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Cytokines are proteins that act in the immune response and inflammation and

have been associated with the development of some types of cancer, such as

gastric cancer (GC). GC is a malignant neoplasm that ranks fifth in incidence and

third in cancer-related mortality worldwide, making it a major public health issue.

Recent studies have focused on the role these cytokines may play in GC

associated with angiogenesis, metastasis, and chemoresistance, which are key

factors that can affect carcinogenesis and tumor progression, quality, and patient

survival. These inflammatory mediators can be regulated by epigenetic

modifications such as DNA methylation, histone protein modification, and

non-coding RNA, which results in the silencing or overexpression of key genes

in GC, presenting different targets of action, either direct or mediated by

modifications in key genes of cytokine-related signaling pathways. This review

seeks insight into the relationship between cytokine-associated epigenetic

regulation and its potential effects on the different stages of development and

chemoresistance in GC.
KEYWORDS

cytokines, epigenetic regulation, gastric cancer (GC), chemoresistance, angiogenesis,
metastasis
1 Introduction

Gastric cancer (GC) is one of the most frequent solid tumors of the digestive system,

with an unfavorable prognosis and a low 5-year survival rate (1). The GC carcinogenesis

process has been observed in early stages, such as the development of chronic gastritis and
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gastric atrophy, which are closely related to the participation of

inflammatory mediators and can evolve, causing dysplasia and

other morphological modifications that ultimately promote

the generation of the tumor (2). Pro-inflammatory and anti-

inflammatory cytokines are closely related (3) and act by

generating effects on various cell types, regulating processes such

as cell death, proliferation, differentiation, and migration (4).

Epigenetic factors may regulate gene expression with its

consequent translation and function in cytokines. In epigenetics,

the states of active or silent genes are controlled by adding or

eliminating chemical modifications in chromatin (3), including

DNA methylations (3) and modification of histone proteins, such

as acetylation. There are also non-coding RNA (ncRNA), which are

RNA that are not translated into proteins, among which are found

mainly microRNA (miR) (5) and long non-coding RNA (lncRNA),

which play an important role in transcriptional and post-

transcriptional regulation, as they target and affect multiple cell

signaling pathways by contributing to the development and

progression of inflammatory diseases and cancer (5).

The following review will analyze the background linked to the

association among the epigenetic regulation of cytokines that affect

angiogenesis, progression, metastasis, and chemoresistance of GC.
2 Gastric cancer

According to GLOBOCAN 2020, GC is responsible for more

than one million new cases and an estimated 769,000

deaths, ranking fifth in incidence and third in mortality globally

(6). Associated risk factors include diet, excessive alcohol

consumption, socioeconomic status, and infection with the

bacterium Helicobacter pylori (H. pylori) (7). Infection with this

bacterium is one of the most studied factors, as it induces chronic

inflammation and cell proliferation by increasing the production of

chemokines such as CCL5 and expressing pro-inflammatory

cytokine genes IL (Interleukin)1, 6, 8, and tumor necrosis factor-

alpha (TNF-a), increasing the risk of DNA damage and

tumorigenesis (8). Approximately 10% of GC cases are associated

with Epstein-Barr virus (EBV), contributing to tumorigenesis

through a variety of mechanisms, including hypermethylation of

tumor suppressor genes, inflammatory changes in the gastric

mucosa, host immune evasion by EBV, and changes in cell cycle

pathways (9, 10).
3 GC and inflammation

Cytokines are regulatory proteins of immune and inflammatory

response (11). They can be produced by leukocytes, fibroblasts, and

tumor cells (12), playing a role in cancer development with interferons

(IFN), interleukins (IL), colony-stimulating factors (CSF), tumor

necrosis factors (TNF), transforming growth factors (TGF), and a

wide range of chemokines (13), controlling different stages of cancer,

such as apoptosis, angiogenesis, proliferation, invasion, metastasis, and

currently the development of chemoresistance (3).
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GC cells and the tumor microenvironment contains pro- and

anti-inflammatory cytokines that influence tumor growth and the

host’s antitumor response (14). Their signaling occurs via a pathway

network (14), including Janus-activated kinases (JAK) and

activators of transcription (STAT) such as STAT3 (4). Examples

such as C-C Motif Chemokine Ligand 5 (CCL5) secreted by type 2

tumor-associated macrophages (TAM) activate STAT3 signaling

and DNA methyltransferase (DNMT) by inhibiting gelsolin (GSN)

expression, promoting proliferation and the formation of invasion/

metastasis (8). Other pathways involved are mitogen-activated

protein kinases (MAPK) and nuclear factor kappa B (NF-kB) (4),
directly or indirectly affecting epigenetic regulations.

In the tumor microenvironment (TME) context, which consists

of neoplastic, mesenchymal, endothelial, immune, extracellular

matrix, and fibroblast cells contributing to tumor progression (15)

cytokines are relevant. Heterogeneous and functionally

reprogrammable TAM in the TME correlate positively with poor

prognosis in several cancers (16, 17). Their role in tumor progression

is complex (18) and favor angiogenesis and cancer progression by

secreting cytokines, growth factors, and proteolytic enzymes (17).

Their contribution to drug resistance and post-chemotherapy relapse

is important as they suppress cytotoxic T cell immunity, activate anti-

apoptotic programs, and polarize macrophages to pro-tumor

phenotype (19).

Macrophages are classified into M1 and M2 with pro- and anti-

inflammatory functions, respectively. In GC, M1 secrete CXCL9

and CXCL10, IL-1b, TNF-a, and IL-8, among others, stimulating

tumor growth, while M2 secrete anti-inflammatory cytokines such

as IL-33, IL-10, and TGF-b (17). Regulated by epigenetic factors,

these cytokines play critical roles in different stages of

cancer (Figure 1).

It is important to highlight additional functions of these

cytokines, besides their role as modulators of inflammation. For

instance, they could serve as predictive biomarkers for GC by

assessing circulating levels of IL4-IL6 (20, 21). These cytokines

are also considered therapeutic targets in GC treatments,

influencing the generation of neoplastic transformation and

metastasis, and are associated with an increase in TNF-a (22).

Moreover, they regulate the secretome, proliferation, and

differentiation of epithelial cells (4).

As mentioned above, H. pylori is one of the main risk factors in

the carcinogenesis of GC, increasing inflammatory processes.

H.pylori causes an inflammatory reaction in gastric epithelial

cells, generating neoplastic deformations and changes in the

secretome. In immune cells at the site of infection, the expression

of proinflammatory cytokines and the chemokine CCL5 increases,

key in the development of chronic gastric inflammation and the

onset of GC (23). In a meta-analysis study of the literature, a

significant increase in circulating levels of IL-6 and TNF-a was

found during infection with the bacteria, when it was also associated

with GC, increased serum levels of IL-6 IL-7, IL-10, IL-12 and TNF-

a were found (24). Another study demonstrated that the presence of

the bacteria favors the activation of nuclear factor kappa B (NF-kB)

in gastric epithelial cells, generating the release of inflammatory

mediators such as interleukin-8 (IL-8) (25).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1347530
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Reyes et al. 10.3389/fimmu.2024.1347530
4 Epigenetic modulations of cytokines
in GC

Epigenetics is the study of heritable changes in gene expression

not influenced by modification of the primary DNA sequence.

Epigenetic mechanisms play a crucial role in the typical

development and tissue gene expression in humans. They also

govern how an individual’s genotype reacts to and engages with

its surroundings. Epigenetic dysregulation, induced by factors like

age, cigarette smoking, or the onset of chronic inflammation, may

lead to modifications in gene expression and the initiation of cancer

development (26). The principal epigenetic mechanism associated

with most cancers are:
Fron
A) DNA methylation by adding methyl groups to the 5’

carbon at the cytosine nitrogenous base binding sites on

CpG dinucleotides by DNA methyltransferase (DNMT)

enzymes. The inclusion of the methyl group affects gene

expression, as the modification prevents specific

transcription factors and other transcriptional regulatory

components from accessing the promoter region of a

particular gene, which suppresses DNA expression (27).
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B)Modification of histones, mainly acetylation, although they

can also be phosphorylated or methylated. Histones are

proteins that give structure to DNA, forming chromatin.

The DNA coils around these proteins allowing a compact

form due to the phosphates in the DNA (negative charge)

and that the proteins have a positive charge (abundant

amino acid lysine). For gene expression to occur, DNA

needs to unwind, and this happens when histones are

modified. The acetylation is regulated by histone

acetyltransferases (HATs) enzymes that add acetyl to the

histone at the lysine position and by neutralizing its positive

charge, the DNA is released from packaging and

transcription increases. Histone deacetylases (HDACs)

remove the lysine acetyl group and maintain the

positively charged histones resulting in stability of the

coiled chromatin, suppressing gene transcription (28).

C) Non-coding RNAs (ncRNAs), transcribed without

translation into proteins. In the context of cancer,

microRNAs (miRs) stand out, classified as short ncRNAs

of 22-25 nucleotides. They can bind to mRNA

through base complementar i ty , influencing its

degradation or translational inhibition, thus regulating
B

A

FIGURE 1

Aberrant epigenetics and epigenetic modulation of cytokines are involved in chemoresistance, angiogenesis, and metastasis in Gastric Cancer. Panel
(A) Factors that cause abnormal epigenetics in GC. General determinants of epigenetic modifications in cancer, such as infectious agents and
components of the tumor microenvironment. (B) Epigenetic modulation of cytokine expression in chemoresistance, angiogenesis, and metastasis in
GC. Epigenetic modulation includes methylation, histone deacetylation, miRNA, and lncRNA. Green rectangles: cytokine activation. Red rectangles:
cytokine inhibition.
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post-transcriptional gene expression. On the other hand, there

are long non-coding RNAs (lncRNAs) with more than 200

nucleotides in length, which exert multiple gene regulations by

targeting mRNA, DNA, proteins, and miRNAs, influencing

processes such as transcription, translation, and other

epigenetic components (29).

Each of these processes can lead to gene under- or overexpression.
4.1 Abnormal epigenetic in GC

The combination of genetic, epigenetic, and environmental

elements participate in the carcinogenesis and development of GC.

The epigenetic alterations in GC is influenced by various factors such

as infection with H pylori, EBV, tumor microenvironment and

cytokines (30) (Figure 1A).

Infection with H. pylori causes a prolonged inflammatory

reaction of the immune response, H. pylori is not only one of the

main risk factors influencing the development of inflammation in

GC but can also cause epigenetic deregulations, such as histone

protein deacetylation (31) and phosphorylation (32). Although its

primary impact is on DNA methylation, affecting tumor suppressor

genes related to autophagy, whose modification silences them and

favors GC (25).

Additionally, H. pylori modifies the methylation of genes

associated with signaling pathways activated by G protein-

coupled receptors, such as guanine nucleotide-binding protein

subunit beta-4 (33). Treatments that eradicate the bacteria show a

reversal in methylation in patients without intestinal metaplasia

(34) In GC, EBV-induced host genome hypermethylation directly

targets key tumor suppressor genes, including APC, PTEN, and

p14ARF, among others. EBV-induced hypermethylation silences

genes that regulate the cell cycle and cell differentiation, leading to

increased proliferation and dedifferentiation (35).

The environment around a tumor, known as the tumor

microenvironment (TME), is composed of different cell types

such as immune cells, fibroblasts, and endothelial cells. It is a key

player in tumor formation, tumor growth, and metastasis.

Additionally, it influences the treatment response (36).

It has been described that cytokines may be aberrantly regulated

by different epigenetic mechanisms in tumor tissues, contributing to

carcinogenesis in multiple ways. Some of these cytokines also

function as regulators of other genes crucial to tumor biology, so a

direct or indirect relationship can occur (3) (37). (Figure 1B, Table 1).
4.2 Epigenetics and cytokine regulation in
the development of angiogenesis in GC

Angiogenesis (AG) (18) is a process by which new blood vessels

are formed, where endothelial cells form tubular structures that

bind together to form stable blood vessels (57), which is critical to

tumor growth, invasion, and metastasis. GC tumor and stromal

cells produce various pro-angiogenic growth factors, such as

vascular endothelial and platelet-derived endothelial cells, as well

as IL-8 and angiopoietin (8, 18) (Figure 1B, Table 1).
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Epigenetic regulation, like DNA hypermethylation in gene

promoter regions, is generally associated with transcriptional

silencing, whereas hypomethylation facilitates gene expression (3).

Post-transcriptional modifications of mRNA, including N6-

methyladenosine (m6A) and 5-methylcytosine (m5C), are

involved in mRNA stability, translation, and translocation (58).

Wang et al. report that methyltransferase 3-mediated m6A

promotes the activation and maturation of dendritic cells

involved in the immune response (58). This methylation

mechanism is also associated with the activation of several

biological pathways, such as transforming growth factor beta

(TGF-b) signaling, epithelial-mesenchymal transition (EMT), and

chemokine signaling (37).

TGF-b is a cytokine that has a dual function; when the tumor is in

early stages it acts as a proliferation suppressor, arresting the cell cycle

and promoting apoptosis. In advanced stages of the tumor, it favors

the epithelial-mesenchymal transition (EMT). This last process favors

the change in cellular characteristics such as intercellular adhesion

molecules, which favors invasion and metastasis to other tissues.

TGF-b acts through its membrane receptors, allowing its

phosphorylation and downstream activation of the SMAD 2/3/4

system that targets the nucleus to regulate proliferation, immune

mediators, EMT and metastasis. This pathway becomes central in the

interrelation between epigenetic modifications and cytokines in GC

(59) and will be developed in subsequent sections.

Another cross-signaling pathway for the interrelation of

epigenetics and cytokines in GC is Chemokine receptor signaling.

Chemokines are part of the cytokine family, but they are

characterized by their function in promoting chemotaxis, that is,

they allow the trafficking of leukocytes to be directed towards the

tumor and its microenvironment. Chemokines activate receptors

found in membranes and are coupled to G proteins, which allows

the activation of downstream signaling of MAPK and PI3K in tumor

cells, which favors cell survival and proliferation. Additionally,

through a pathway independent of Protein G, chemokines activate

the JAK/STAT signaling pathway. This pathway is relevant since it

allows the regulation of transcription of genes related to

inflammation, allowing the cell to regulate itself through autocrine

signaling and promote their survival and resistance to drugs (60).

In this sense, activation of EMT and TGF-b in GC leads to

decreased T cell trafficking in tumors, modulation of angiogenesis,

and activation offibroblasts (61). In patients with GC positive forH.

pylori, efficient transcriptional activation of IL-8, CXCL1, and CCL5

has been observed in a histone protein demethylase-dependent

manner. Hence, it is implicated as an inducible epigenetic factor

under stress conditions and as a contributor to the dysregulation of

gastric TME and angiogenesis (38).

In addition, dysregulation of miRNA, such as miR-149 and miR-

204, also contributes to angiogenesis in GC. Hypermethylation of the

miR-149 promoter region in cancer-associated fibroblasts (CAF) is

related to H. pylori infection and the activation of Cyclooxygenase-2/

Prostaglandin E2 (COX-2/PGE2) signaling, regulating chronic

inflammation. PGE2 binds to prostaglandin E receptors and activates

downstream signaling pathways such as the b-catenin pathway, the

PI3K/AKT pathway, and the NF-kB pathway, which may promote

proliferation, survival, and regulation of the immune system. The
frontiersin.org
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COX-2/PGE2 pathway favors immune evasion of the tumor, which

stimulate not only cell survival, but also chemoresistance (62), resulting

in an increased secretion of IL-6 (39). Conversely, miR-204, when

overexpressed, inhibits NF-kB pathway-associated genes like IL-6 and
Frontiers in Immunology 05
IL-8 (40). NF-kB is a transcription-factor involved in cellular

immunity, inflammation, and stress. inflammatory responses, is one

of the most important molecules linking chronic inflammation with

cancer, and its activity is tightly regulated by several mechanisms. NF-
TABLE 1 Summary of epigenetic modification of cytokine in Gastric Cancer (GC) characteristics.

Gastric
Cancer
Characteristics

Epigenetic
modification

Gastric cancer model Cytokine
involved

Reference

Angiogenesis RNA modifications
N6-methyladenosine

GC patient’s dataset TGF-b (37)

Histone lysine
demethylase 4

MKN45 GC cell line infected with H.pylori IL-8/
CXCL1/
CXCL5

(38)

Dysregulation of
miR-149

Cancer-associated fibroblasts (CAFs) of GC, TME IL-6 (39)

Overexpression of
miR-204

GC patients dataset H.pylori – and + IL-6/IL-8 (40)

Progression
and metastasis

DNA
hypermethylation

GC cell lines MGC-803, BGC-823, SGC-7901. Primary GC tissues CXCL12 (41)

DNA
hypermethylation

GC cell lines AGS, SGC7901, BGC823, MGC803.
GC patients’ tissues

CXCL14 (42)

DNA
hypermethylation

GC cell lines AGS EBV- and +
Tissues from GC patients

IL-15Ra (43)

DNA Methylation Patients with early GC and patients with gastritis without GC SOCS3 (44)

DNA
hypermethylation

GC cell lines AGS, SNU-16, KATO III, MKN28 and MKN45.
Primary GC patient’s samples and adjacent non-cancer tissues

IL-6/SOCS1 (45)

DNA
hypermethylation

GC patients’ gastrectomy and non-GC subjects. H. pylori infection tested TGF-b1/IL-1b (46)

DNA
hypermethylation

GC patients with upfront gastrectomy SOCS1 (47)

Histone deacetylation GC cell lines SGC-7901, MKN-45, AGS and tumor samples from patients CXCR4/
CXCL12

(48)

Inhibition of miR-139 Gastric cancer cell lines (SGC-7901, MKN-45, AGS) and tumor samples
from patients

CXCR4/
CXCL12

(48)

Overexpression of
miR-17-5p

GC Cell lines SGC7901 and MKN28.
Patients’ samples from gastrectomy

SOCS6 (49)

Overexpression of
miR-370

Patients GC tumor tissues and blood TGF-b/
TGF-bRII

(50)

Dysregulation of miR-
BA5-5p

GC cell lines SNU601, SNU484, SNU216, and SNU719 IFN‐ß (51)

Overexpression
miR-922

GC cell lines SGC7901, MGC803, MKN45, and HGC-27.
Paracarcinoma tissue (>5 cm from the lesion), GC tissue

SOCS1 (52)

Chemoresistance Overexpression miR-
135b-5p

GC cell lines MKN45, SNU1 and SNU601.
Gastric tissue normal and GC samples

TNFa
(NF-kB)

(53)

Overexpression
miR-204

GC cell lines AGS, SGC-7901, MKN-45, MGC-803, and BGC-823.
GC tissue and their adjacent non-tumor mucosa from patients

TGF-bRII (54)

Hypomethylating
agent (5-aza-CdR)

GC cell lines OCUM-2M and MKN-74 TGF-bRI (55)

Supresión de DNMT1 GC cell lines AGS, NCI-N87, AZ521, HR, MKN45, and NUGC3. Normal
gastric epithelial cell line GES-1. Monocyte lymphoma cell line U937

CCL5/CCR5 (8)

LncARN
MACC1-AS1

GC cell lines (AGS, BGC803, BGC823, MKN45, SGC7901)
GC tissue samples from patients.

TGF-b1 (56)
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kB activation induces several target genes, such as proproliferative and

antiapoptotic genes, and NF-kB signaling crosstalk affects many

signaling pathways, including those involving STAT3, AP1,

interferon regulatory factors, NRF2, Notch, WNT–b-catenin and p53

(63, 64).

Angiogenesis in GC is influenced by epigenetic mechanisms,

such as DNA methylation, mRNA post-transcriptional

modifications, and miR regulation, underscoring the complexity

of the molecular events involved in this process.
4.3 Epigenetics and cytokine regulation in
GC progression and metastasis

GC progression and metastasis are critical aspects that arise

mainly due to the late diagnosis of the disease. The potential of

genetically unstable tumor cells to invade adjacent tissues and

migrate to distant organs is known as metastasis (65). This

process is associated with altered cell adhesion, cell motility,

invasion, resistance to cell death signals, basement membrane

disruption, and extracellular matrix (65).

In the context of epigenetics and cytokine regulation in GC

progression andmetastasis, it has been noted that epigenetic silencing

can influence the loss and imbalance in expression levels of the

chemokine CXCL12 and its receptor, CXCR4. Hypermethylation of

the CXCL12 promoter has been associated with inhibition of tumor

metastasis, and restoration of expression by methyltransferase

inhibitors has been shown to reverse this effect (41, 66). Using the

same methodology, Hu et al. proved that the chemokine CXCL14

could be involved in the development and progression of GC.

CXCL14 was reduced in GC tissues compared to normal tissues.

Abnormal hypermethylation of the promoter region in tumor tissue

is one of the mechanisms causing the reduction. Promoter

demethylation has been shown to restore CXCL14 expression,

correlating positively with the prognosis in stages III/IV (42).

TGF- b1 (anti-inflammatory cytokine) has biphasic effects on

tumorigenesis (67), acting as a tumor suppressor in the early stages

and promoting tumor progression in the late stages. Methylation of

the TGF-b1 promoter has been linked to the development of

various solid tumors, including GC. Wang et al. showed that high

methylation levels in patients with GC who test positive for H.

pylori are associated with the increase and production of

proinflammatory cytokines such as IL-1b (46).

Expression of suppressor of cytokine signaling-1 (SOCS1) prevents

the activation of the JAK/STAT signaling pathway (a pathway that

promotes tumor development) (68). Loss of SOCS1 expression through

promoter hypermethylation is strongly associated with the

overproduction of inflammatory cytokines such as TNF-a and IL-6

(69). This loss of expression contributes to the activation of the JAK/

STAT pathway and tumor progression; its demethylation restores

SOCS1 expression in GC and suppresses constitutive STAT3

phosphorylation (45), like what occurs with SOCS3 (44). In addition,

studies have shown that downregulation of SOCS1 by promoter

hypermethylation is related to infection by H. pylori and the

generation of inflammatory cytokines during gastric carcinogenesis (47).
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In the case of EBV-positive GC, cells expressed the interleukin IL-

15Ra receptor binds to IL 15 and allows the increase of natural killer

cells, in addition to the regulation of the JAK/STAT pathway and

thyrosine kinase pathways such as MAPK and PI3K (70), at a lower

level than EBV-negative cells due to promoter hypermethylation (43);

therefore, administration of IL-15 to stimulate immune responses

against cancer could be a promising strategy in GC.

In the context of epigenetic mechanisms associated with

miRNA in GC progression and metastasis, an interaction has

been found between human epidermal growth factor receptor 2

(HER2) is a central tyrosine kinase receptor in cancer development,

has epidermal growth factor (EGF) among its ligands and allows

activation of a series of downstream signaling pathways such as

MAPK, PI3K and PKC, influencing at the level of nuclear

transcription and modulating cell-cycle progression, proliferation,

and survival (71) and CD44 that contributes to metastasis by

deacetylating histones, which suppresses the transcription of miR-

139. This miR represses the chemokine receptor CXCR4, thereby

decreasing tumor invasion and growth (48). Treatment with

trastuzumab, a drug that inhibits HER2, has been shown to

restore CXCR4-associated miR-139 and reduce invasiveness (48).

Other miRs, such as miR-17-5p (49) and miR-370 (50), have

also been implicated in GC progression and metastasis by regulating

genes such as SOCS6 and TGF-b-RII, respectively. Reduced patient

survival has been linked to overexpression of miR-370, indicating

the potential significance of this biomarker (50).

miR-922, which has been found to be overexpressed in GC, targets

the SOCS1 gene and negatively regulates its expression by activating

the JAK and AKT pathways, promoting tumor cell proliferation and

motility. Conversely, downregulation of miR-922 increases SOCS1

expression and promotes the apoptosis of GC cells (52).

GC-associated EBV-encoded miRs, such as miR-BART6-3p,

have also been linked to the carcinogenesis and progression of

malignant neoplasms by suppressing IFN-b production and

targeting genes like retinoic acid-inducible gene I (RIG1) (51).

This activates a signaling cascade downstream and leads to the

production of type I interferons, proinflammatory cytokines (72),

and IL-6R (73), causing the immune system to deteriorate.
4.4 Epigenetics and cytokine regulation in
GC chemoresistance

Chemoresistance in GC can arise from inherent mechanisms

inside the tumor cell or can be acquired during treatment. Classic

mechanisms include abnormalities in cell membrane transporters,

increased DNA repair, reduced apoptosis, presence of tumor stem

cells, changes in detoxification enzymes, disorders in miR

regulation, development of EMT, and hypoxic conditions (74).

Components of the tumor microenvironment and cytokine

secretion also generate chemoresistance (75) (Table 1).

TGF-b acts as a tumor suppressor, but tumor cells can develop

resistance to its inhibitory effects. Hypermethylation of the TGF-

bRI receptor is associated with resistance to TGF-b function in GC

(76). Demethylation can increase TGF-bRI expression, suggesting a
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synergistic role with anticancer drugs. TGF-b is associated with

sensitivity to chemotherapy (55).

Tumor-associated macrophage (TAM) infiltration in GC tissues

is associated with high expression of DNMT1 (77). M2

macrophages upregulate DNMT1, and suppression of DNMT1

has antitumor effects related to the inhibition of CCR5

involvement stimulated by CCL5 (8). DNMT1 inhibition with 5-

AZA or the C-C chemokine receptor (CCR) antagonist (Maraviroc)

could be a therapy option with anti-inflammatory effect.

In resistance to cisplatin in GC, an H. pylori infection produces

high levels of inflammatory cytokines such as TNF-a (78) and

induces miR-135b-5p production by suppressing KLF4 (Kruppel-

like factor 4) is a transcription factor that regulates proliferation,

apoptosis, inflammation, and tumorigenesis, acting as a tumor

suppressor in gastrointestinal tumors (79). The repression of which

decreases apoptosis and increases drug resistance (53). In contrast,

miR-204 acts as a tumor suppressor, sensitizing GC cells to 5-FU by

suppressing the TGF-b-mediated EMT signaling pathway (54).

lncRNA also play a role in chemoresistance in GC. The

overexpression of the lncRNA MACC1-AS1 in GC tissues is caused

by TGF-b secreted by mesenchymal stem cells (MSC) through

immune response-associated SMAD 2/3 activation, which promotes

proliferation and chemoresistance by inhibiting miR-145-5p (56).
5 Epigenetic/immune target therapy
in GC

The main epigenetic modifications in CG that regulate cytokines

involve hypermethylation, which can lead to the repression of the

function of modulated genes. One of the primary executors of these

modifications is the DNA methyltransferase (DNMT) enzymes,

making them the targets in this therapy (80). Methylation is a

reversible process, and DNA methylation inhibitors were examined

as anti-tumoral agents to demethylate and reverse suppressed genes. 5-

azacytidine (azacytidine) (81) and 5-aza-2’-deoxycytidine (Decitabine)

(80) are two cytosine analogs acting as DNMT inhibitors, approved by

the Food and Drug Administration (FDA) as anti-tumor drugs in 2004

and 2006, respectively.

For GC, 5-azacitidine, has been used in administration as a

single therapy in preclinical trials with an in vivo gerbil model,

showing a decrease in global hypermethylation and the incidence of

GC (82). In the case of clinical trials, it has been administered as a

combination therapy of Azacytidine with capecitabine/epirubicin/

oxaliplatin (83).

In relation to histone modification, the therapy targets are

deacetylase enzymes. Deacetylase enzymes remove acetyl groups,

increasing the positive charge of histones and their affinity for DNA.

This increased binding condenses the chromatin structure,

preventing gene transcription. The epigenetic therapy is based on

using deacetylase enzyme inhibitors with drugs such as Vorinostat

(84), which is approved by the FDA.

For GC, valproic acid has been used in administration as a

single therapy in preclinical trials with in vivo model of xenograft

tumor in BALB/c nude mice showing suppression of cellular

proliferation and initiation of programmed cell death (85). On
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the other hand, clinical trials have been conducted using

combination therapy with Vorinostat in conjunction with

cisplatin and capecitabine (86).

In the case of miRNA, the main strategies for targeting miRNAs

are oligonucleotides inhibiting miRNA, miRNA sponges and inhibitors

in the form of small molecules. miRNAs can exhibit therapeutic

efficacy either alone or in combination with any drug. Combination

therapy has been documented to target a broader range of tumors,

induce therapeutic efficacy and overcome drug resistance (87).

The merging of immunotherapy and epigenetic medications has

gained prominence in cancer treatment research in recent years,

with the most notable being the fusion of immune checkpoint

blockade therapy and epigenetics. For instance, azacytidine

demonstrated the ability to increase the expression of the PD-L1

gene both at the transcriptional level and directly on the cell surface

in an in vitromodel of lung cancer cells. Recognizing the application

of epigenetic therapies in checkpoint inhibitor therapy could

enhance immune responses more effectively (88).

6 Conclusion

When establishing the link between epigenetic regulation and

inflammation or immune response, the importance of the

epigenetic target as a crucial player in therapy is emphasized.

Controlling this factor enables the direct or indirect regulation of

the immune response. Epigenetic alterations, especially DNA

hypermethylation, affect key genes and pathways associated with

immune response, influencing angiogenesis essential for tumor

growth and metastasis in GC progression. In GC progression and

metastasis, epigenetic silencing influence, for example, the

expression of chemokines like CXCL12 and its receptor, CXCR4.

Examining epigenetic mechanisms in GC chemoresistance reveals

the involvement of TGF-b, tumor-associated macrophages, and

specific miRNAs in influencing chemotherapy response. The

comprehension of the epigenetic and cytokine landscape in GC

provides valuable insights for developing targeted therapies. The use

of DNA methyltransferase and histone deacetylase inhibitors

emerges as a promising therapeutic approach in GC.
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