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Cancer is a leading cause of human death worldwide, and the modulation of the

metabolic properties of T cells employed in cancer immunotherapy holds great

promise for combating cancer. As a crucial factor, energy metabolism influences

the activation, proliferation, and function of T cells, and thus metabolic

reprogramming of T cells is a unique research perspective in cancer

immunology. Special conditions within the tumor microenvironment and high-

energy demands lead to alterations in the energy metabolism of T cells. In-depth

research on the reprogramming of energy metabolism in T cells can reveal the

mechanisms underlying tumor immune tolerance and provide important clues

for the development of new tumor immunotherapy strategies as well. Therefore,

the study of T cell energy metabolism has important clinical significance and

potential applications. In the study, the current achievements in the

reprogramming of T cell energy metabolism were reviewed. Then, the

influencing factors associated with T cell energy metabolism were introduced.

In addition, T cell energy metabolism in cancer immunotherapy was

summarized, which highlighted its potential significance in enhancing T cell

function and therapeutic outcomes. In summary, energy exhaustion of T cells

leads to functional exhaustion, thus resulting in immune evasion by cancer cells.

A better understanding of reprogramming of T cell energy metabolism may

enable immunotherapy to combat cancer and holds promise for optimizing and

enhancing existing therapeutic approaches.
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metabolic reprogramming, T cells, immunotherapy, immune microenvironment,
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Introduction

Cancer is one of the leading causes of death globally and affects a

large number of people. Cancer treatment has progressed from

traditional approaches, such as surgical resection, radiotherapy, and

chemotherapy, to immunotherapies, such as immune checkpoint

inhibitors (ICIs), chimeric antigen receptor T cells (CAR-T cells), and

cytokine therapies (1–3). Immunotherapy refers to the use of the

body’s immune system to treat cancer. Different from traditional

therapies, immunotherapy employs a variety of immune cells (such as

T cells, natural killer (NK) cells, and dendritic cells), cytokines, and

chemokines [such as C-X-C motif chemokine ligand 12 (CXCL12),

CXCL10, and C-C motif chemokine ligand 5 (CCL5)] to remodel the

tumor microenvironment (TME), which can yield potent effects and

aid in preventing cancer recurrence (4). The advent of

immunotherapy has sparked a paradigm shift in the standards and

approaches of cancer treatment. Although immunotherapy is a

promising treatment, a significant proportion of patients exhibit

limited or no response to immunotherapy (5, 6). Therefore, a

better understanding of the key components of TME may help

refine current immunotherapeutic strategies.

TME consists of a heterogeneous milieu of tumor and immune

cells, and has been shown to participate in tumor progression and

affect immunotherapy response (7). As an important component of

TME, T lymphocytes (T cells) are not only key cells of cellular

immunity, but also an important focus in anti-tumor responses (8).

T cells derived from the bone marrow lymphoid stem differentiate

into mature cells in the thymus. Naïve T cells can be divided into

two main subsets, namely CD4+ and CD8+ T cells, which have

patrol and surveillance functions (9). Once activated by antigen-

presenting cells (APCs), CD4+ T cells can rapidly differentiate into

different subtypes: CD4+ effector T cell (Teff) exhibits anti-tumor

activity, and regulatory T cell (Treg) has immunosuppressive and

tumor-promoting effects (10). CD8+ T cells can differentiate into

CD8+ Teff cells (also known as cytotoxic T cells) and memory T

cells (Tmem) (11). CD8+ Teff cells directly kill tumor cells by

promoting apoptosis and cytokine secretion. Tmem cells can

recognize immune memory antigens and rapidly exert their

tumor cell-killing function, which is crucial for long-term survival

of the host. In the final stages of tumor development, CD8+ T cells

are active and exert anti-tumor effects (9). In addition, T cells

participate in the immune regulation of almost all cancers,

including colorectal cancer (CRC), and are considered as critical

determinants of clinical outcomes (12, 13). A range of T cell-based

therapies have demonstrated efficacy in inducing complete and

long-lasting responses in patients with various cancer types (14–

16). The function of immunosuppressive checkpoints in T cells,

including programmed cell death protein (PD-1) and cytotoxic T

lymphocyte (CTL)-associated protein 4 (CTLA-4), provides a basis

for tumor immunotherapy. These checkpoints regulate T cell

activity and play a role in preventing excessive immune

responses. However, some tumor cells can exploit these

checkpoints to evade immune detection and attack (17–19).

Immune cells share similarities with tumor cells in terms of

their involvement in metabolic regulation to maintain cell

proliferation and survival (20). Following activation, T cells may
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undergo metabolic reprogramming characterized by a switch from

oxidative metabolism to aerobic glycolysis, also known as Warburg

effect (21, 22). This metabolic shift requires precise metabolic

rewiring to enable T cells to fulfill the increased energy

requirements for their proliferation and effector functions

(21, 22). Chang et al. suggested that cell can use either

mitochondrial metabolism or glycolysis for ATP generation.

When glycolysis in T cells is blocked, their ability to produce

iinterferon (IFN)-g is impaired, and then anti-tumor immune

response is reduced (23). Therefore, adjusting the metabolic

processes and functions of T cells has potential for improving the

efficacy of tumor immunotherapy (24, 25). Mitochondria are

dynamic and interconnected organelles that are core regulators of

metabolic reprogramming and play crucial roles in controlling the

activation and function of immune cells such as T cells (26). Ron-

Harel et al. also revealed that during T cell activation, mitochondrial

proteome remodeling generates specialized mitochondria

with enhanced one-carbon metabolism, which is critical for T

cell activation and survival (27). However, T cell energy

metabolism in TME and its effects on tumors have not been

comprehensively reported.

In this review, the recent progress in research on T cell energy

metabolic reprogramming is described, including T cell energy

metabolism and its role in regulating T cell function, influencing

factors, and T cell energy metabolism in cancer immunotherapy. A

better understanding of T cell metabolic programming in TME

holds promise for enhancing the anti-tumor immune response and

improving the efficacy of tumor immunotherapy.
Role in regulating T cell function

Metabolic reprogramming has recently become a rapidly

growing field in tumor research, and it is not limited to tumor

cells, but can also occur in immune cells (28). Among the various

immune cells with different functions, T cells are the main cell type

that exert anti-tumor effects in the adaptive immune stage (29). The

proliferation and differentiation of T cells are strongly influenced by

dynamic changes in their metabolism (30). T cells in the quiescent

phase have low metabolic requirements, and low levels of oxidative

phosphorylation (OXPHOS) can meet their growth and survival

needs. When they encounter antigens, quiescent T cells are

ac t iva ted and require energy to undergo metabol ic

reprogramming to support their anti-tumor functions (31, 32).

Similar to rapidly proliferating tumor cells, the metabolism of T

cells shifts from low levels of OXPHOS to high levels of aerobic

glycolysis and glutamine metabolism (33).

Mitochondria are the major sites for cellular energy production.

Mitochondrial metabolism is the core of the cellular metabolic

network, encompassing processes such as OXPHOS, the

tricarboxylic acid (TCA) cycle, and amino acid metabolism, all of

which occur within the mitochondria (34). Abnormal levels of

reactive oxygen species (ROS) in tumor cells can damage

mitochondrial DNA (mtDNA), thereby affecting the normal

function of the mitochondrial membrane respiratory chain and

adenosine triphosphate (ATP) production system (35). The rapid
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increase in ROS accelerates the destruction of mitochondrial

function, thus resulting in tumor cells that obtain ATP through

glycolysis and metabolic reprogramming (36). Moreover, prolonged

antigen exposure, hypoxia within the TME, or inhibitory signaling

can induce various mitochondrial changes in T cells, such as

aberrant localization, altered morphology, disrupted structure,

and/or perturbed membrane potential (DYm) (37, 38). These

modifications are closely linked to functional deterioration, such

as suppressed mitochondrial biogenesis, diminished ATP

generation, mitochondrial reactive oxygen species (mtROS)

accumulation, disrupted mitophagy, and impaired OXPHOS and

fatty acid oxidation (FAO) (26), thereby resulting in an inability to

fulfill energy requirements and the occurrence of T cell exhaustion.

Mitochondrial morphology controls T cell metabolism and can

destroy tumor cells by enhancing T cell recognition. Activated Teff

cells possess fragmented mitochondria, whereas Tmem cells

maintain the mitochondria in a fused network. By modulating

cristae morphology, fusion in Tmem cells regulates the association

of the electron transport chain (ETC) complex, which promotes

OXPHOS and FAO. Conversely, fission in Teff cells results in

expansion of cristae, impairment of ETC efficiency, and

preference of aerobic glycolysis (39). Furthermore, mitochondria

contain large amounts of Ca2+ and control the absorption and

uptake of calcium ions within the cell. Taken together, these results

indicate that mitochondria play a key role in controlling T cell

activation and function.
Various pathways associated with
T cell energy metabolism

Glycolytic pathway

Mitochondria are hubs of cellular metabolism, including

glucose, amino acid, and fatty acid metabolism (40). As the main

pathway of energy metabolism in tumor cells, glycolysis is crucial

for the proliferation and functional activities of immune cells (41).

Upon T cell activation, there is a shift in their metabolism from a

quiescent state, primarily relying on OXPHOS, to an activated state

characterized by increased glycolysis, which allows for the swift

production of ATP and metabolic intermediates necessary for cell

proliferation and effector molecule synthesis (21, 22). It has been

reported that the naïve T cells rely on OXPHOS to maintain energy

requirements, while activated T cells consume a large amount of

glucose through aerobic glycolysis to exert anti-tumor effects (42,

43). HIF-1a is required for effector states in CD8+T cells, and the

loss of HIF-1a in CD8+T cells reduces tumor invasion and tumor

cell killing and alters tumor vascularization (44). Mitochondrial

dysfunction causes redox stress, which inhibits proteasomal

degradation of Hypoxia-inducible factor-1a (HIF-1a) and

promotes transcription and metabolic reprogramming of Tpex

cells to become exhausted T cells (45). In addition, MYC plays a

key role in regulating the response of HIF-1a to hypoxia, and the

MYC signaling pathway is uncoupled from the increased

transcription of HIF-dependent glycolytic genes in glycolytic flux

during hypoxia (46). In CD4+T cells, the loss of HIF-1a or HIF-1a
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and HIF-2a also impairs essential functions during antibody

response. Glycolysis increases the expression of T helper

cytokines, and HIF promotes glycolysis in T helper cells through

TCR or cytokine stimulation (47). Solute carrier (SLC) plays an

important physiological function in cells. Increased glucose uptake

mediated by GLUT1 and GLUT3 transporters maintains T cell

activation and promotes differentiation (48). After entering the site

of inflammation, CD4+ and CD8+ T cell subsets internalize high

levels of lactic acid via SLC15A2 and MCT1 (SLC16A1),

respectively (49, 50). Macintyre AN et al. ‘s findings suggest that

Glut1 deficiency leads to impaired glucose uptake and glycolysis

within CD4 T cells, thereby reducing the survival and differentiation

ability of T effector cells, as well as the ability to induce

inflammatory diseases in vivo. However, the function of Tregs

does not appear to be affected by the Glut1 defect (48). In

addition, metabolites produced during glycolysis also participate

in the activation and effector function of T cells through other ways.

Teff cells up-regulate specific glycolytic pathways to achieve rapid

proliferation and play anti-tumor effect, including aerobic

glycolysis, pentose phosphate pathway (PPP), hexosamine

biosynthetic pathway (HBP), and TCA cycle support (51). CD8 T

cells are an important part of human adaptive immune response,

and changes in glycolysis have important effects on their activation

and function. Activation of CD8 T cells by TCR leads to the transfer

of cellular metabolic level to glycolysis, while the synergistic

stimulation of CD28 further increases the glycolysis level of CD8

T cells to support subsequent proliferation and differentiation (52).

The induction of high glycolytic activity is conducive to the

differentiation of CD8 T cells into effector cells, but it can

seriously impair the survival ability of Tmem cells (53, 54).
Amino acid metabolic pathway

In addition to glycolysis, the massive proliferation of activated T

cells relies primarily on amino acid metabolism to support protein

and nucleotide synthesis (55). Glutamine metabolism supplies

carbon and nitrogen necessary for the synthesis of amino acids,

nucleic acids, and lipids. The lack of glutamine inhibits T cell

proliferation and cytokine production, which implies that the

restoring high levels of glutamine to the TME can enhance T cell

killing of tumor cells (56).

Besides, arginine is a precursor in the biosynthesis of many

macromolecules, including proteins, creatine, and polyamines

(57–59). As arginine deprivation can lead to cell cycle arrest,

arginine is important for T cell proliferation (60). Elevated L-

arginine levels induced a shift from glycolysis to oxidative

phosphorylation in activated T cells and promoted the

production of central memory-like cells with higher viability.

Intracellular L-arginine concentration can directly affect the

metabolic adaptability and viability of T cells, which also reveals

the importance of its anti-tumor response (61).

The presence of extracellular methionine influences the

epigenetic programming responsible for shaping the destiny of

CD8+ T cells and synergizes with serine (which can be

synthesized internally from glucose or obtained externally) to
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stimulate one-carbon metabolism (62–64). Lysine catabolism can

affect CD8+ T cells to reprogram tumor immunity via histone

crotonylation (65). Amino acids, particularly arginine and leucine,

signal to allow TCR-induced mTORC1 activation and subsequent

changes in mitochondrial metabolism in Treg cells via RagA/B and

Rheb1/2 (66). SLC1A5 or SLC38A1 cotransports glutamine and

leucine exchanged via the SLC7A5-SLC3A2 complex can promote

mTORC1 activation through direct and indirect mechanisms,

thereby regulating T cell metabolism (67). Tryptophan is an

essential amino acid and factor in determining the strength and

effectiveness of T cell responses in TME. Tryptophan can directly

activate cytoplasmic transcription factor-aryl hydrocarbon receptor

(AhR) by producing kynurenine (Kyn) catalyzed by indoleamine

2,3-dioxygenase (IDO) (68). T cells can regulate Tumor

repopulating cells (TRC) that can induce CD8+ T cells to express

PD-1 through Kyn uptake and AhR activation through IDO-Kyn-

AhR pathway (68). Besides, glutaric acid, a key metabolite produced

during the breakdown of tryptophan and lysine within T cells,

regulates T cell differentiation by altering epigenetic and energy

metabolism (69).
Fatty acid metabolic pathway

Lipids are divided into a variety of subtypes based on their

structural/biological characteristics, including fatty acids (FAs),

phospholipids, cholesterol, triglycerides, etc. In TME, lipid

metabolism, as an important energy source and one of the

significant components of cell membrane, is closely related to T cell

proliferation and function (70). T cell senescence driven bymalignant

tumor cells and TreGs is a common feature in cancer development.

Senescent T cells have active glucose metabolism, but their lipid

metabolism is unbalanced (71). Through experiments in mouse

models of melanoma and breast cancer, Liu X found that the

inhibition of phospholipase A2-IVA can reprogram lipid

metabolism of effector T cells and prevent T cell aging. Oxidized

cholesterol is enriched in the tumor microenvironment, and oxidized

cholesterol inhibits SREPB2 pathway from activating LXR pathway,

thus resulting in cholesterol deficiency and T cell dysfunction (72).

Moreover, FAO is involved in the generation and functional

maintenance of Tmem cells. Saibil et al. proved that, as the energy

source, FAO enables Tmem cells to respond to antigen stimulation in

a timely manner, which is conducive for maintaining the normal

function of Tmem mitochondria and long-term cell survival (73).

FAO regulates the balance between Teff and Treg cells (74). However,

it should not be ignored that while Tregs do depend onmitochondrial

function, it is not necessarily fatty acid oxidation. For example,

Chapman et al. discovered that mTOR plays an important role in

coordinating transcriptional and metabolic programs in activated

treg subpopulations, thereby mediating tissue homeostasis processes

(75). Weinberg et al. demonstrated that Treg cells require

mitochondrial complex III to maintain immune regulatory gene

expression and suppressive function (76). Furthermore,

mitochondrial transcription factor A (Tfam) is essential for

mitochondrial respiration and the control of mitochondrial DNA

replication, transcription, and packaging. The loss of Tfam in Treg
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affects Treg homing and stability, thus leading to tissue inflammation

in colitis, but enhances tumor rejection, which reveals the key role of

TFAM-mediated mitochondrial respiration in regulating

inflammation and anti-tumor immunity in Tregs (75, 77). Saravia

et al. revealed that the transcriptional regulatory factor c-Myc can

coordinate immune homeostasis by coordinating treg accumulation,

transitional activation, and metabolic programming (78). However,

in fact, several recent studies showed that Cpt1a is dispensable for

Treg generation or function in vivo. For example, Raud et al.

illustrated that the ACC2/Cpt1a axis is largely indispensable for the

formation of Teff, Tmem or Tregcell, and the effects of etomoxil on T

cell differentiation and function are independent of Cpt1a expression

(79). This finding provides data support that metabolic pathways

other than LC-FAO can promote Tmemor treg differentiation.

Besides, Treg-specific deletion of Cox10, rather than FAO’s rate-

limiting enzyme Cpt1a, has been confirmed to promote oxidative

phosphorylation, thereby leading to impaired treg function and

maturation (78). What ’s more, the l ipid metabolism

reprogramming of CD8+ T cells can affect the biology of tumor

cells (80). Yang W et al. identified cholesterol esterification enzyme

(ACAT1) as a metabolic checkpoint that regulates tumor immune

response, and inhibition of its activity can increase the level of free

cholesterol on CD8+ T cell membrane, thereby enhancing the tumor-

killing ability of CD8+ T cells (81). The main mechanism is that the

plasma membrane cholesterol level of CD8+ T cells increases

significantly, which helps the efficient formation of T cell antigen

receptor clusters and immune synapses. Moreover, studies have

confirmed that the combination of ACAT inhibitor Avasimibe and

PD-1 antibody can further improve the effectiveness of tumor

immunotherapy. Moreover, Fan J et al. found that mitochondrial

ACAT1 and SIRT3 are upstream acetyltransferase and deacetylase of

PDHA1 and PDP1, respectively, and knockdown of ACAT1 can

weaken tumor growth (82). These studies suggest the potential of

ACAT1 as a target for anti-cancer drugs. Overall, different states of T

cells are controlled by multiple metabolic programs (83, 84)

(Figure 1). The metabolic reprogramming of T cells is an essential

component of the immune response. Understanding and

manipulating T cell energy metabolism has significant implications

for developing novel immunotherapies and enhancing immune

responses against tumors.
Various factors associated with T cell
energy metabolism

Research has shown that various factors associated with T cell

energy metabolism have significant impacts on T cell function.

Herein, T cell energy metabolism-related factors are shown

in Figure 2.
Hypoxia

Hypoxia in the TME has a unique two-sided effect on immune

cell function (85). Under hypoxic conditions, multiple oxygen-

independent signals, including those present in T cells, increased
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hypoxia-inducible factor (HIF) activity (86). After activation via

oxygen-independent pathways, T cells depend on HIFs to sustain

glycolytic metabolism. For instance, Oestreich et al. reported that

following T cell activation, decreased interleukin (IL)-2 exposure

lead to elevated B-cell lymphoma 6 (Bcl-6) expression, which

directly inhibited glycolytic genes regulated by HIF-1a and c-

myc. This mechanism suppresses glycolytic metabolism and

effector function, and consequently influences the fate of T cells

in a microenvironment-dependent manner (87). A previous

investigation on Foxp3-regulatory CD4+ T cells revealed the

involvement of HIF-1a in maintaining a glycolytic metabolic shift

in CD4+ T cells, when it was activated and cultured in vitro with IL-

27 (88), which suggested the crucial role of HIF-1a in modulating

CD4+ T cell metabolism. The HIF-1a expression in CD8+ T cells

promotes glycolytic metabolism, thus leading to enhanced

proliferation and effector functions of CD8+ T cells (44, 89).

Compared with normoxic T cells, hypoxic CD8+ T cells increased

the packaging of granzyme B into particles and cleared B16 tumors

more effectively in mice (90). This adaptive metabolic

transformation and functional enhancement contribute to the

anti-tumor effects of CD8+ T cells in a hypoxic environment. In a

CRC cell model, it has been observed that hypoxia enhances the

CD8+ T cell activity and promotes IFN-g expression (91).
Frontiers in Immunology 05
Lactate accumulation

To achieve “metabolic equilibrium,” tumor cells not only

consume important nutrients but also produce toxic metabolic

waste to further impact the differentiation of CD8+ T cells and

impair T cell function. Among these, lactate accumulation has

attracted considerable attention. Owing to the aerobic glycolytic

activity of tumor cells, lactate accumulates in the TME, and high

lactate concentrations directly regulate the effector function of CD8

+ T cells (92). Activated T cells primarily produce ATP and

biomacromolecules via aerobic glycolysis. To maintain a high

glycolyt ic rate , CD8+ T cel ls export lactate through

Monocarboxylate Transporter 1 (MCT1). The transport activity

of MCT1 is mainly regulated by the lactate concentration gradient

in the cell membrane. However, lactate accumulation in the TME

disrupts MCT1-mediated lactic acid export from CD8+ T cells, and

further induces an inhibitory tumor-infiltrating (TIL) CD8+

phenotype (92). Robert et al. also demonstrated that the build-up

of lactic acid generated by CRC cell metabolism and the resulting

acidic environment could repress glycolysis and impair T cell

functionality (93). Additionally, lactic acid can induce the

upregulation of CXCL10, which facilitates the attraction of CD4+

T cells to the metastatic site and triggers receptor activator of
FIGURE 1

T cell hypermetabolism includes glucose metabolism, amino acid metabolism, and lipid metabolism.
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nuclear factor-kB-ligand (RANKL) production, thereby promoting

CRC bone metastasis (94, 95).
Gut microbiota

Dysregulation of the gut microbiota is a crucial factor in both

cancer onset and immune system modulation, which ultimately

affectes the efficacy of immunotherapy (96). In mouse models, a

microbial mixture could boost anticancer immunity by stimulating

the production of IFN-g-producing cytotoxic T cells (CTCs) within

tumor tissues (97). Escherichia coli, Firmicutes, and Bacteroides

fragilis have been found to promote the migration of T cells into

CRC tissues by upregulating the expression of chemokines involved

in T cell recruitment (98). However, colibactin-producing

Escherichia coli can impair the infiltration of CD3+ and CD8+

T cells into the CRC, thus resulting in tumor resistance to

immunotherapy (99) . Moreover , the colonizat ion of

Bifidobacterium in the intestine can result in changes in the

composition of the gut microbiota and increase the suppressive

function of Treg cells by promoting mitochondrial activity, which

indicates the crucial role of gut microbiota in the metabolic

reprogramming of T cells (100).
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What’s more, the gut microbiota generates multiple metabolites

that can interact with host tissues and the immune system, which

exertes a significant influence on T cell development and function

(101, 102). Intestinal immune homeostasis can be maintained by

Treg cells, and microbial bile acid metabolites are vital for

generating colonic Treg cells and suppressing intestinal

inflammation (103–106). Bacterial production of short-chain fatty

acids (SCFAs), such as butyrate, can alleviate dextran sulfate

sodium and clostridium difficile induced colitis by preventing

Th17 through activation of SIRT1/mTOR (107). SCFAs, as the

substrate for b-oxidation, can elevate the mitochondrial mass and

glucose transporter protein type 1 (GLUT1) expression as well as

stimulate OXPHOS and glutaminolysis instead of glycolysis in

activated CD8+ T cells. Not only that, butyrate can promote cell

metabolism and enhance the memory potential of activated CD8+

T cells. In this process, butyrate decoups the tricarboxylic acid cycle

from glycolytic input to CD8+ T cells, which prefertionally provides

fuel for oxidative phosphorylation through ongoing glutamine

utilization and fatty acid catabolism (83). SCFAs, as the substrate

for b-oxidation, can elevate the mitochondrial mass and glucose

transporter protein type 1 (GLUT1) expression as well as stimulate

OXPHOS and glutaminolysis instead of glycolysis in activated

CD8+ T cells (108). The gut microbiota-derived metabolite
FIGURE 2

Various factors associated with T cell energy metabolism.
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butyrate modulates the effector function of CD8+ T cells (83).

Additionally, pentanoate, a subdominant type of SCFA, was found

to directly affect CD4+ T cell metabolism. Pentanoate stimulated

glycolysis and increased acetyl-CoA levels in Th17 cells (109).

Isoallolithocholic acid (isoalloLCA), a secondary bile acid,

augments OXPHOS in CD4+ T cells, which is indicated by the

elevated oxygen consumption and mitochondrial membrane

potential (104). As a key metabolite produced by glycolytic

metabolism of glucose molecules, lactic acid prevents the

upregulation of activated T nuclear factors in T cells and NK

cells, thus resulting in reduced IFN-g production. As a potent

inhibitor of T and NK cell function and survival, lactic acid can

cause tumor immune escape (110). Besides, lactate can increase the

dryness of CD8+T cells and enhance anti-tumor immunity (111). In

addition, studies have shown that lactic acid is an active checkpoint

for Treg cell function, and it can up-regulate PD-1 expression in

highly glycolytic TME (112). Treg cells up-regulate pathways

involved in the metabolism of lactic acid. Lactate uptake is

essential for the function of peripheral treg cells, but it requires

intratumoral uptake, thereby resulting in slower tumor growth and

increased response to immunotherapy (50).
T-cell energy metabolism in
cancer immunotherapy

T cells are central players in mounting an effective anti-

tumor immune response. Activated T cells must adjust their

metabolism to meet the energy requirements associated with

rapid proliferation and effector function. Therefore, targeting T

cell metabolism is a promising strategy in the development of

T cell-based immunotherapeutics. Current T cell-based

immunotherapeutics mainly include ICIs and autologous

T cell therapies.
ICIs

Immune checkpoints are crucial elements of the immune

system that contribute to the maintenance of immune

homeostasis by controlling the type, intensity, and duration of

immune responses. Immune checkpoints are ligand–receptor

complexes that modulate immune responses by transmitting

costimulatory or inhibitory signals. The overexpression of

immune checkpoints in cancer are linked to T cell exhaustion,

thus leading to dysfunctional T lymphocytes that exhibit decreased

effector function and impaired proliferation (113). Among the

numerous tumor-associated immune checkpoints, CTLA-4 and

PD-1 are two critical molecules, and targeting them has

demonstrated effectiveness in promoting the activation of anti-

tumor immune responses (114). ICIs are monoclonal antibodies

(mAbs) that block immune checkpoint proteins expressed on

immune cells, such as T cells and tumor cells, thereby releasing

the brakes on the immune system and enabling the elimination of
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tumor cells (115). mAbs that specifically target co-inhibitory

immune checkpoints, such as PD-1 and CTLA-4, have

demonstrated clinical effectiveness in various types of cancers,

including CRC (116, 117). However, ICIs have not shown any

clinical benefit or improvement in survival in patients with non-

mismatch repair deficient (dMMR)/microsatellite instability-high

(MSI-H) metastatic colorectal cancer (mCRC), accounting for 96%

of the patients with metastatic disease (118, 119).

Additionally, immunosuppressive receptors alter the anti-

tumor effects of T cells by interfering with their metabolism. It

has been reported that PD-1 can affect the metabolic

reprogramming of T cells by suppressing glycolysis and elevating

lipolysis and FAO (120), which suggested that immune checkpoint

blockade can promote the metabolic reprogramming of Teff cells,

thus enhancing their anti-tumor effect. Conversely, CTLA-4

inhibits glycolysis without augmenting FAO, which suggestes that

CTLA-4 sustains the metabolic profile of non-activated cells.

Collectively, PD1- and CTLA4-targted ICIs enhance effector T

cell function via increasing glucose influx and glycolysis.

Importantly, the extrinsic metabolic barriers on tumor-infiltrating

immune cells caused by the TME, such as lactate accumulation,

hypoxia, and mitochondrial dysfunction, can be overcome by

ICIs (121). The anti-PD1 blockade and bezafibrate combination

treatment has been shown to promote mitochondrial biogenesis,

FAO, and OXPHOS in CD8+ T cells (122). Therefore, targeting T

cell metabolism represents a promising approach for the

improvement of the outcomes of ICIs.
Autologous T cell therapies

Autologous T cell therapies mainly employ CAR- and T cell

receptor (TCR)- based therapies that recognize antigens on targeted

tumor cells and offer treatment options for cancer (123, 124). CAR-

T cells are engineered T cells that express synthetic T cell receptors

and enable them to recognize and target tumor surface antigens.

These engineered T cells redirect the polyclonal T cell response

toward tumor cells, thus resulting in the eradication of

tumors (125). Several CAR-T cell therapies have been used to

treat hematological malignancies (126). However, some obstacles,

such as the absence of suitable target antigens and an

immunosuppressive TME, hinder their clinical application (127).

TCR-T cells can recognize antigens expressed on both the cell

surface and within intracellular compartments, thus making it a

compelling avenue for solid tumor treatment (128). Interestingly,

the metabolic reprogramming of T cells through gene editing can

help T cells resist unfavorable environmental factors in TME. The

mitochondrial regulator PPARGC1A(peroxisome proliferator

activating receptor g, coactivator 1a) is often described as a major

regulator of mitochondrial biogenesis and a central player in

regulating antioxidant defense, capable of reducing aging in

vascular smooth muscle cells (VSMCs) (129). However, there is

growing evidence that PGC-1a is also involved in complex

regulation of mitochondrial mass beyond biogenesis, including
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mitochondrial network dynamics and autophagy clearance of

damaged mitochondria. Furthermore, it was found that the

deficiency of PGC-1a can cause the loss of mitochondrial

function of Teff cells, and increasing the expression of PGC-1a
can save the mitochondrial function of Teff cells and increase the

production of cytokines, thus enhancing the anti-tumor effect of T

cells (130). Moreover, lysine demethylase 3A (KDM3A) can bind to

PGC-1a and demethylate the monomethyl lysine (K) 224 of PGC-

1a under normal oxygen conditions. Up-regulated expression of

PGC-1aK224R mutant can promote mitochondrial biogenesis,

reactive oxygen species (ROS) production and tumor cell

apoptosis in mice under hypoxia, and inhibit the growth of brain

tumors (131). Furthermore, the study found that cholesterol

esterification enzyme ACAT1 is also a good regulatory target in

the metabolic pathway of T cells. Knockout or inhibition of acetyl-

coacetyltransferase (ACAT1) can increase the cholesterol

concentration of CD8+ T cell membrane, so that this type of

killer T cells can be more easily polymerized than the original

and better form immune synapses, thereby improving antigen

sensitivity and improving immune efficacy (81). Moreover,

studies have confirmed that the combination of ACAT inhibitor

Avasimibe and PD-1 antibody can further improve the effectiveness

of tumor immunotherapy. In addition, Fan J, et al. discovered that

ACAT1 mainly sends signals through PDP1 and PDHA to promote

Warburg effect and tumor growth. When ACAT1 is knocked down,

tumor growth is inhibited. These results also suggest the potential of

ACAT1 as a target for anti-cancer drugs (82). In conclusion,

metabolic remodeling of T cells through gene editing or

transduction of specific genes in vitro can enhance the antitumor

properties of T cells. The development of new strategies in

improving the metabolic fitness of autologous T cells can improve

the therapeutic efficacy of anti-tumor immunity.

Furthermore, TGF-beta has gradually been found to play an

important role in T cell energy metabolism and cancer immune

evasion. Checkpoint blocking drugs represented by PD-1/PD-L1

antibodies have achieved good results in the treatment of a variety

of cancers. However, the overall efficiency is still not high. Among

them, the heterogeneity of tumor and the diversity of immune

microenvironment are the main reasons limiting the therapeutic

effect. Recent studies have revealed that anti-TGF-b/PD-L1

bispecific antibody YM101 can simultaneously block the PD-1/

PD-L1 and TGFR2/TGF-b signaling pathways, promote

the activation of efficient T cells, regulate the tumor

microenvironment, and reverse immunosuppression and fibrosis

(132). Meanwhile, its anti-tumor effect superior to PD-L1

monoclonal antibody has been verified in a variety of mouse

tumor bearing models. In addition, Yi M et al. also constructed a

bispecific antibody (called BiTP) against TGF-b and human PD-L1

and found that BiTP retained the binding affinity and biological

activity of the parent antibody, and it had strong anti-tumor activity

against the parent antibody in triple-negative breast cancer (TNBC)

(133). These studies indicate that new drugs based on TGF-b/PD-
L1 double antibodies are expected to provide a new solution to the

existing immunotherapy dilemma, and have important clinical

significance and translational value.
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Conclusion

Metabolic reprogramming is the metabolic change that cells

undergo in response to various stressors. Similar to tumor cells,

activated T cells in the TME undergo metabolic reprogramming to

acquire energy, and the failure of activated T cells to obtain

sufficient nutrients or undergo metabolic re-wiring can damage

their effector function. Factors, such as hypoxia, lactate

accumulation, and the gut microbiome, may affect T cell

activation and energy metabolism. Targeting T cell metabolism is

a potentially promising approach for eliciting durable immune

responses in tumors that are resistant to conventional

immunotherapies. Therefore, therapeutic approaches targeting T-

cell metabolism may offer an opportunity to optimize and improve

current anti-tumor therapeutic strategies.
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