IVIg and steroids, unlike

classical CIDP. As such, IVIg and steroid unresponsiveness

should lead to antibody testing in CIDP patients. Anti-CD20
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mediated BCDT shows beneficial effects in the majority of

patients with IgG4-mediated nodo-paranodopathies, particularly

those refractory to other therapies (191–195). In a large cohort of

anti-NF155 antibody positive patients, 77% of patients responded to

anti-CD20 mediated BCDT (194). In addition, serum

neurofilament light chain (NfL) levels which are an indicator for

axonal damage and anti-NF155 antibody titers were also decreased

after therapy. Similar positive outcomes have been observed in

pemphigus (196–198). High-dose anti-CD20 mediated BCDT

therapy extended remission duration, although it did not impact

the relapse rate (40%) compared to a low-dose regimen (197).

Furthermore, treatment response to anti-CD20-mediated BCDT is

good in LGI1/CASPR2-antibody encephalitis (11, 199).

Interestingly, anti-CD20-mediated BCDT has emerged as a highly

effective therapy option in IgG4-RD, underscoring the potential

involvement of B cells in the pathophysiology (13).

However, it is crucial to emphasize that the response to anti-

CD20 mediated BCDT varies and not all patients achieve remission

(125, 197, 200, 201). In MuSK MG, non-response in patients might

be associated with a prevalence of pathogenic IgG1-3 subclass

antibodies (110). Additionally, in AChR MG, which was

previously considered a less favorable target for anti-CD20

mediated BCDT, a small subset of patients’ benefits from anti-

CD20 mediated BCDT. These positive responses have been

observed in cases of severe refractory AChR MG (200, 202). Anti-

CD20 mediated BCDT appears to yield better results when initiated

during the early stages of AChR MG (203, 204). This variability in

response is likely due to the heterogeneity of the underlying

immunopathologies (59) and an increasing significance of long-

lived plasma cells in the immunopathogenesis as the disease

progresses over time. In some instances, disease progression

occurred post-anti-CD20 mediated BCDT administration (205),

potentially linked to the presence of anti-RTX antibodies, known to

impede responsiveness of anti-CD20 mediated BCDT in IgG4-

mediated nodo-paranodopathies (206). Ocrelizumab, another

BCDT targeting CD19 with lower immunogenic potential, has

proven to be a successful alternative in patients developing anti-

RTX mAbs (207). The variation in response may, to some extent, be

associated with IgG subclasses other than IgG4 playing significant

roles in the immunopathology of these patients (110).

However, the complexity of CD20 expression should be

acknowledged, extending beyond B cells to include T cells

(Figure 2). Thus, anti-CD20 mediated BCDT does not exclusively

affect B cells; subsets of T cells expressing CD20 on their surface are

also impacted by this therapy (208–210). This depletion of CD20-

expressing T cells has been observed in multiple sclerosis (208, 211).

For B cells, CD20 is expressed at nearly all stages of B cell

differentiation, excluding plasma cells, Pro-B-cells, and Pre-B-I

(Figure 2) (16). The initial report of T cells with CD20dim

expression (208, 212), was first widely considered a flow cytometry

artifact (213). Subsequently, this population was identified as a

distinct T cell subset with both immune-regulatory and

proinflammatory activities (208, 214). The frequency of CD20+ T

cells in the peripheral blood of healthy individuals is relatively low (1-

4%). However, these cells are increased under inflammatory
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conditions and enriched in tissues including tonsils, thymus, bone

marrow, and cerebrospinal fluid compared to the peripheral blood

(208, 210, 215, 216). The origin of CD20-expressing T cells remains

unclear (Figure 2). One proposed explanation is that T cells acquire

CD20 through the process of trogocytosis, involving the simultaneous

transfer of HLA-DR and CD20 from B cells (210, 216–218).

However, the low expression of HLA-DR on T cells suggests that

trogocytosis may not fully elucidate the origin of this subset (208,

217). Additionally, CD8+ T cells are known to interact mainly with

cross-presenting dendritic cells during conditions such as viral

infection, rather than B cells. As dendritic cells are not known to

express CD20 on cell surface, the acquisition of CD20 by CD8+ T

cells through trogocytosis remains questionable. Moreover, MS4A1,

the gene that encodes CD20, was shown to be transcribed in T cells

(208). Therefore, CD20 acquisition may occur during T cell

activation (217, 219) or result from clonal expansion of CD20-

expressing T cells (217, 220). Myelin-specific CD8+ CD20+ T cells

were shown to be depleted together with B cells after CD20

monoclonal therapies (221). The major T cell subtypes that were

lost included memory CD8+CD20+ and central memory CD8+ T

cells but not CD4+CD20+ T cells and this may contribute to

increased infection rate seen in these patients (222). Another study

found that pretreatment levels of CD8+CD20+ T cells that have a

proinflammatory phenotype have a significant inverse relationship

with disease burden before treatment. Additionally, these cells were
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predictive of early disease activity following the initiation of anti-

CD20 therapy (223). Therefore, RTX’s effectiveness in these

autoimmune diseases may not only be the consequence of RTX’s

effect on B cells.

B cell depletion by anti-CD20mediated BCDT is further limited, as

disease-relevant B cells persist even after treatment (114, 190). The

persistence of these B cell clones is not unique to MuSK MG; this

phenomenon extends to various autoimmune disorders, including

Sjögren’s syndrome, SLE, systemic sclerosis, and ANCA-associated

vasculitis (181, 224, 225). These persistent B cells were found to

reemerge in MuSK MG months before clinical detectable relapse

simultaneously with an increase of autoantibody titer (114). Several

characteristics distinguish persistent B cell clones. CD20 expression is

crucial for the efficacy of anti-CD20-mediated B cell depletion therapy.

Both persistent memory B cells and antibody-secreting cells (ASCs)

express low CD20 levels (114, 190). Furthermore, persistent memory B

cell subsets express genes associated with previous tissue homing (114,

188, 190, 226–228). Additionally, B cell memory clones that are highly

expanded show a higher rates of persistence (190, 229–231).

Alterations in the BAFF/APRIL system, including reduced BAFF-R

expression and elevated TACI and BCMA levels, are observed in

persistent clones and plasmablasts at the time of relapse (114, 190, 232).

Nevertheless, it is evident that the remarkable effect of anti-CD20

mediated BCDT in IgG4-associated disorders suggests a direct impact

on the reservoir of pathogenic cells in these diseases.
FIGURE 2

CD20 expression on B cells and T cells. B cells. CD20 is expressed at almost all stages of B cell maturation, with the exception of plasma cells, Pro-B
cells, and Pre-B-I cells. T cells. A small number of T cells express CD20, and there are three main theories explaining how these cells acquire CD20:
One explanation proposes that T cells may acquire CD20 through trogocytosis, involving simultaneous transfer from B cells. Alternatively, CD20
acquisition might occur during T cell activation or result from the clonal expansion of CD20-expressing T cells. Figure created with Biorender.com.
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5.2 New therapeutic approaches

5.2.1 Anti-CD19 mediated BCDT
CD19 is a transmembrane glycoprotein from the immunoglobulin

superfamily (233) and it is functionally associated with modulation of

antigen-independent B cell differentiation and immunoglobulin-

induced B cell activation (234). The expression profile of CD19 is

broader than that of CD20, starting earlier at the stage of pro-B cells

and extending into plasmablasts and plasma cells beyond the

expression of CD20 (234, 235). Two anti-CD19 mAbs have reached

clinical trials: XmAb5871 and Inebilizumab (236, 237). XmAb5871 is

currently investigated in a phase II clinical trial (ClinicalTrials.gov

Identifier: NCT02725476) and Inebilizumab (ClinicalTrials.gov

Identifier: NCT04540497) in ongoing phase III clinical trials for

patients with IgG4-RD. Inebilizumab is further tested in MG

(MINT; ClinicalTrials.gov Identifier: NCT04524273). CD19 has

gained attention in recent years as an alternative therapy to anti-

CD20mediated BCDT. Given its broader expression profile, especially

in ASCs. Besides, it could be an interesting alternative for patients

developing resistance to CD20 therapies, as it has already been

reported in some non-responders (207).

5.2.2 Anti-CD38 mediated BCDT
The main expression of CD38 is observed in hematopoietic

cells. It was first identified as a lymphocyte specific antigen, but

current studies revealed that it is ubiquitously expressed (238, 239).

Plasma cells and memory B cells express high levels of CD38, while

it is expressed at low levels in normal lymph and bone marrow cells

(240). CD38 is also expressed in B cell precursors, germinal center B

cells, and plasma cells and in other immune cells like NK cells,

neutrophils and myeloid cells (239). CD38 is a multifunctional,

membrane-bound protein that serves as an antigen and as an

enzyme. It catalyzes the metabolism of cyclic ADP-ribose

(cADPR) and nicotinic acid adenine dinucleotide phosphate

(NAADP). These are two different calcium second messengers,

involved in several cell functions (238, 239). Besides this enzymatic

function, CD38 can also act as a receptor for CD31, acting as an

adhesion molecule for mediating selectin-like binding of

hematopoietic cells to endothelial cells and facilitating their

transmigration to tissue (239). The role of CD38 in immune cells

ranges from immunomodulation to effector functions during

inflammation, where it could regulate cell recruitment, cytokine

release and NAD availability. This expression profile of CD38,

together with its role in inflammatory processes, make CD38 an

interesting target in the context of autoimmune diseases (239, 240).

Antibodies targeting CD38 have been proposed as a potential

therapeutic approach to eliminate plasma cells that produce

autoantibodies. Daratumab and Isatuximab have already been

established as an important therapeutic target for Multiple

Myeloma (MM) (241). Isatuximab binds to an epitope that

partially covers the catalytic site of CD38, without changing its

configuration, while Daratumumab is binding outside the catalytic

site (242). In SLE patients, Daratumumab was found to restore NK

cytotoxic function which promoted the elimination of circulating
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plasma cells (240). Thus, anti-CD38 might be a potent drug to

reduce the levels of ASCs.

5.2.3 Anti-CD40 mediated BCDT
CD40 is constitutively expressed on B lymphocytes, and CD40L

is mainly expressed in the surface of activated CD4+ T cells,

inducing activation, proliferation and cytokine production.

Besides, they are found in other hematopoietic cells such as

monocytes and dendritic cells as well as non-hematopoietic cells

like mast cells, basophils, NK cells, macrophages, megakaryocytes

and platelets (243). CD40 is a receptor of the TNF superfamily (243)

and together with its ligand, CD40L (CD154), they form an

important stimulatory immune checkpoint (244). CD40/CD40L

interaction is essential for the formation of germinal centers and

the production of class-switched antibodies. It is also important in

humoral and cellular immunity, being involved in the activation of

innate and adaptative immune cells, regulation of B cell, T cell and

APC activation and immunological memory (243, 244).

This role in activation of immune responses makes it an

attractive target for potential therapies, and recently, it has been

the subject of multiple studies with this aim (244). Iscalimab is a

human anti-CD40 monoclonal antibody (244) and it has been

recently evaluated for safety and efficacy in moderate to severe

symptomatic MG in a phase II clinical trial (245). Previously, a

therapeutic benefit had been reported in patients with other

autoimmune diseases such as Sjörgen Syndrome (246) and

Graves´disease (247). In the case of Pemphigus, the interaction

between CD40 and its ligand is important for the induction of

pathogenic anti-Dsg3 IgG antibodies (248). Therefore, anti CD40L

could be a potential therapeutic approach for Pemphigus (249). In

summary, antibodies directed against the CD40/CD40L axis

constitute a novel target with potential benefits for patients with

autoimmune diseases, by targeting plasma cells involved in the

production of pathogenic autoantibodies.

5.2.4 Targeting the BAFF/APRIL-system
The BAFF/APRIL-system plays a crucial role in regulating the

survival and maintenance of B cells. This system consists of two

key ligands, B-cell activating factor (BAFF) and a proliferation-

inducing ligand (APRIL), along with three receptors: the

transmembrane activator and calcium modulator and

cyclophilin ligand interactor (TACI), B cell maturation antigen

(BCMA), and B-cell activating factor receptor (BAFF-R) (250).

BAFF and APRIL ligands are primarily produced by myeloid and

stromal cells, while their corresponding receptors are found on

circulating B cells. These receptors are expressed at various stages

of B cell development, suggesting a dynamic regulation of B cell

survival and maintenance throughout maturation (16).

Dysregulation within the BAFF/APRIL-system is associated with

autoimmune diseases as well as cancer, allergies, transplants,

infections, and immunodeficiencies (251). Elevated levels of

BAFF/APRIL soluble receptors and ligands are linked to B cell

pathologies, observed in conditions like MG, SLE, Sjögren´s

syndrome, and RA, among others (251–255).
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This pivotal role in autoimmune diseases suggests that targeting

components of this system may offer a potential therapeutic avenue

(251). Belimumab (GSK1550188), a recombinant monoclonal

antibody targeting soluble BAFF, was the first FDA-approved

biologic for SLE treatment, following positive safety and efficacy

outcomes in phase III clinical trials (ClinicalTrials.gov Identifier:

NCT00424476; ClinicalTrials.gov Identifier: NCT00410384) (251).

Unexpectedly, Belimumab did not demonstrate significant efficacy

in a phase II clinical trial for Myasthenia Gravis (AChR and MuSK)

(ClinicalTrials.gov Identifier: NCT01480596) (256). Other BAFF-

targeting agents such as Blisibimod and Tabalumab have undergone

phase II/III clinical trials for diseases like SLE and MM (257–259).

In recent years, research has focused on dual inhibitor agents, like

Atacicept, which inhibit both BAFF and APRIL simultaneously.

Atacicept is designed as the extracellular domain of the receptor

TACI fused to the human Fc domain (260, 261). Atacicept has

shown beneficial effects in SLE and RA patients by significantly

depleting plasma cells (262–266) and Telitacicept, another dual

inhibitor, has also demonstrated positive effects in autoimmune

diseases (259). In a phase II clinical trial for SLE, Telitacicept

exhibited beneficial effects (267). Additionally, there is an ongoing

phase III clinical trial in China to evaluate the efficacy and safety of

Telitacicept in the treatment of MG, currently recruiting

(ClinicalTrials.gov Identifier: NCT04660565). Another ongoing

phase IV clinical trial in China is assessing the use of Belimumab

for the treatment of IgG4-RD, with results pending (ClinicalTrials.

gov Identifier: NCT04660565). Although dual inhibtion of BAFF

and APRIL seems to have beneficial effects in some autoimmune

disorder, in multiple sclerosis a trial for atacicept had to be halted

due to increased disease activity in patients compared to placebo

(268–270). Thus, the complexity of the BAFF/APRIL-system has to

be further investigated to better understand how therapy influences

the underlying immunopathology of individual diseases.
5.2.5 Proteasome inhibitors
The ubiquitin/proteasome system constitutes one of the main

pathways for intracellular protein degradation (271, 272).

Therefore, it is a key component for maintaining a dynamic

control over key signaling components of the immune response,

as well as overall cell homeostasis. Malfunctioning of the

proteasome system is associated with pathological conditions, like

cancer or autoimmune disorders (272). Proteasome inhibition

results in the accumulation of defective immunoglobulin chains,

leading to stress in the endoplasmic reticulum, misfolding of

proteins and ultimately cell apoptosis (271, 273). It has been

proven to be critical for plasma cell function due to their high

rate of antibody synthesis. Inhibiting the proteasome results in the

apoptosis of plasma cells and a consequent decrease in antibody

production. Besides, proteasome inhibition also hinders the

production of pro-inflammatory cytokines (273). This makes the

proteasome a promising novel target for antibody mediated

autoimmune diseases, involving long-lived plasma cells, like SLE

(273) or AChR-MG (59).

Bortezomib, initially approved for MM, is a dipeptide boronic

acid derivative, that binds to the catalytic site of the proteasome
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with high affinity on plasma cells (272, 273). There have been

several clinical trials for Bortezomib in SLE patients, that probe a

remarkable efficacy of Bortezomib, especially in SLE patients that

had been refractory to prior immunosuppression therapies (271,

274). Bortezomib and other proteasome inhibitors have shown

beneficial effect in EAMG, a mouse model of MG (275, 276). In-

vitro studies of thymic cell cultures derived from AChR-MG

patients with Bortezomib could eliminate thymus-derived plasma

cells and reduce IgG levels (277). A phase 2 clinical trial

(ClinicalTrials.gov Identifier: NCT02102594) to investigate the

use of Bortezomib on patients with therapy-refractory Myasthenia

Gravis (generalized) or SLE or RA is currently still ongoing (278).

Thus, Bortezomib is another good potential candidate for a more

targeted immunotherapy in B cell pathologies.

5.2.6 FcRn inhibitors
Human IgG is one of the most abundant proteins in serum,

probably because of the uniquely long half-life, for which neonatal

fragment crystallizable (Fc) receptor (FcRn) plays an essential role

(279, 280). The FcRn is a multifunctional atypical form of Fc-

gamma receptor. It was first identified as the responsible of

transporting IgG from the maternal to the fetal circulation. Later

it was found that, among other functions, it plays an essential role in

IgG recycling, by protecting IgG from intracellular degradation,

therefore, expanding the half-life (280, 281). FcRn inhibitors

enhance the catabolism of IgG by blocking the FcRn-mediated

IgG recycling pathway leading to reduced IgG levels in serum and a

decrease in pathogenic autoantibodies (282).

In recent years, FcRn inhibitors have emerged as promising

targets for autoantibody-mediated autoimmune diseases.

Efgartigimod (ARGX-113) binds to FcRn, preventing IgG recycling

(282). A phase III trial in MG showed efficacy and tolerability (283)

and an ongoing trial for pediatric MG patients is currently recruiting

(ClinicalTrials.gov Identifier: NCT05374590), alongside a phase III

trial assessing different dosing regimens (ClinicalTrials.gov Identifier:

NCT04980495). SYNT001, another FcRn inhibitor, demonstrated

efficacy in a phase I/II trial for Pemphigus (284). Rozanolixizumab,

also an anti-FcRn monoclonal antibody, showed positive results in

MG clinical trials (285). Several trials are ongoing for

Rozanolixizumab in MG treatment, including a phase III trial

(ClinicalTrials.gov Identifier: NCT04650854) and a self-

administration study (ClinicalTrials.gov Identifier: NCT05681715).

Additionally, a phase II/III trial for pediatric MG patients is ongoing

(ClinicalTrials.gov Identifier: NCT06149559). Other FcRn inhibitors

like Batoclimab are also in clinical trials, including a phase III trial for

generalized MG (ClinicalTrials.gov Identifier: NCT05403541) and

testing in patients with active CIDP (ClinicalTrials.gov Identifier:

NCT05581199). Overall, FcRn inhibitors hold promise as therapy for

IgG-driven autoimmune diseases likeMG, offering targeted treatment

with potentially fewer side effects than nonspecific therapies.

5.2.7 Complement inhibitors
The complement system comprises a network of over 30

proteins, which interact in a sequential and regulated manner,

culminating in the formation of the membrane attack complex
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(MAC). The MAC inserts into cell membranes, leading to pore

formation and cell damage (286). The classical complement

pathway is activated by antibody-antigen complexes (see chapter

3). Not all antibody isotypes are capable of activating the

complement cascade. Targeting the complement system in

diseases with autoantibodies that are mainly of the IgG1 or IgG3

subclass has shown remarkable efficacy, especially in the context of

AChR MG. AChR autoantibodies are mainly of the subclass IgG1

(287). Eculizumab, inhibiting complement activation by targeting

C5, demonstrated beneficial outcomes in phase III trials

(ClinicalTrials.gov Identifier: NCT02301624; ClinicalTrials.gov

Identifier: NCT01997229) and is approved for treating AChR+

MG patients (288). Ravulizumab, another C5 inhibitor, is

currently in phase III trials (ClinicalTrials.gov Identifier:

NCT03920293) (289). However, complement inhibition may not

provide clinical benefits for patients suffering from IgG4

mediated diseases.

5.2.8 BTK inhibitors
Bruton´s tyrosine kinase (BTK) is a multifunctional cytoplasmic

protein member of the TEC kinase family (290), crucial in B-cell

biology, involved in maintaining B-cell survival, proliferation,

differentiation and activation (291). Apart from B cells, it is also

expressed in mast cells, NK cells, T cells, macrophages, neutrophils,

monocytes and basophils (291), highlighting its multifaceted role in

the immune system. Among the functions of BTK, it integrates

signaling to regulate B cell development through BCR (290). Besides

it is also involved in TLR-mediated signaling, chemokine mediated

homing of pre-B cells into lymphoid organs and mediates in

inflammatory processes driven by IgG complexes (291). Due to its

central role in B cell immunity, BTK inhibition therapies have been

gaining attention as first-line therapy for B cell malignancies (292). Its

involvement in B cell survival and differentiation has also linked BTK

with autoimmune diseases (291). Indeed, studies have shown

increased levels of BTK expression in B cells from patients suffering

from autoimmune diseases, which appears to be correlated with

autoantibody production (293). Therefore, BTK inhibitors represent

a promising therapeutic strategy for autoimmune diseases. BTK

inhibitors are small molecules that are able to downregulate various

B cell functions like cell proliferation, differentiation, maturation and

survival overall. Besides, they can inhibit the activity of macrophages,

mast cells and eosinophils (249). Currently, inhibition of BTK is

being investigated for SLE (271). Fenebrutinib, a BTK inhibitor, was

investigated in a phase II clinical trial in SLE (ClinicalTrials.gov

Identifier: NCT02908100). Despite effectively targeting the BTK

pathway, it did not meet the trial’s primary endpoint for efficacy

(294). In pemphigus, the BTK inhibitor PRN1008 has been studied in

a phase III clinical trial (ClinicalTrials.gov Identifier: NCT03762265),

but it was terminated based on lack of efficacy. Although, the efficacy

of BTK inhibitors as standalone treatments is limited, it might still

hold potential in combination therapies.
5.2.9 CAR and CAAR T cells
Chimeric antigen (CAR)-T cell therapies, initially designed for

targeting tumor cells, involve priming T cells with anti-tumor
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activity and then reintroducing them into the patient (295–297).

These modified T cells express chimeric antigen receptors (CARs),

genetically engineered to have tumor antigen-specific binding sites

and a T cell activating domain (298). This allows them to recognize

and kill cells expressing the target antigen.

Anti-CD19 CAR T cell therapy gained FDA approval in 2017 for

treating B cell malignancies (299), sparking interest in expanding

CAR T cell applications beyond cancer, particularly in autoimmune

therapies (300). CAR-T therapies aim to redirect T cells against

autoantibody-secreting B cells. In addition to CAR T cells, chimeric

autoantibody (CAAR) receptor T cell therapies were developed (301–

305). CAAR T-cells, distinct from CAR T-cells, express chimeric

autoantibody receptors targeting pathogenic antibodies from

autoreactive B cells (306). These include anti-BCMA (301–304),

investigated in the context of MG (ClinicalTrials.gov identifier:

NCT04146051), anti-CD19 (303) (ClinicalTrials.gov identifier:

NCT03030976), and most recently, anti-MuSK and anti-NMDA,

which have shown initial beneficial effects in a mouse models

(305, 307). Another phase I trial (ClinicalTrials.gov Identifier:

NCT04422912) is assessing Dsg3-CAAR T cells in Pemphigus

vulgaris (308). CAR and CAAR T-cell therapies constitute a

promising approach for a more selective and personalized

treatment of autoimmune diseases.
6 Conclusion and outlook

The reason why some autoimmune diseases are predominantly

IgG4 and not another subclass is still not completely understood.

Despite the shared characteristic of having autoantibodies

belonging to the IgG4 subclass, these diseases exhibit numerous

differences. No discernible pattern emerges concerning the site of

pathology, age of onset, or specific genetic predispositions (Table 1).

Generally, the pathogenesis of autoimmune disorders is the result of

a combination of defects in the immune system together with

environmental, and genetic factors similar to the observed

pathogenesis of multiple sclerosis, SLE, and type 1 diabetes (309–

313). Given the rarity of some of these diseases, our current

understanding may be limited. Thus, it is highly probable that

clear patterns are not yet discernible. Future investigations are likely

to provide more clarity.

IgG4 antibodies play dual roles in health and disease (49). In

health, they serve protective and regulatory functions by

predominantly inhibiting the actions of IgE antibodies (45, 47–

49). However, in autoimmune conditions, where IgE antibodies are

not the primary effectors, IgG4 antibodies contribute directly to

immunopathology. Similarly, Fab-arm exchange seems to be a

coincidental aspect of IgG4-mediated diseases. Fab-arm exchange

enhances the diversity of IgG4 antibodies and increases their

potential to engage with antigens (45, 47–49). This intrinsic

property of IgG4 antibodies can either enhance the pathogenicity

of autoantibodies, as observed with MuSK autoantibodies (112,

121–123), without significantly affecting their effects as seen in

CNTN1 autoantibodies and pemphigus (142, 151, 161) or diminish

their pathogenic potential as seen with anti-Neurofascin-155 IgG4

(141). Therefore, there is a variability in the relevance of Fab-arm
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exchange for pathogenic capacity in these diseases. Nevertheless,

the underlying immunopathology in these IgG4-mediated diseases

appears to share similarities, as seen by the overall positive response

to anti-CD20-mediated BCDT in these diseases (3–12). Hence, it is

probable that comparable treatments will yield similar outcomes in

these conditions.
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