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Untranslated regions (UTRs) are
a potential novel source
of neoantigens for
personalised immunotherapy
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Benjamin S. Simpson1, Georges Bedran2, Javier Alfaro2,3,4

and Kevin Litchfield1*

1Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer
Institute, London, United Kingdom, 2International Center for Cancer Vaccine Science, University of
Gdansk, Gdansk, Poland, 3Department of Biochemistry and Microbiology, University of Victoria,
Victoria, BC, Canada, 4Institute for Adaptive and Neural Computation, School of Informatics,
University of Edinburgh, Edinburgh, United Kingdom
Background: Neoantigens, mutated tumour-specific antigens, are key targets of

anti-tumour immunity during checkpoint inhibitor (CPI) treatment. Their

identification is fundamental to designing neoantigen-directed therapy. Non-

canonical neoantigens arising from the untranslated regions (UTR) of the

genome are an overlooked source of immunogenic neoantigens. Here, we

describe the landscape of UTR-derived neoantigens and release a

computational tool, PrimeCUTR, to predict UTR neoantigens generated by

start-gain and stop-loss mutations.

Methods: We applied PrimeCUTR to a whole genome sequencing dataset of

pre-treatment tumour samples from CPI-treated patients (n = 341). Cancer

immunopeptidomic datasets were interrogated to identify MHC class I

presentation of UTR neoantigens.

Results: Start-gain neoantigens were predicted in 72.7% of patients, while stop-

loss mutations were found in 19.3% of patients. While UTR neoantigens only

accounted 2.6% of total predicted neoantigen burden, they contributed 12.4% of

neoantigens with high dissimilarity to self-proteome. More start-gain

neoantigens were found in CPI responders, but this relationship was not

significant when correcting for tumour mutational burden. While most UTR

neoantigens are private, we identified two recurrent start-gain mutations in

melanoma. Using immunopeptidomic datasets, we identify two distinct MHC

class I-presented UTR neoantigens: one from a recurrent start-gain mutation in

melanoma, and one private to Jurkat cells.
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Conclusion: PrimeCUTR is a novel tool which complements existing neoantigen

discovery approaches and has potential to increase the detection yield of

neoantigens in personalised therapeutics, particularly for neoantigens with high

dissimilarity to self. Further studies are warranted to confirm the expression and

immunogenicity of UTR neoantigens.
KEYWORDS
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PrimeCUTR, immunopeptidomics
1 Introduction

Neoantigens arise from mutated proteins which can be

processed and expressed on the surface of cancer cells, forming

key targets in anti-tumour immunity. The success of checkpoint

inhibitor (CPI) immunotherapy, particularly in tumours with a

high mutational burden (as a proxy of neoantigen load), has

spurred interest in the identification of the underlying

neoantigens (1, 2). Early studies found neoantigens predicted

from somatic mutations could stimulate patient-derived CD8+ T-

cells, and were associated with response to CPI treatment (3–6).

Furthermore, small studies demonstrating the ability of neoantigen-

specific T cells to induce tumour regression hinted at the promise of

neoantigen-directed therapy (7–9). More recently, neoantigen

vaccine trials have demonstrated vaccine-induced T cell

expansion, and evidence of durable disease response in some

patients (10–13). Thus, these cancer-specific antigens represent an

important target in development of personalised immunotherapy.

Traditional approaches to neoantigen identification have

typically involved sequencing the protein-coding regions of the

cancer genome for missense or insertion-deletion mutations,

fol lowed by HLA-binding prediction and neoantigen

prioritisation (14). This may yield hundreds to thousands of

putative neoantigens, but only a small fraction appear to

contribute to immune responses (6, 7, 15). In a combined effort,

the Tumour Neoantigen Selection Alliance (TESLA) global

consortium identified 608 top-ranked neoantigens in 6 solid

cancer samples, of which only 37 (6%) could be recognised by

matched patient T cells (16). Likewise, approaches to identify

predicted neoantigens in cancer immunopeptidomes have had

limited yield (6, 17). Additionally, certain tumour types such as

neuroblastoma and pancreatic adenocarcinoma bear an inherently

low mutational burden, reducing the pool of candidate neoantigens

(18). Further obstacles to immune recognition include immune-

exclusion, immunosuppressive microenvironment, variable gene

expression, mRNA quality control pathways (e.g. nonsense-

mediated decay), and intra-tumoural heterogeneity (14, 19). To

date, no personalised neoantigen-directed therapies have emulated

the clinical response rates or widespread regulatory approval of

CPI treatment.
02
Given the attrition of candidate neoantigens through the

discovery process, expanded neoantigen search strategies are

essential to capture the breadth of neoantigens to direct

therapeutic design. Various studies have demonstrated the

presentation on MHC class I of non-canonical/cryptic peptides

arising from ostensibly non-coding regions or alternative reading

frames (20–23). The majority of these studies focus on non-mutated

peptides which are not necessarily cancer-specific, increasing the

likelihood self-tolerance. In this study, we present a novel R

package, PrimeCUTR, which identifies candidate neopeptides in

the 5’ and 3’ untranslated region (UTR) of genes generated by

premature start-gain and stop-loss mutations respectively. Start-

gain mutations create novel open reading frames (neoORFs)

through the generation of novel upstream start-codons (uAUG)

within the 5’UTR region of an mRNA transcript (Figure 1A).

Meanwhile, stop-loss mutations which convert the stop codon

into a sense codon, theoretically result in read-through of the

3’UTR following the canonical peptide sequence. We describe

how these neoantigens contribute to the immune landscape of

cancer. To our knowledge, this is the first publicly available tool

to predict these UTR neoantigens.
2 Methods

2.1 Cohort

355 patients with metastatic cancer who received CPI treatment

were selected from the Hartwig Medical Cohort for analysis of pre-

treatment somatic tumour mutation calls in conjunction with

clinical response data. Of these, 341 patients had HLA typing

data available and were included in this study. This cohort

consisted of patients with melanoma (n = 153), lung cancer (n =

69), bladder cancer (n = 58), renal cancer (n = 20) and other cancers

(n = 41). Corresponding whole genome sequencing (WGS) somatic

mutation data was obtained in Variant Call Format (VCF) via

Hartwig Medical Foundation data access request (license agreement

DR-087). These VCFs files were generated by the Hartwig Medical

Foundation and received aligned to GRCh37 (25). Variants were

filtered to include only those with a PASS flag. Based on RECIST1.1
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criteria treatment response data, patients with a complete or partial

response were classified as CPI responders while those with stable

or progressive disease were classified as CPI non-responders. While

stringent, this grouping is concordant with published

immunotherapy biomarker validation studies (26, 27). Median

neoantigen burden was compared between responding and non-

responding groups using the Wilcoxon signed-rank test.

Multivariable logistic regression was used to assess this

relationship while correcting for tumour mutational burden

(TMB). TMB was defined as number of mutations per megabase

(mut/MB).
2.2 Identifying start-gain and stop-
loss neoantigens

Start-gain mutations were defined as any single-nucleotide

variant (SNV) or short insertion-deletion which resulted in a new

ATG codon in the upstream 5’UTR region of a transcript (uAUG).

All uAUG-forming mutations in 5’UTR sequences from all

Ensembl-annotated protein coding transcripts were included in
Frontiers in Immunology 03
the neoantigen prediction. The relevant reference genome

(GRCh37 or GRCh38) was used depending on the prior

alignment of the somatic mutation calls. Reading 5’ to 3’, in silico

translation of the cDNA sequence, beginning from the uAUG was

performed until a stop codon (TAA, TAG or TGA) was reached.

Stop-loss mutations were defined as any SNV which altered the

annotated stop codon of a transcript into a sense codon. In this case,

in silico translation is continued from the new sense codon until a

stop codon is reached. Open reading frames from insertion-deletion

mutations were obtained similarly according to the preceding

reading frame. In rare cases where no stop codon is reached

within the transcript, the alternate reading frame (from a start-

gain, stop-loss or insertion-deletion mutation) is read through to

the mRNA poly-A tail, resulting in a poly-lysine sequence (28).

Protein-coding SNVs, dinucleotide variants (DNVs), and small in-

frame insertion-deletions are grouped as missense mutations. In

this report, missense and frameshift mutations refer specifically to

mutations occurring in the protein-coding regions of the genome.

All neopeptides were processed using a sliding window to

generate 9-, 10- and 11-mers which included at least one

mutated/frameshifted residue (Figure 1A). These peptides were
B

C

A

FIGURE 1

Schematic overview of this study. (A) PrimeCUTR accepts annotated somatic variant calls in Variant Call Format (VCF) files and returns an output of
predicted neopeptides which can be used for downstream MHC class I binding assessment (netMHC inputs). Two example neopeptides are shown
(left – start-gain, right – missense) depicting the sliding window processing step to generate 10-mer netMHC inputs. CDS - coding sequence. (B)
UTR neoantigens were predicted in a whole genome sequencing (WGS) dataset and assessed for relationship with radiological response to CPI
therapy. (C) Cell line whole exome sequencing (WES) data was obtained for prediction and identification of MHC class I- presented UTR
neoantigens. Neopeptides were screened against COD-dipp, a database of mass spectrometry (MS)-identified canonical and non-canonical MHC
class I antigens (24). Tumour and petri dish illustration adapted from Servier https://smart.servier.com/ and licensed under CC-BY 3.0. Radiological
response icon is adapted from images courtesy of Bruno Di Muzio, Radiopaedia.org, rID: 65164.
frontiersin.org

https://smart.servier.com/
https://doi.org/10.3389/fimmu.2024.1347542
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sng et al. 10.3389/fimmu.2024.1347542
then assessed for predicted MHC class I binding strength, using the

pVACtools suite (version 3.1.1) to run pVACbind with the

netMHCpan algorithm (29, 30). Peptides binding with an IC50 of

less than 500 nMwere reported as neoantigens. This widely adopted

threshold is consistent with previous work showing that most MHC

class I ligands bind below this affinity (31, 32). Start-gain neoORFs

overlapping in-frame with coding sequences of other isoforms were

excluded by removing any reported neoantigens with exact matches

in the canonical human proteome.
2.3 Neoantigen dissimilarity

Neoantigen dissimilarity from the self-proteome (dissimilarity

score) and neoantigen homology to known immunogenic epitopes

from Immune Epitope Database (foreignness score) were calculated

using the foreignness_score and dissimilarity_score functions in

antigen.garnish 2 (https://github.com/andrewrech/antigen.garnish

accessed 16th October 2023, (33)) with default parameters.

Neoantigens were considered highly dissimilar based on a

dissimilarity score of >0.7, and highly foreign with a cut-off

foreignness score of >0.75. These cutoffs were selected based on

natural breaks in the distribution of scores (Supplementary

Figures 1B, C).
2.4 Mutational signature extraction

Mutational signatures were extracted for each tumour sample

using DeconstructSigs (34) yielding the relative contribution of

mutational processes per tumour sample (COSMIC v.1.0) (35). To

obtain a score per cancer group, samples were grouped by type and the

relative contribution of each mutational signature was averaged across

samples. COSMIC mutational profiles (v1.0) were downloaded from

https://cancer.sanger.ac.uk/signatures/downloads/ (accessed 16th

September 2023). To assess the probability of start-gain formation

for a given mutational signature, all non-overlapping 5’UTR sequences

in the human genome were obtained from Ensembl (GRCh38

Ensembl release 109). For each given COSMIC mutational signature

profile, the probability of each unique single base substitution (SBS)

was multiplied by the number of 5’UTR sites where such a substitution

lead to uAUG formation, divided by the total number of 5’UTR sites

where the substitution could occur. The probabilities of start-gain

formation for each of the 96 SBS were then summed to give a

probability of start-gain formation for each mutational signature.
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2.5 Mass spectrometry (MS) validation

We identified 13 cell lines with whole exome sequencing (WES)

data in the Cancer Cell Line Encyclopedia (CCLE, https://

depmap.org/portal/download/all/ accessed 24th May 2023) which

had paired immunopeptidomic sequencing (Supplementary

Table 1A). CCLE somatic mutations were downloaded aligned to

GRCh38. Somatic mutation calls, aligned to GRCh37, from 4

melanoma patient samples were obtained from Bassani-Sternberg

et al. (6). PrimeCUTR was used to predict start-gain, stop-loss and

frameshift neopeptides from the somatic mutation calls of each of

these 17 tumour/cell line samples. In the first validation step,

neoORF peptides were compared to a non-canonical MHC-

associated peptide database (Closed Open De novo – deep

immunopeptidomics pipeline (COD-dipp)) generated from MS

analysis (24). As a second validation step, Fragpipe version 19.1

(36) was used to performed independent proteogenomic MS

database search by appending the neopeptides to the normal

protein database as described previously (24). Ion, PSM and

peptide-level false discovery rates were set at 1%.
2.6 Translation initiation site prediction

Web-based TIS prediction algorithms, TISRover (37, http://

bioit2.irc.ugent.be/rover/tisrover) and TIS Transformer (38, https://

jdcla.ugent.be/) were used to assess the likelihood of translation

initiation of start-gain neoORFs. The cDNA sequence for the

mutant transcripts were uploaded in FASTA format for analysis

using default settings.
3 Results

3.1 Inferring UTR neoantigens from cancer
mutation data

PrimeCUTR accepts somatic mutation VCF data annotated by

Ensembl Variant Effects Predictor (VEP) (39) or the Hartwig

Medical Foundation variant calling pipeline (25) (Figure 1A).

VEP annotates mutation consequence per given gene transcript,

providing necessary information for PrimeCUTR to classify

mutations into missense, frameshift, 5’UTR variant and stop-loss.

All 5’UTR variants are checked for start-gain formation (as of v111,

VEP does not annotate start-gain variants), while all SNVs arising
TABLE 1 Predicted neoantigens by mutation class.

Class Mutations (n) Neoantigens (n) Neoantigens
per mutation

High foreignness
neoantigens (n)*

High dissimilarity
neoantigens (n)*

Missense 64424 177670 2.76 16438 (9.3%) 1137 (0.6%)

Frameshift 2694 17254 6.40 2155 (12.5%) 1302 (7.5%)

Start-gain 772 4701 6.09 542 (11.5%) 310 (6.6%)

Stop-loss 95 563 5.93 56 (10.0%) 34 (6.0%)
*Percentages expressed as a proportion of total neoantigens in each given mutation class.
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in the final codon of protein coding transcripts are additionally

checked for stop-loss regardless of VEP annotation. The get.peptide

function can be used interactively in R to predict the resulting

neopeptide from pairs of Ensembl transcript ID and Human

Genome Variation Society (HGVS) coding DNA sequence variant

nomenclature provided by VEP. The get.orfs function accepts whole

VCF files producing three outputs: (1) tab-separated files

containing neopeptides per mutation class per sample (see

Supplementary Tables 1B–E for example output), (2) FASTA-

format text files containing 9, 10 and 11-mers which include at

least one mutated/frameshifted residue, (3) relevant log files. get.orfs

also returns neopeptides with normal flanking residues extending to

the next up- or downstream trypsin cleavage site with or without a

missed cleavage, allowing seamless integration of PrimeCUTR

output into a proteomic search pipeline. The 9,10 and 11-mer

FASTA files can be fed directly to MHC-binding prediction

algorithms for neoantigen prediction. Additionally, for start-gain

mutations, get.peptide scores start-gain Kozak consensus sequence

strength (weak, moderate or strong – see Whiffin et al. (40)),

estimates overlap with wild-type open reading frames, and flags

potential in-frame overlap with protein coding sequences, allowing

rapid screening of the most promising neopeptides. Further details

on installation, usage and output of the PrimeCUTR R package,

including a tutorial and example datasets can be found at https://

github.com/christophersng/primeCUTR.
3.2 Incidence of UTR neoantigens

We applied PrimeCUTR and netMHCpan to pre-treatment

cancer WGS samples from the Hartwig Medical Foundation to

identify the contribution of the different mutation classes to the
Frontiers in Immunology 05
neoantigen landscape in patients who received CPI treatment (n =

341) (Figure 1B). Across the cancer types, the majority of predicted

neoantigens with MHC binding (IC50 < 500 nM) arose from

missense mutations (SNVs, DNVs, in-frame indels, total 177670,

88.8%), while frameshift, start-gain and stop loss mutations

contributed 17254 (8.6%), 4701 (2.3%) and 563 (0.3%)

respectively (Table 1). Among cancer types, lung cancer had the

highest burden of mutations and neoantigens in all mutation classes

(Figure 2A). Start-gain neoantigens were predicted in 72.7% of

patients across cancer types, with a median of 5 unique neoantigens

per patient (range 0-237) while stop-loss neoantigens were

predicted in only 19.3% of patients (Figure 2B). By comparison,

frameshift mutations were predicted in 88.9% of patients. Overall,

frameshift, start-gain and stop-loss mutations generated neoORFs

of similar lengths (median: 19 versus 20 versus 17 amino acid

residues respectively). Although rarer, start-gain mutations

generated significantly more neoantigens per mutation than

missense mutations (median: 3 versus 2, mean: 6.09 versus 2.76,

adjusted p-value < 2×10-16) (Table 1 and Figure 2C).

Given the translation of neoORFs, we hypothesised start-gain

and stop-loss mutations would be more distinct from the self-

proteome. Previously, Richman et al. (33) demonstrated that

neoantigens with high dissimilarity from the self-proteome, as

well as high homology to known immunogenic peptides from

Immune Epitope Database (foreignness score) were correlated

with measures of immunogenicity. Using the same approach (see

Methods), we found that frameshift, start-gain and stop-loss

neoantigens were approximately 10 times more likely to have

high dissimilarity compared to missense mutations (Table 1).

Therefore, across the cohort, while UTR neoantigens only

accounted for 2.6% of predicted neoantigens, they comprised

12.4% of high dissimilarity neoantigens (Supplementary Figure 1A).
B C

D
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FIGURE 2

Incidence of neoantigens by class and cancer type. (A) Predicted frameshift, start-gain and stop-loss neoantigen count by cancer type. (B) Relative
incidence of neoantigens across the patient cohort binned by neoantigen count. Values in the middle of each bar represent the median neoantigen
count per patient. (C) Number of neoantigens generated per mutation segregated by class. Diamonds indicate mean values. (D) Proportion of UTR
neoantigens by cancer type with pairwise comparison using Wilcoxon Rank Sum tests with Benjamini-Hochberg correction. Only significant values
are indicated in plots (C, D). ****, p ≤ 0.0001.
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Most UTR neoORFs were private: Only 2 start-gain mutations

and no stop-loss mutations were shared by 3 or more patients. The

two recurrent start-gain mutations occurred exclusively in

melanoma samples: RPL8; ENST00000262584:c.-94G>A (7

patients, 4.6%) and DCAF7; ENST00000310827:c.-207G>A (3

patients, 2.0%). They respectively produced neoORFs 54 and 58

amino acid residues long, and were predicted to generate multiple

patient-specific HLA binding neoantigens (Supplementary

Tables 2A–C). These recurrent mutations were identified in an

independent melanoma WGS cohort (41), where 6 patient samples

(3.3%) had RPL8; ENST00000262584:c.-94G>A and 1 patient

sample had DCAF7; ENST00000310827:c.-207G>A. Neither

variant was reported in dbSNP, The Cancer Genome Atlas

or gnomAD.
3.3 Start-gain incidence by
mutational signature

All neoantigen classes were correlated with TMB

(Supplementary Figure 2A). Interestingly, despite having a

median TMB comparable to lung cancer (16.2 versus 16.4 mut/

MB, Supplementary Figure 2B), melanoma showed significantly

lower relative UTR neoantigen burden (0.8%) compared to lung

(3.5%; corrected p-value = 4.9×10-8) and bladder (3.2%, corrected p-

value = 4.8×10-6) malignancies (Figure 2D). This primarily reflected

the lower relative incidence of start-gain mutations in melanoma.

Given the majority of start-gain mutations arose from SNVs

generating a new AUG codon in the 5’UTR, we hypothesised that

the underlying single base substitution (SBS) mutational signature

could explain the differences in relative start-gain mutation

frequency between cancer types. We aggregated the probabilities

of uAUG formation in all unique 5’UTR sequences of the human

genome for every given 96 SBS mutational signature (COSMIC v1,

35) (Figure 3). This showed that mutational signatures linked to

aging (1A/B), smoking (4), DNA mismatch repair (6, 14, 15, 20, 21)

and POLE mutation (10, 14) favoured the formation of start-gain

mutations (42). Meanwhile, ultraviolet (UV)-related mutational

signature 7 strongly suppressed the likelihood of start-gain

formation, explaining the relative sparsity of start-gain

neoantigens in melanoma.
3.4 Response to checkpoint
inhibitor immunotherapy

As described above, UTR neoantigens generate proportionally

more neoantigens with a high dissimilarity from the self-proteome

and thus may be a more potent immune target. We therefore assessed

whether UTR neoantigen load was associated with response to CPI

treatment. In univariate analysis, CPI responders had significantly

higher missense and start-gain neoantigens (Supplementary Figure 3).

Missense mutations are closely linked to TMB, an established marker

of CPI response (2). The significant association of start-gain

neoantigens and CPI response was not maintained in multivariable

logistic regression when accounting for TMB (p-value = 0.8).
Frontiers in Immunology 06
3.5 Immunopeptidomic discovery

In order to demonstrate the expression of UTR neoantigens on

MHC class I, we screened the UTR neopeptides against COD-dipp,

a database of MS-identified canonical and non-canonical MHC

class I antigens (24). 48 UTR neoORFs were predicted in 12 out of

17 studied cell lines from somatic mutation data (Supplementary

Table 1A). Among these, one candidate UTR neoantigen, peptide

ILLNFSTTTK, was identified in COD-dipp, matching a neoORF

from a private start-gain mutation (OAT; ENST00000539214:c.-

61C>T) in the Jurkat cell line (Supplementary Table 1D, row 40).

This was further confirmed with high-confidence using

independent proteogenomic MS database search of two Jurkat

immunopeptidome replicates (Figure 4A). ILLNFSTTTK was

identified in 7 and 8 different spectra in each replicate

respectively, but not in any other cell line nor in the normal

immunopeptidome. Of the known HLA alleles for Jurkat (43),

MHC-binding prediction with netMHCpan showed that

ILLNFSTTTK binds strongly to HLA-A*03:01 (17.13 nM).

However, we noted that ILLNFSTTTK is also overlapped by a

wild-type upstream open reading frame (uORF) beginning at

position -46 (Figure 4B). While the wild-type uORF is not

previously described in a repository of wild-type RIBO-Seq

identified uORFs (www.sorfs.org, accessed 26th April 2023) (44),

the origin of ILLNFSTTTK from this uORF could not be excluded.

To investigate the origin of translation of ILLNFSTTTK, we used

TISRover to compare the likelihood of translation of the wild-type

and mutant uORF (37). TISRover appeared to favour the mutant

start-gain uORF (score: 9.2×10-5) over the wild-type uORF (score:

1×10-6) as a translation initiation site (TIS), although both scored

lower than the canonical start codon (score: 2.8×10-2) (Figure 4C

and Supplementary Table 1F). One study used a TISRover score

cut-off of 0.1 to annotate translation initiation sites (45). Another

TIS prediction algorithm, TIS Transformer, did not annotate either

the wild-type or mutant uORFs as potential TIS (38).
B

A

FIGURE 3

(A) Probability of start-gain formation based on COSMIC v1
mutational signature. The red dashed line indicates the probability of
start-gain formation given a neutral mutational signature. (B)
Heatmap of relative composition of mutations attributable to a given
mutational signature averaged within each cancer group. Proposed
aetiologies for the mutational signatures include: aging (1A/B),
smoking (4), DNA mismatch repair (6, 14, 15, 20, 21), POLE mutation
(10,14) and UV (7) (35, 42).
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Separately, we searched for the presence of the recurrent start-gain

neoORFs RPL8; ENST00000262584:c.-94G>A and DCAF7;

ENST00000310827:c.-207G>A within melanoma immunopeptidome

datasets in the COD-dipp database. This identified peptide

SAALVNRTR, which matched the RPL8; ENST00000262584:c.-

94G>A neoORF, exclusively in the immunopeptidome of one

patient-derived melanoma within all three replicate samples.

SAALVNRTR was found to have strong patient-specific HLA

binding to HLA-A*68:01 (Supplementary Table 2D). No peptides

corresponding to RPL8; ENST00000262584:c.-94G>A were found in

10 healthy skin immunopeptidome datasets. SAALVNRTR had also

been predicted from genomic data in our primary patient cohort

(Supplementary Table 2B). In contrast to ILLNFSTTTK, this neoORF

had no overlap with wild-type uORFs or coding regions. TISRover and

TIS Transformer both verified the mutant uORF as a viable translation

initiation site (Supplementary Tables 2E, F).

Taken together, this evidence supports the translation and

expression of the start-gain neoORFs in a tumour-specific manner.
4 Discussion

In this study, we present PrimeCUTR, an open-source R

package to identify UTR start-gain and stop-loss neopeptides
Frontiers in Immunology 07
from tumour somatic mutation calls. PrimeCUTR is applicable to

WGS data as well as WES data (albeit limited by UTR coverage).

PrimeCUTR is easily incorporated into any bioinformatic

neoantigen discovery workflow and is scalable to the processing

of large datasets via a high-performance computing cluster.

Using PrimeCUTR, we show that UTR neoORFs occur

frequently across different subtypes of cancer, yielding a previously

overlooked source of neoantigens. Like frameshift mutations, when

compared to missense mutations, start-gain and stop-loss mutations

yield more than double the neoantigens per given mutation.We show

that start-gain mutation frequency is influenced by background

mutational signature, being favoured in MMR deficiency

(Signatures 6, 14, 15, 20 and 21) or POLE mutations (Signatures 10

and 14) which can be found in colorectal and endometrial cancers, as

well as age (Signature 1A/B) and tobacco smoking (Signature 4) (42).

Signature 8, of unconfirmed aetiology but previously observed in

cancers including breast cancer, is also associated with start-gain

mutation formation. Meanwhile, UV exposure (Signature 7)

suppresses the formation of start-gain mutations in melanoma,

although this is offset by the higher overall mutational burden in

melanoma. Prevailing mutational signatures for a given cancer type

may therefore guide whether personalised neoantigen profiling

strategies should use extended UTR coverage sequencing approaches.

Previous studies have demonstrated that neoantigen dissimilarity

from the self-proteome is an important predictor of immunogenicity

and immunoediting (33, 46). In our analysis, frameshift and UTR

neoantigens were found to be more dissimilar to the self-proteome

than missense neoantigens and thus enriched amongst the pool of

highly dissimilar neoantigens. As the cognate T cells of UTR

neoantigens are less likely to have been subject to central

mechanisms of tolerance, they represent a promising target for

boosting anti-tumour immunity, while minimising off-target effects.

Studying 17 cell lines with paired somatic mutation and

immunopeptidomic data, we identified one MHC class I-

presented UTR neoantigen, ILLNFSTTTK, which matched a

predicted private start-gain neoORF (OAT; ENST00000539214:c.-

61C>T) in the Jurkat cell line. This peptide, along with its associated

start-gain mutation was exclusive to Jurkat cells. This paired-

discovery approach was limited by the fact that the cell line

mutation data was derived from WES. Commonly used WES kits

only cover up to 20% of UTR bases (47). Taking a more general

approach, we searched for expression of recurrent UTR neoantigens

within large immunopeptidomic datasets. From our primary WGS

patient cohort, we identified a recurrent start-gain neoORF (RPL8;

ENST00000262584:c.-94G>A) in 7 patients with melanoma, which

was validated in 6 patient samples from an independent melanoma

WGS cohort (41). This identified a further UTR neoantigen,

SAALVNRTR, in one patient which exactly matched the RPL8;

ENST00000262584:c.-94G>A neoORF (Supplementary Table 2D).

Current MS approaches detect only a small fraction of

expressed peptides, compounding our limited identification of

UTR neoantigens. Cuevas et al. (48) found that only 0.44% of

non-canonical translation events (including uORFs within the

5’UTR) were detected by MS. Nevertheless, this is, to our

knowledge, the first immunopeptidomic discovery of start-gain

UTR neoantigens.
B

C

A

FIGURE 4

Immunopeptidomic discovery of a start-gain neoantigen. (A)
Representative MS2 spectrum of ILLNFSTTTK. (B) Representation of
codons in the mutated 5’UTR sequence in transcript
ENST00000539214 containing the start-gain c.-61C>T (red), as well
as the predicted neopeptide (second row). A wild-type uAUG is also
highlighted (yellow). (C) Visualisation of TISRover output from the
5’UTR section in which each bar represents a TISRover score for
a uAUG.
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In the patient cohort, we found that UTR neoantigen burden

was not significantly associated with CPI response when correcting

for TMB. However, the significant disparity between predicted

neoantigens and those able to elicit immune responses (6, 7, 15–

17) suggests CPI response is driven by a small but important

fraction of neoantigens. Prioritisation of these neoantigens for

therapy remains a technical and biological challenge: beyond

MHC class I binding affinity and dissimilarity, factors such as

intratumoural heterogeneity, RNA expression, and location within

the protein sequence all influence expression and immunogenicity

(14, 49). The expression of uORFs (and start-gain mutations) is also

governed by the sequence context of the translation initiation site.

Given the current limitations of immunopeptidomic validation,

incorporation of translation initiation prediction algorithms will be

critical to support the prioritisation of UTR neoantigens (37, 38).

While our computational approach has yielded two promising

candidates for expressed UTR neoantigens, validation of MS

spectra with synthetic peptides was not done due to limited

access to the identical MS instrumentation utilised across the

diverse source datasets. Further studies with paired whole genome

and immunopeptidomic analysis of patient tumour samples, as well

as T cell reactivity assays are ultimately needed to confirm the

expression and immunogenic potential of UTR neoantigens. In

summary, we describe a computational tool to study the

contribution of UTR neoantigens to the immune landscape of

cancer with the potential to boost neoantigen search strategies for

personalised immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) Proportion of neoantigens originating from different mutation classes,

stratified by neoantigen quality metrics. High binding neoantigens were those

with predicted IC50 <50nM. Histogram of (B) foreignness scores and (C)
dissimilarity scores for all neoantigens. High foreignness (>0.75) and high

dissimilarity thresholds (>0.7) indicated by red bars.

SUPPLEMENTARY FIGURE 2

(A) Correlation matrix of neoantigen count and tumour mutational burden

(TMB). (B) TMB values by cancer type.

SUPPLEMENTARY FIGURE 3

Univariate analysis of CPI response based on (A) missense, (B) frameshift, (C)
start-gain or (D) stop-loss neoantigen count.
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