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Decoding the tumor
microenvironment and
molecular mechanism:
unraveling cervical cancer
subpopulations and prognostic
signatures through scRNA-Seq
and bulk RNA-seq analyses
Zhiheng Lin1‡, Xinhan Li1‡, Hengmei Shi2‡, Renshuang Cao3,
Lijun Zhu4, Chunxiao Dang1, Yawen Sheng1, Weisen Fan1,
Zhenghui Yang5*† and Siyu Wu6*†

1Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China, 2Department of
Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and
Child Health Care Hospital, Nanjing, Jiangsu, China, 3Wangjing Hospital of Chinese Academy of
Chinese Medical Sciences, Beijing, China, 4Longhua Hospital of Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 5Zunyi Medical University, Zhuhai, Guangdong, China,
6Department of Gynecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong
University, Qingdao, China
Background: Cervical carcinoma (CC) represents a prevalent gynecological

neoplasm, with a discernible rise in prevalence among younger cohorts

observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of

CC remains inadequately investigated.

Methods: We utilized single-cell RNA sequencing (scRNA-seq) transcriptomic

analysis to scrutinize the tumor epithelial cells derived from four specimens of

cervical carcinoma (CC) patients. This method enabled the identification of

pivotal subpopulations of tumor epithelial cells and elucidation of their

contributions to CC progression. Subsequently, we assessed the influence of

associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and

performed cellular experiments for validation purposes.

Results: Through our analysis, we have discerned C3 PLP2+ Tumor Epithelial

Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC),

exerting a pivotal influence on the differentiation and progression of CC. We

have established an independent prognostic indicator—the PLP2+ Tumor EPCs

score. By stratifying patients into high and low score groups based on themedian

score, we have observed that the high-score group exhibits diminished survival

rates compared to the low-score group. The correlations observed between

these groups and immune infiltration, enriched pathways, single-nucleotide

polymorphisms (SNPs), drug sensitivity, among other factors, further

underscore their impact on CC prognosis. Cellular experiments have validated

the significant impact of ATF6 on the proliferation and migration of CC cell lines.
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Conclusion: This study enriches our comprehension of the determinants

shaping the progression of CC, elevates cognizance of the tumor

microenvironment in CC, and offers valuable insights for prospective CC

therapies. These discoveries contribute to the refinement of CC diagnostics

and the formulation of optimal therapeutic approaches.
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Introduction

Cervical carcinoma (CC) ranks as the fourth most prevalent

malignancy and represents a leading contributor to global female

cancer-related mortality (1). In both incidence and mortality

profiles, CC consistently maintains a prominent status among the

most prevalent cancer types worldwide in women, trailing behind

only breast cancer, colorectal cancer, and lung cancer (2). Despite

the substantial preventive potential provided by efficient screening

and vaccination initiatives against CC, vaccination uptake remains

notably deficient, with only a minority of women accessing

comprehensive healthcare services (3). Consequently, the

mortality rate for advanced-stage CC patients remains elevated,

with a median survival period of a mere 16.8 months (4), and an

average 5-year survival rate of 72% (5). Due to chemotherapy

resistance, the current efficacy of chemotherapeutic agents is

limited, exhibiting a response rate ranging from 29% to 63% (6).

Standard care for CC presently encompasses radiotherapy,

chemotherapy, or surgical resection. However, these approaches

entail significant side effects, possess limited efficacy for advanced-

stage diseases, and offer few treatment alternatives for cases of

recurrence or metastasis (7). Although some treatments targeting

advanced or recurrent CC, such as anti-angiogenesis and

immunotherapy, exist, their response rates remain suboptimal (8).

Given the low cure rates for advanced-stage diseases and the adverse

effects associated with current therapies, there is an urgent need to

provide new treatment options for CC patients.

To comprehend CC, it is imperative to initially comprehend the

tumor microenvironment (TME) within which CC tumors arise

and proliferate. The tumor microenvironment, consisting of diverse

cellular components such as fibroblasts, endothelial cells (ECs), and

immune cells, in conjunction with extracellular constituents

including cytokines, hormones, extracellular matrix, and growth

factors, constitutes an intricate network enveloping CC cells. The

TME plays a pivotal role not only in the initiation, progression, and

metastasis of CC but also profoundly influences therapeutic

outcomes (9). Chemoresistance mediated by the TME is a result

of intricate crosstalk between CC cells and their surrounding

environment. In previous studies, investigations into the

molecular mechanisms and chemoresistance of CC patients have
02
predominantly focused on bulk genomic or transcriptomic analysis

methods and in situ hybridization techniques (10). Consequently,

research on chemoresistance mechanisms based on distinct

characteristics of cell populations remains ambiguous.

Today, single-cell RNA sequencing (scRNA-seq) technology

has emerged as a powerful tool for analyzing cell population spectra

within tissues. This technique has been widely employed to

elucidate complex subpopulations in organ tissues, such as the

lungs (11), heart (12), and brain (13), as well as various cancers,

including melanoma (14), ovarian (15), and colorectal (16) cancers

(17). Single-cell sequencing stands as the latest tool for revealing

tumor cell heterogeneity and the microenvironment. However, its

application in clinical samples of CC remains limited.

In 2021, Hua et al. utilized scRNA-seq to investigate the

intratumoral heterogeneity of CSCC based on tumor tissue and

adjacent normal tissue from a single patient (18). While there are

some comparative studies on TME changes before and after

chemotherapy, relevant reports are concise and lack detailed

exploration of scRNA-seq data. Currently, the use of scRNA-seq

for mapping studies has been widely embraced by the scientific

community (19).

Therefore, this study employed single-cell RNA sequencing

(scRNA-seq) on CC samples to decipher the immunological

microenvironment of CC. Unraveling the immune landscape of

CC may offer novel insights into the treatment of advanced-stage

CC, potentially expediting the eradication of cervical cancer. The

paper extensively discusses and summarizes the functional roles

and clinical relevance of tumor epithelial cell subpopulations during

the progression of CC. This study provides a valuable resource and

deeper insights into CC initiation and progression, which is helpful

in refining CC diagnosis and for the design of optimal

treatment strategies.
Methods

Data source

ScRNA-seq data were obtained from the GEO website (https://

www.ncbi.nlm.nih.gov/geo/),GSE number was GSE171894. The
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number of patients is four. Each patient had a sample sequenced.

The samples included: GSM5236544, GSM5236545, GSM5236546,

GSM5236547. The bulk data was from the The Cancer Genome

Atlas (TCGA) official website (https://portal.gdc.cancer.gov/).
Processing of scRNA-seq data

The raw gene expression substrates were processed with the

Seurat software package (version 4.3.0) (20). High-quality cells were

obtained according to the following criteria: removed cells with

extreme nFeature, nCount values; mitochondrial gene expression

below 20% of the total number in one cell, and erythrocyte gene

expression below 5% of the total number in one cell.Potential

double cells was removed by using the DoubletFinder package.

The samples were normalized to find the top 2000 highly variable

genes, and their data were normalized (21, 22). Subsequently, we

further analyzed the data by PCA and we used the method of

harmony in order to remove the batch effect between samples. The

top 30 significant principal components (PCs) were selected for

uniform manifold approximation and projection (UMAP)

downscaling and gene expression visualization (23, 24). Cell

clusters were annotated by cell markers obtained from previous

literature and according to the CellMarker database (http://

xteam.xbio.top/CellMarker/). Subsequently, we also observed the

proportion of different cell types (25–27).
DEGs and GESA

Differentially Expressed Genes (DEGs) of per cell type were

identified by performing the FindAllMarker function on the

normalized expression data in the Seurat software package (28,

29), and genes expressed in more than 25% of the cells in clusters

with a logFC value greater than 0.25 were selected.Genes with

adjusted p-values <0.05 were considered statistically significant in

KEGG and GO enrichment analysis. The ClusterProfiler software

package (version 0.1.1) was used to enrich and analyze cluster-

specific biomarker genes (30).
Tumor cell and non-malignant epithelial
cell differentiation based on inferred CNVs

To differentiate tumor cells and non-malignant epithelial cells,

the initial copy number variation (CNV) signal was estimated for

each region by using the inferCNV package (https://github.com/

broadinstitute/inferCNV/wiki). Where NK/T cells were used as a

reference, while we defined subpopulations with a high copy

number variation profile as tumor epithelial cells.
Determination of cell subpopulations

All tumor epithelial cells were extracted and renormalized to

find the first 2000 highly variable genes, and their data were
Frontiers in Immunology 03
normalized. Subsequently, we further analyzed them by PCA and

we used the method of harmony in order to remove the batch effect

among samples. The expression of known typical marker genes for

the respective cell types was annotated according to cell subtype.

Cell subclusters with similar gene expression patterns were

annotated to the same cell type and projected onto a 2D map by

using the UMAP approach.
Differential and enrichment analysis of
cell subpopulations

We further used the “FindAllMarkers” function of the

Wilcoxon rank-sum test to identify differential genes in each

subpopulation of tumor epithelial cell subgroups and performed

GO-BP enrichment analysis by using ClusterProfiler.
Trajectory analysis

To further investigate CC tumorigenesis, trajectory analysis of

tumor epithelial cell subpopulations was performed by using three

software packages.

First, the algorithm of cytoTRACE was used to assess the cell

stemness of each subpopulation of cells. Then, we further used the

Monocle software toolkit to reconstruct cell differentiation

trajectories, used DDRTree to downscale and to observe the

development of the subpopulation cells under the newly created

trajectories. Finally, we further analyzed the cell trajectories during

tumor epithelial cell differentiation using the slingshot method,

which was used to infer cell lineages and to estimate the cell

expression level of each lineage over the pseudotime.
Analysis of cell-cell interactions

To investigate the cell-cell interaction network between

epithelial cell subpopulations and other microenvironmental cells,

ligand-receptor pairs between ecotone cell subtypes and malignant

cells were explored using the “CellChat” package (version 1.6.1)

(31). We inferred cell-cell communication at the signaling pathway

and receptor-ligand levels and explored how signaling pathways

were coordinating across multiple cell types.
Constructed novel immune-
related features

To focus on the role of cervical cancer in predicting patient

survival, we used key subgroups of cervical cancer marker genes,

which were used to predict genetic signatures. We used univariate

COX regression analysis based on the “survival” package to explore

the correlation between the expression of these important genes and

the overall survival (OS) of cervical cancer patients (32). LASSO

regression analysis was performed by using the R package “survival”

to find the more important prognostic genes. The risk score for each
frontiersin.org
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cervical cancer patient was calculated based on the expression level

of each gene and the corresponding LASSO regression

coefficient.Riskscore = Expression of gene 1 * coefficient 1 +

Expression of gene 2 * coefficient 2 +… + Expression of gene n *

coefficient n. And groups were divided based on the median, above

the median was high score group and below the median was low

score group (33, 34). We further did survival analysis to observe the

prognosis of patients in different groups. The accuracy was assessed

by plotting the subjects’ work characteristics (ROC) curves at 1, 3,

and 5 years by using the timeROC software package (version 0.4.0)

(35, 36). In addition, we further explored the relationship between

modeled genes and risk scores and OS.
Construction and validation of
nomogram plots

Nomogram plot was constructed based on the risk score, M-

stage, N-stage and etc.of the new characteristics to predict the 1-

year, 3-year, and 5-year overall survival probabilities of cervical

cancer patients in the TCGA cohort (37, 38). The predictive ability

of the model was also evaluated by using the C-index score.
Estimation of immune cell infiltration

The immune cell infiltration in each CESC sample of the TCGA

dataset was estimated by the computational analysis tools

CIBERSORT (http://cibersort.stanford.edu/) (39), ESTIMATE,

and Xcell. Subsequently, we further observed the high or low level

of immune cells in different groups under the CIBERSORT

algorithm, and further observed their correlation with risk score,

modeling genes, and OS. In addition, we also observed the high and

low situation of Stromal Score, Immune Score,EATIMATE Score

and TumorPurity in different groups.
Differential and enrichment analysis of
bulk data

We used the “DESeq2” package to analyze the differences

between the high and low risk group, with a threshold of |logFC|

>2 and a p-value of less than 0.05, and used the ClusterProfiler

package to analyze the GO, KEGG, and GSEA enrichment of the

differential genes (40–42).
Somatic mutation analysis

The mutation data for somatic mutation analysis were obtained

from the TCGA database, and we observed the mutation

distribution of highly mutated genes and modeled genes. The

tumor mutation load (TMB) of each tumor epithelial cell sample

was calculated using the “maftools” software package, and the

cervical cancer samples were classified into high and low TMB

groups according to the median tumor mutation load (TMB). And
Frontiers in Immunology 04
Kaplan-Meier was used to observe the survival differences among

different groups. In addition, we further observed the CNV profiles

of the modeled genes.
Immunotherapy effect in predicting
chemotherapy response

We used the “pRRophetic” package (version 0.5) to infer the

half-maximal inhibitory concentration (IC50) of chemotherapeutic

drugs (43), and assessed the drug sensitivity of chemotherapeutic

drugs in different groups (44, 45).
Cell culture

SiHa and Hela cells came from the American type culture

collection (ATCC). Both cell lines were cultured with DMEM

medium (Gibco BRL, USA) supplemented with 10% fetal bovine

serum (Gibco BRL, USA) in a 5% CO2 incubator at 37°C.
Cell transfection and RT-qPCR

Two small interfering RNAs (siRNAs) targeting ATF6 genes

and their corresponding negative controls (si-NC) were synthesized

by Ribobio (Guangzhou, China), The transfection regimen was

performed according to the protocol for Lipofectamine 3000

(Invitrogen, USA).

Total RNA was extracted from cell lines using TRIzol reagent

(15596018, Thermo) and the RNA concentration was standardized.

Subsequently, cDNA was synthesized using PrimeScript™RT kit

(R232-01, Vazyme). SYBR Green Kit (TaKaRa Biotechnology,

Dalian, China) is used for real-time quantitative PCR (qRT-PCR).

GAPDH was used as an internal reference. Supplementary Table 1

contains sequences of primers and siRNAs.
Cell counting

5×103 transfected cells were implanted in each of the 96-well

plates (Corning, USA, 3599). After waiting for cell attachment, cells

were treated with CCK-8 labeling reagent (A311-01, Vazyme) at 1,

2, 3, 4, and 5 days, respectively, and incubated for 2 hours away

from light, and OD value was recorded.
Wound healing

The transfected cells were cultured in a 6-well plate (Corning,

USA, 3516). When the cell density reached about 95%, a sterile

pipette with a volume of 200 mL was used to cut the cell layer along a
straight line. Rinse gently with PBS to remove unattached cells and

debris. Subsequently, the serum-free cell medium was replaced to

maintain cell growth. The photos were taken at the same location at

0 and 48 hours respectively.
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Transwell

Cells (corning, USA, 3412-01) with or without Matrigel matrix

(BD Biosciences, USA) were placed in 24-well plates for transwell

experiments. 1×104 cells were placed in each upper chamber and

cultured with 200 microliters of serum-free DMEM medium. A

complete DMEM medium with 700 µl 10% serum was added to the

lower chamber. Culture in the incubator for 36 hours, after the cells

of the upper chamber penetrate the lower chamber, the chamber is

cleaned, fixed, and stained.
Results

scRNA sequencing revealed the main cell
types in the progress of CC

In order to obtain the main cell types in the progress of cervical

cancer, we collected CC samples from 4 patients with cervical

cancer to obtain scRNA-seq. After initial quality control and

batch effect removal, a total of 13770 cells were retained. We

clustered these 13,770 cells by dimensionality reduction, and the

analysis revealed 23 unique tissue states (upper left of Figure 1A).

Based on the typical tissue type-specific markers defined in the

literature, we divided the cell clusters into six main cell types: NK_T

cells(6975), Epithelial cells(5434), Fibroblasts(59), pDCs(139),

B_Plasma cells(707) and Myeloid cells(456). The proportion of

each cell type in different patients was very different, among which

Epithelial cells were the most abundant structural cells, accounting

for the largest proportion of all cells. UMAP diagram was used to

show the phase situation (lower left in Figure 1A) and HPV

infection (lower right in Figure 1A) in six cell types.

The expression of marker genes in six cell types were different,

and the marker genes (top10) in each cell type were displayed by

bubble diagram (Figure 1B). Bar charts were used to show the

proportion of six cell types in HPV+ group and HPV- group.

Although the proportion of cells in each sample was different,

NK_T cells and Epithelial cells were the cell types with high

proportion in all samples (Figure 1C). However, the results of box

chart showed that there was no statistical difference in the

proportion of these six cell types between groups (Figure 1D).

UMAP diagrams were used to display nCount_RNA,

nFeature_RNA, S. Score and G2m. Score of all cells (Figure 1E).

The word cloud diagrams (Figure 1F) and volcano diagrams

(Figure 1G) were used to describe the differential genes of these

six cell types. The results of GO-BP enrichment analysis of six cell

types were displayed by thermogram (Figure 1H). It could be seen

that NK_T cells were related to biological processes such as positive

regulation of leukocyte activation, positive regulation of cell

activation, T cell receptor signaling pathway, etc. Epithelial cells

were related to biological processes such as antimicrobial humoral

response, negative regulation of anoikis, regulation of

endopeptidase activity, etc. Fibroblasts were related to biological

processes such as collagen fibril organization, cellular response to

amino acid stimulus, cellular response to acid chemical, etc. PDCs
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were related to negative regulation of reproductive process, defense

response to bacterium, response to glucocorticoid and other

biological processes. B_Plasma cells were related to biological

processes such as B cell receptor signaling pathway, antigen

receptor−mediated signaling pathway, immune response

−activating cell surface receptor signaling pathway and other

biological processes. Myeloid cells were related to positive

regulation of interleukin−6 production, neutrophil activation,

interleukin−6 production and other biological processes.
Visualization of cervical cancer tumor
epithelial cell subgroups

Next, we used inferCNV (Supplementary Figure 1) to explore

the single-cell RNA-seq data from tumor, distinguished tumor

epithelial cells, and made further sub-clustering, resulting in five

cell subgroups and marking their cell numbers: C0 TMPRSS2+

Tumor EPCs(1266), C1 ANKRD36C+ Tumor EPCs(919), C2 HK2

+ Tumor EPCs(489), C3 PLP2+ Tumor EPCs(440), C4 MKI67+

Tumor EPCs(39) (Figure 2A, upper left), and showed the

relationship between five cell subgroups and cell cycle stages

(Figure 2A, upper right), HPV infection (Figure 2A, lower left)

and sample source (Figure 2A, lower right). The cell subsets of the

HPV+ group account for a higher proportion of all cell subsets,

which proved that the occurrence of cervical cancer may be related

to HPV infection. As previously reported, HPV infection was the

main cause of cervical cancer development, which could be seen in

95% of cases (46, 47).The proportion offive cell subgroups in HPV+

group and HPV- group, the proportion of HPV+ and HPV- in five

cell subgroups, the proportion of five cell subgroups in cell cycle

stages and the proportion of cells in five cell subgroups in cell cycle

stages were displayed (Figure 2B). It was found that C0 existed only

in HPV+ group and accounted for the most in G1 phase, while C3

was mostly in HPV- group, and the proportion of cells in S phase

was much higher than that in other two phases. Several related

features(CNV score, ncount _ RNA, S. score and G2M. score) offive

cell subgroups were visualized (Figure 2C).The differential genes of

five cell subgroups were displayed by volcano diagrams (Figure 2D),

the enrichment pathways were displayed by word cloud diagrams

(Figure 2E), and the marker genes (top10) in each cell subgroup

were displayed by bubble diagram (Figure 2F). The results of

enrichment analysis of GO-BP, the differential genes of five cell

subgroups, were displayed by thermogram (Figure 2G). C0

TMPRSS2+ Tumor EPCs were related to biological processes

such as Vesicle organization, Macroautophagy, Endosome

organization,etc. C1 ANKRD36C+ Tumor EPCs are related to

biological processes such as ATP metabolic process, Oxidative

phosphorylation, Purine ribonucleoside triphosphate metabolic

process,etc. C2 HK2+ Tumor EPCs are related to biological

processes such as Skin development, Establishment of skin

barrier, Regulation of water loss via skin, etc. C3 PLP2+ Tumor

EPCs are related to biological processes, such as Cytoplasmic

translation, Ribonucleoprotein complex biogenesis, Ribosome

biogenesis, etc.C4 MKI67+ Tumor EPCs is related to biological
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FIGURE 1

scRNA sequencing revealed major cell types during CC progression, (A) UMAP plot showed the 23 clusters of cells in cervical cancer patients and the
number of cells in each cluster (top left); UMAP plot showed the six major cell types obtained by down clustering of cells in cervical cancer (top right); UMAP
plot showed the distribution of phases in the six cell types (bottom left) and the infection of HPV (bottom right). Each point corresponded to a single cell
colored according to cell cluster or cell type. (B) Bubble plot showed differential expression of Top10 maker genes in cervical cancer cells across cell types
(NK/T cells, Epithelial cells, Fibroblasts, pDCs, B_Plasma cells, Myeloid cells). Bubble colors were based on normalized data and sizes indicated the
percentage of genes expressed in the subpopulation. (C) Histograms depicted the percentage of the 6 major cell types in each of the 4 cervical cancer
samples. (D) Box line plot depicted the percentage of the 6 cell types in the HPV+ group versus the HPV- group. The colors of the dots represented the
HPV- and HPV+ groups, respectively. p-values corresponded to paired Wilcoxon tests. (E) UMAP plots visualized the relevant features of 6 cell types:
nCount_RNA, nFeature_RNA, S.score, G2M.score. (F) Word cloud plots showed gene enrichment in the 6 cell types. The size of the letter indicated the
number of genes and the color indicated the high or low enrichment score of the cell type. (G) Volcano plots demonstrated the expression of differential
genes in the 6 cell types. (H) GO-BP enrichment analysis demonstrated the biological processes associated with the 6 cell types.
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FIGURE 2

Visualization of cervical cancer tumor epithelial cell subpopulations. (A) UMAP diagram demonstrated the 5 cell subpopulations of tumor epithelial
cells in cervical cancer patients and the number of cells in each cell subpopulation (upper left); UMAP diagram demonstrated the percentage of
different cell cycles in the 5 cell subpopulations (upper right); UMAP diagram demonstrated the distribution of the HPV+ group and the HPV- group
in the 5 cell subpopulations (lower left); and UMAP diagram demonstrated the patient origin of the 5 cell subpopulations (lower right). Each point
corresponded to a single cell colored according to cell subpopulation. (B) Bar graph showed the percentage of each cell subpopulation in HPV+ and
HPV- groups (upper left); bar graph showed the percentage of each cell subpopulation at different tumor stages (upper right); bar graph showed, in
each cell subpopulation, the percentage of HPV+ cells versus HPV- cells (lower left); and bar graph showed, in each cell subpopulation, the
percentage of cells with different cell cycles (lower right). (C) UMAP plots visualized the relevant features of 5 cell subpopulations (C0:TMPRSS2+
Tumor EPCs, C1: ANKRD36C+ Tumor EPCs, C2: HK2+ Tumor EPCs, C3: PLP2+ Tumor EPCs, C4:MKI67+ Tumor EPCs): CNVscore, nCount_RNA,
S.score, G2M.score. (D) Volcano plots demonstrated the expression of differential genes in five cellular subpopulations. (E) Word cloud diagrams
showed gene pathway enrichment in 5 cell subpopulations. The size of the letters indicated the number of enriched pathways, and the color
indicated the high or low score of enriched pathways in different cell subpopulations. (F) Bubble graph showed differential expression of Top10
maker genes in 5 cell subpopulations of tumor epithelial cells. The color of the bubbles was based on the normalized data and the size indicated the
percentage of genes expressed in the subpopulation. (G) GO-BP enrichment analysis demonstrated the biological processes associated with the 5
cell subpopulations.
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processes such as Chromosome segregation, Nuclear division,

Mitotic nuclear division, etc.
Visualization of pseudo-sequential analysis
of tumor epithelial cells by CytoTRACE
and monocle

In order to explore the differentiation and development

relationship among the five cell subgroups of tumor epithelial

cells, the differentiation of tumor epithelial cells was analyzed and

visualized by CytoTRACE (Figure 3A). It could be seen that the five

cell subgroups differentiated along the direction of C4-C3-C2-C0-

C1 (Figure 3B).Pseudo-sequential analysis of cancer development

process was carried out to explore the differentiation process of

tumor epithelial cells. The distribution of epithelial cells from four

patients was shown in the pseudotime-series trajectory, and the

distribution of cell subgroups in pseudotime-series was shown by

using UMAP diagram, violin diagram and ridge diagram

respectively. It could be seen that five cell subgroups were

continuously differentiated in pseudotime-series (Figure 3C). At

the same time, five kinds of states were identified. In state1, state2

and state3, the proportion of C0 TMPRSS2+ Tumor EPCs subgroup

was the highest, while in state4, the proportion of C1 ANKRD36C+

Tumor EPCs subgroup was the highest, and in state5, the

proportion of C3 PLP2+ Tumor EPCs subgroup was the highest,

and C4 MKI67+ Tumor EPCs subgroup only existed in state5. In

HPV+ and HPV- groups, the proportion of C0 TMPRSS2+ Tumor

EPCs subgroup in HPV+ group was the highest, and C3 PLP2+

Tumor EPCs subgroup in HPV- group was the highest (Figures 3D,

E). In order to study the origin of tumor epithelial cells, the

pseudotime sequence trajectory of five cell subgroups was further

analyzed. Starting from state1 at the lower right of the trajectory,

two trajectories are divided upward, one is state2 downward, the

other is continuously divided upward to the second branch point of

state3, and the second branch point is divided into two branches,

one is state4 upward, and the other is state5 downward to the left.

The C0 TMPRSS2+ Tumor EPCs subgroup was mainly displayed at

the beginning of the trajectory and in the branch with the first

branch point down (corresponding to state1 and state2), the C1

ANKRD36C+ Tumor EPCs subgroup was mainly in the branch

with the second branch point up (corresponding to state4), and the

C3 PLP2+ Tumor EPCs subgroup mainly existed at the end of the

whole pseudotime sequence trajectory (corresponding to state5).

Pseudotime series analysis showed that C0 TMPRSS2+ Tumor

EPCs subgroup may be the starting point of tumor cells, and

gradually differentiated into other subgroups during the

progression of cervical cancer (Figure 3F).

The named genes of five cell subgroups were selected and their

changes with pseudotime series were shown by scatter plots and

pseudotime series UMAP plots respectively. It could be seen that

the C0 subgroup represented by the gene TMPRSS2 was mostly in

the initial state of pseudotime series. The C1 subgroup represented

by ANKRD36C and the C2 subgroup represented by HK2 basically

run through the pseudotime series. However, the C3 subgroup

represented by gene PLP2 and C4 subgroup represented by gene
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MKI67 were mostly at the end of pseudotime series. The sectional

views of each subgroup also confirmed this conclusion

(Figures 3G–H).
Slingshot analysis of pseudotime sequence
trajectory of tumor epithelial
cell subgroups

Slingshot is a uniquely robust and flexible tool which combines

the highly stable techniques necessary for noisy single-cell data with

the ability to identify multiple trajectories. In order to infer the

continuous branching pedigree structure in tumor epithelial cell

data, the pseudotime series trajectories of five cell subgroups were

analyzed by using slingshot, and two lineages were obtained:

lineage1 and lineage2. The two lineages have similar trajectories,

but the final footholds are different, lineage1 finally reaches the C3

PLP2+ Tumor EPCs, and lineage2 finally reaches the C4 MKI67+

Tumor EPCs (Figure 4A). Next, the relationship between two

lineages and pseudotime-series differentiation trajectory was

displayed respectively, and the two pseudotime-series trajectories

were visualized by GO-BP enrichment analysis. It was found that

C1 in lineage1 was related to biological processes such as silencing

gene, C2 was related to biological processes such as humoral, C3

was related to biological processes such as keratinocyte and

transport, and C4 was related to biological processes such as

hormone and biosynthetic. In lineage2, C1 was related to

biological processes such as silencing gene, C2 was related to

biological processes such as humoral and activity, C3 was related

to biological processes such as ensheathment, humoral, collagen

and proteincoupled, and C4 was related to biological processes such

as mitotic and cycle (Figures 4B–D). Finally, the distribution status

of different subpopulations on lineage1 and lineage2 and the

differentiation curves with the pseudotime series were shown in

scatter plots (Figure 4E).
CellChat analysis between cells

In order to systematically elucidate the complex cellular responses,

we attempted to probe the cell-to-cell relationships and ligand-receptor

communication networks to better understand the interactions

between cells. Through CellChat analysis, first, we established

intercellular communication networks between most cells, including

Myeloid cells, Fibroblasts, NK_T cells and various subgroups of tumor

epithelial cells, etc. Then calculated the number of interactions

(indicated by the “line” connection between two cell types, the

thicker the line, the higher the number of interaction pathways) and

the strength of interactions (indicated by the “line” weight, the thicker

the line, the stronger the interaction strength) (Figure 5A).

We used gene expression pattern analysis methods available on

CellChat to explore how cells and signaling pathways interact. First,

we determined the correspondence between inferred potential

communication patterns and groups of secreted cells to decipher

the outgoing communication patterns. Three signaling patterns

were identified: pattern 1 (tumor epithelial cells), pattern 2 (NK/T
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FIGURE 3

Visualization of pseudotime-series analysis of tumor epithelial cells by CytoTRACE and monocle. (A) The left figure represented the analysis of the
differentiation of tumor epithelial cells by using CytoTRACE and it was shown in 2D. The color could represent the level of differentiation. The right
figure represented the CytoTRACE results displayed according to different tumor epithelial cell subpopulations. The colors represented different
tumor epithelial cell subpopulations. (B) Box line plot demonstrated the predicted ordering by CytoTRACE of tumor epithelial cell subpopulations.
(C) UMAP plot, violin plot and ridge plot showed the pseudotime distribution of tumor epithelial cell subpopulations. *, p ≤ 0.05, ****, p < 0.0001
indicated a significant difference, ns indicated a non-significant difference. (D) The occupancy of the relevant features of the five tumor epithelial cell
subpopulations at different pseudotime stages was visualized: the occupancy of the five tumor epithelial cell subpopulations in different states
(state1-state5) (top) and the occupancy of the five cell subpopulations in the HPV+ group and HPV- group (bottom). (E) Bar graph showed the
occupancy of different states (state1-state5) in 5 tumor epithelial cell subpopulations (left) and the occupancy of 5 cell subpopulations in HPV+
group and HPV- group (right). (F) The derivation process of tumor epithelial cells. Left : The figure showed the pseudotime trajectory of tumor
epithelial cells; middle: the pseudotime trajectory graph showed the distribution of STATE; right: the pseudotime trajectory graph showed the
distribution of tumor epithelial cell subpopulations. (G) Scatter plots showed the changes of named genes of 5 cell subpopulations of tumor
epithelial cells with the pseudotime sequence (top); pseudotime trajectory plots showed the distribution of named genes of 5 cell subpopulations of
tumor epithelial cells on the pseudotime trajectory (bottom). (H) Split-plane diagrams of tumor epithelial cell pseudotime sequence trajectories
showed the distribution of different cell subpopulations on the pseudotime sequence, respectively.
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cells, B_Plasma cells, Myeloid cells, pDCs) and pattern 3

(Fibroblasts) (Figure 5B). Then, to identify the key incoming and

outgoing signals associated with the five tumor epithelial cell

subpopulations, the ligand receptor network was quantitatively

measured using CellChat to predict its key incoming and

outgoing signals by utilizing pattern recognition methods. For

example, in cervical cancer, each cell type could be a secreting cell

(signal sender) that releases different cytokines or ligands, and each

cell type could also be a targeting cell (signal receiver), and ligand-
Frontiers in Immunology 10
receptor-mediated communication between different cell types

should contribute to cervical cancer when receptors on these cells

were targeted by ligands released from the same type of cell or from

other cells development (Figure 5C). In addition to exploring the

detailed communication of individual pathways, an important

question was how multiple cell populations and signaling

pathways coordinate their functions. To address this question,

CellChat used a pattern recognition method based on non-

negative matrix decomposition to identify global communication
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FIGURE 4

Slingshot analysis of tumor epithelial cell subpopulations on pseudotime trajectories. (A) UMAP plot showed the distribution of two differentiation trajectories
of tumor epithelial cells fitted by the pseudotime order in all tumor epithelial cells. (B) UMAP plot demonstrated the change of Lineage1 with the fitted
pseudotime order (left); UMAP plot demonstrated the differentiation trajectory of Lineage1 on the fitted pseudotime order (right). (C) UMAP plot
demonstrated the change of Lineage2 with the fitted pseudotime order (left); UMAP plot demonstrated the differentiation trajectory of Lineage2 on the fitted
pseudotime order (right). (D) GO-BP enrichment analysis demonstrated the biological processes corresponding to the two pseudotime trajectories of tumor
epithelial cell subpopulations. Left: Lineage1; Right: Lineage2. (E) Scatter plots demonstrated the trajectories of named genes of five cell subpopulations of
tumor epithelial cells changing on two lineages obtained after slingshot visualization.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1351287
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1351287
patterns, as well as key signals in different cell groups. The

application of this analysis revealed three incoming signaling

patterns and three outgoing signaling patterns. For example, this

output showed that the majority of outgoing tumor epithelial cell

signaling was characterized by mode 1, which represented multiple

pathways, including but not limited to APP, CD99, CDH,

ANNEXIN, etc. All output NK_T cells, B_Plasma cells, Myeloid

cells, pDCs signalings were characterized by mode 2, which

represented pathways such as CD22, CD45, ICAM, CESC L and

TNF. On the other hand, the communication patterns of the target

cells suggested that incoming tumor epithelial cell signalings were

dominated by mode 1, which included signaling pathways such as

CD99 and MK, as well as PTN, CEACAM, CD96, and GRN. The

majority of incoming NK_T cells, B_Plasma cells, Myeloid cells, and

pDCs signalings were characterized by mode 2, driven by pathways

such as APP and ANNEXIN (Figure 5D).We found that CD99 can

be secreted by almost all types of cells in cervical cancer, and its

main target cells (receptors) were tumor epithelial cell subgroups,

Fibroblasts and pDCs, among which C3 PLP2+ Tumor EPCs

subgroups were most significantly expressed (Figure 5E).
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Analysis of CD99 signal pathway

In order to explore the function way of CD99 signal pathway,

the CD99 signal pathway was visually analyzed. The cell

communication pattern of CD99 signaling pathway was displayed

by scatter plot, and it could be seen that the tumor epithelial cell

subgroup C3 PLP2+ Tumor EPCs had a large number and the

highest intensity on CD99 signaling pathway (Figure 6A).

Besides the sender and receiver of CD99 signaling, we also

identified the cell types as the medium and influencer of CD99

signaling-mediated intercellular communication according to

the relative importance of each cell type based on the

algorithm, which was called “centrality measurement”. As

could be seen from the figure, the tumor epithelial cell

subgroup C3 PLP2+ Tumor EPCs had the highest expression

on the CD99 signaling pathway (Figure 6B). Violin diagram

showed the interaction between cells, and it was found that the

epithelial cell subgroup C3 PLP2+ Tumor EPCs was highly

expressed on CD99. Combined with the previous experimental

results in this paper, it could be concluded that the epithelial cell
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C

FIGURE 5

CellChat analysis among all cells. (A) Circle plots showed the number (left) and strength (right) of interactions between all cells. (B) Heatmap showed pattern
recognition of incoming cells (left), and outgoing cells (right) among all cells. (C) Outgoing contribution bubble plot and incoming contribution bubble plot
showed cellular communication patterns among various cell subpopulations of tumor epithelial cells and other cells. (D) Sankey diagrams showed inferred
outgoing communication patterns of secreting cells, showed correspondence between inferred potential patterns, cell populations, and signaling pathways.
Left: incoming Sankey diagram, right: outgoing Sankey diagram. (E) Heatmap showed incoming and outgoing signaling intensities for the all
cellular interactions.
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subgroup C3 PLP2+ Tumor EPCs was an important subgroup of

tumor epithelial cells (Figure 6C).

The ligand-receptor between tumor epithelial cells and other

cells was displayed by chord diagram (Figure 6D). If we set all 10

identified cell types in cervical cancer as the source cells of CD99,

and set the five cell types listed on the left in Figure 6E as potential

target cells, Then the hierarchical diagram showed that CD99

released by all 10 cell types could target C0 TMPRSS2+ Tumor

EPCs subgroup, C2 HK2+ Tumor EPCs subgroup and C3 PLP2+

Tumor EPCs subgroup, and if the other five cell types listed on the

right side of Figure 6E were set as potential target cells, Then the

layered map showed that CD99 released by all 10 cell types could

target C1 ANKRD36C+ Tumor EPCs subgroup and C2 HK2+

Tumor EPCs subgroup (Figure 6E). These results indicated that all

cell types in cervical cancer may be the source of CD99, but only C0

TMPRS2+ Tumor EPCs subgroup, C1 ANKRD36C+ Tumor EPCs

subgroup, C2 HK2+ Tumor EPCs subgroup and C3 PLP2+ Tumor

EPCs subgroup had different targeting intensities (line width

between cells) for CD99 (Figure 6E). The specific situation of cell-

to-cell interaction in CD99 signaling pathway was shown in the

figure (Figure 6F).
Screening the genes that constitute the
risk score and performing
correlation analysis

In order to study the clinical effect of the cell types identified in this

study, we analyzed the marker gene (top100) of C3 tumor epithelial cell

subgroup by univariate COX analysis. The results showed that there
Frontiers in Immunology 12
were 12 genes related to the prognosis of patients, among which

PLAGL1, HIF1A, ERG, ELF1, ATF6 and ATF1 were risk factors, while

TBX21, SPIB, LHX2, JUND, ETV7 and ATF5 were protective factors.

In order to avoid multicollinearity of these genes, lasso regression was

used for further screening, and nine genes constituting PLP2+ Tumor

EPCs score were selected. Lambda diagram verified the above

conclusion (Figure 7B). Next, the nine PLP2+ Tumor EPCs score

genes were divided into high PLP2+ Tumor EPCs score group and low

PLP2+ Tumor EPCs score group for survival analysis (Figure 7C).

Compared with low PLP2+ Tumor EPCs score group, the prognosis of

high PLP2+ Tumor EPCs score group was worse. As we expected, high

PLP2+ Tumor EPCs score was associated with worse clinical outcome,

while low PLP2+ Tumor EPCs score was associated with better clinical

outcome (P < 0.0001).

In addition, we also analyzed the survival of genes which

constituted PLP2+ Tumor EPCs score (Figure 7D), and the results

showed that only four of them (SPIB, ATF6, PLAGL1, ERG) were

statistically significant (P<0.05). Among them, in the survival analysis

chart corresponding to three genes, ATF6, PLAGL1 and ERG, all the

groups with high gene expression were associated with worse clinical

results. The group with low gene expression was associated with better

clinical outcome, while the result of SPIB corresponding to survival

analysis chart was just the opposite, which could prove the result in

Figure 7A, that was, ATF6, PLAGL1 and ERG were risk factors and

SPIB was protective factors.

Through the above analysis, two groups of high PLP2+ Tumor

EPCs score group and low PLP2+ Tumor EPCs score group had

been obtained, and then these two groups were analyzed. The PLP2

+ Tumor EPCs score of each patient in TCGA-CESC data set was

calculated according to the expression level and regression
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FIGURE 6

Visual analysis of CD99 signaling pathway. (A) Scatter plot showed the cellular communication patterns of CD99 signaling pathway. Each dot
represented the communication network of a signaling pathway. The size of the dots indicated the number of signaling pathways. Different colors
represented different signaling pathway groups. (B) Heatmap demonstrated the centrality score of the CD99 signaling pathway network, showing the
relative importance of each cell group. (C) Violin plot showed the cellular interactions of the CD99 signaling pathway. (D) Circle plot showed the
cellular interactions of the CD99 signaling pathway when tumor epithelial cells were selected as the RECEIVER. (E) Hierarchical diagram showed the
interactions between tumor epithelial cells and other cells in the CD99 signaling pathway. Solid and hollow circles indicated source and target cell
types, respectively. The edge color of the middle circle was consistent with the signal source. (F) Heatmap showed the cell interactions of the CD99
signaling pathway.
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coefficient of nine genes which established the model. The

distribution of PLP2+ Tumor EPCs score in TCGA-CESC dataset

was shown in the figure. According to the median PLP2+ Tumor

EPCs score, patients in TCGA-CESC cohort were divided into high

PLP2+ Tumor EPCs score group and low PLP2+ Tumor EPCs score

group. In addition, the distribution of survival time showed that the

higher PLP2+ Tumor EPCs score, the worse the prognosis. The

corresponding expression levels of nine modeling-related genes
Frontiers in Immunology 13
were also shown. high PLP2+ Tumor EPCs score group highly

expressed ATF6, ELF1, ERG and PLAGL1 genes, while low PLP2+

Tumor EPCs score group highly expressed ATF5, TBX21, SPIB,

LHX2 and JUND genes (Figure 7E). The correlation among survival

days, risk score and genes constituting the model was studied. OS

was negatively correlated with PLP2+ Tumor EPCs score, ERG was

significantly negatively correlated with JUND, and most other

modeling genes were positively correlated. The scatter plot further
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FIGURE 7 (Continued)
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Screening genes which constituted PLP2+ Tumor EPCs score, and grouped into two groups of high and low PLP2+ Tumor EPCs score group and
took correlation analysis. (A) Forest plot showed univariate COX analysis of genes constituting PLP2+ Tumor EPCs score. HR < 1,protective factor,
HR > 1,risk factor. (B) LASSO regression profiled nine genes in the TCGA cohort: ERG, ELF1, ATF6, PLAGL1, ATF5, TBX21, SPIB, LHX2, and JUND
(top); coefficient profiled were generated based on the logarithmic (lambda) sequence. Selected the optimal parameters (lambda) in the LASSO
model (bottom). (C) Based on the median PLP2+ Tumor EPCs score, all datas were divided into two groups: high and low PLP2+ Tumor EPCs score
group, and Kaplan Meier curve showed the survival analysis of the two groups. (D) Kaplan Meier curves showed the overall survival (OS) of cervical
cancer (CC) patients with high and low expression of four statistically significant genes (SPIB, ATF6, PLAGL1, and ERG) in all genes which
constructed the PLP2+ Tumor EPCs score (p<0.05). (E) Curve plots showed hazard scores of high and low PLP2+ Tumor EPCs score groups (top,
middle); heatmap showed differential gene expression of high and low PLP2+ Tumor EPCs score group. The color scale was based on normalized
data (bottom). Green indicated low PLP2+ Tumor EPCs score group and orange indicated high PLP2+ Tumor EPCs score group. (F) Heatmap and
scatterplot showed the correlation analysis of genes constituting PLP2+ Tumor EPCs score. Red indicated positive correlation, blue indicated
negative correlation, and color shades indicated high or low correlation. (G) The ROC curve of the survival plot. The area under the curve (AUC) was
0.762, 0.733 and 0.781 for 1, 3 and 5 years, respectively. (H) Scatter plots showed the correlation analysis of modeled genes (4 statistically significant
genes) with PLP2+ Tumor EPCs score. (I) Peak and box plot showed the different expression among the 4 statistically significant genes which
constituted PLP2+ Tumor EPCs score in high and low PLP2+ Tumor EPCs score groups. (J) Forest plot showed the multivariate Cox analysis of
genes constituting PLP2+ Tumor EPCs score. HR < 1,protective factor, HR > 1, risk factor. (K) Column line plot was constructed according to TCGA
patient race, T-stage, N-stage, M-stage and etc. (L) Box-and-line plot for internal cross-validation of AUC scores at 1, 3, and 5 years.
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showed the correlation between nine modeling genes and risk score

and OS (Figure 7F).

According to the predicted AUC scores of survival ROC curve in 1

year, 3 years and 5 years, the AUC(1 year): 0.762, AUC (3 years): 0.733

and AUC(5 years): 0.781 were obtained (Figure 7G). The relationship

between four statistically significant modeling genes and PLP2+Tumor

EPCs Score was shown by scatter plot (Figure 7H), and the difference of

expression levels of four statistically significant modeling genes between

high PLP2+ Tumor EPCs score group and low PLP2+ Tumor EPCs

score group was shown (Figure 7I). It was found that ATT6, ERG and

PLAGL1 were more expressed in high PLP2+ Tumor EPCs score

group, while SPIB was more expressed in low PLP2+ Tumor EPCs

score group (P < 0.001). The differential expression of genes in high

PLP2+ Tumor EPCs score group and low PLP2+ Tumor EPCs score

group, and the differential expression in different ages, different T, N, M

stages and different races were demonstrated by box plots

(Supplementary Figure 2).

In order to verify the independence of risk factors, a gene-cell

clinical prediction model was constructed, and multi-factor Cox

regression was carried out by combining age, race, T stage, N stage

and M stage clinicopathological factors with high PLP2+ Tumor

EPCs score group and low PLP2+ Tumor EPCs score group, with a

p value of 0.001, indicating that PLP2+Tumor EPCs Score could be

independent risk factor (Figure 7J). Age, race, T, N and M stages

were selected to construct the nomogram, which showed the 1-year

survival rate, 3-year survival rate and 5-year survival rate

(Figure 7K). The estimated survival rates of one of these patients

in 1, 3 and 5 years are 0.865, 0.556 and 0.389, respectively. In order

to further evaluate the accuracy of the nomogram, the box diagram

was used to show the internal cross-validation results (Figure 7L).
Analysis of the difference of immune
infiltration between high PLP2+ Tumor
EPCs score group and low PLP2+ Tumor
EPCs score group.

In order to explore the immune infiltration in high PLP2+ Tumor

EPCs score group and low PLP2+ Tumor EPCs score group, and to
Frontiers in Immunology 14
observe the relationship between immune infiltrating cells and the two

groups, we showed the differential expression of immune infiltration

between the two groups by thermogram (Figure 8A). In order to

explore the immune infiltration of high PLP2+ Tumor EPCs score

group and low PLP2+ Tumor EPCs score group, the predicted

abundance of different immune cells was displayed (upper

Figure 8B). We used CIBERSORT algorithm to determine the

immune cell infiltration of cervical cancer patients from TCGA

database, and show the predicted abundance of 12 immune cells

with differences between the two groups. High PLP2+ Tumor EPCs

score group was more common in Mast cells activated, Macrophages

M0, Dendritic cells activated, etc., while low PLP2+ Tumor EPCs score

group was more common in T cells CD8, T cells regulatory, B cells

naive, etc. (under Figure 8B). The correlation between immune

infiltrating cells and PLP 2+Tumor EPCs score was demonstrated by

bar chart. PLP2+ Tumor EPCs score was positively correlated with

Mast cells activated, Macrophages M0, Dendritic cells activated, and

negatively correlated with T cells CD8, T cells regulatory, B cells naive,

etc. (Figure 8C). Through a variety of methods for evaluating the

content of immune cells, the relationship between the nine genes, OS

and PLP2+ Tumor EPCs score and immune cells was compared and

summarized, and displayed by thermal diagram. The closer the color

was to red, the higher the positive correlation, and the closer the color

was to blue, the higher the negative correlation (Figure 8D).

Stromal Score, Immune Score and EATIMATE Score of high

PLP2+ Tumor EPCs score group and low PLP2+ Tumor EPCs score

group were displayed, and it could be obtained that the results of

Stromal Score Group were not statistically significant. Immune

Score and EATIMATE Score were both low PLP2+ Tumor EPCs

score group higher than high PLP2+ Tumor EPCs score group

(Figure 8E). Visualizing the Tumor Purity of two groups, the value

of Tumor Purity of high PLP2+ Tumor EPCs score group was

higher (Figure 8F).
Difference analysis and enrichment analysis

In order to explore the differences between high PLP2+ Tumor

EPCs score group and low PLP2+ Tumor EPCs score group, the
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following analysis was made. First, the volcano diagram and

thermal diagram were used to show the expression of differential

genes between the two groups (Figures 9A, B). In order to further

determine the potential role of each subgroup in the initiation and

progression of cervical cancer, functional enrichment was carried

out, and the GO-BP enrichment analysis results of differential genes

were displayed with bar charts. The results showed that the

differential genes were mainly related to digestion, modulation of

process of another organism, defense response to gram negative

bacteria and odontogenesis of dentition containing tooth

(Figure 9C). KEGG enrichment analysis was carried out on the

differential genes, and the enrichment results of different pathways

were displayed by bar graphs, and it was found that the differential

genes were enriched with Ras signaling pathway, carbohydrate

digestion and absorption, PPAR signaling pathway and other

pathways (Figure 9D). Through GSEA scoring of GO-BP

enrichment items of different genes, the enrichment scores of

genes in different pathways were displayed (Figure 9E).
Mutation analysis

To determine the correlation between gene mutations and

immune components in TME, we initiated further studies, first
Frontiers in Immunology 15
showing the top 30 most frequently mutated genes in two groups of

somatic cells. The upper bars indicated the mutation load for each

sample, and the right bars indicated the total percentage of

mutations in that gene in those samples (Figure 9G). The cellular

mutation data from the two groups were analyzed and visualized to

show the mutations in the nine genes that were modeled

(Figure 9F), and the chromosomal gains and losses were

demonstrated by using bar graphs to show that the most CNV

gain was seen in ATF6, whereas the most CNV loss was seen in

ELF1 (Figure 9H). Heatmaps were used to show the correlation of

mutation profiles among the genes constituting the risk

score (Figure 9I).

And lollipop plots were used to visualize the mutation profiles

of different genes (Figure 9J). To explore the difference situation of

mutation load between high PLP2+ Tumor EPCs score group and

low PLP2+ Tumor EPCs score group, the results were visualized

and analyzed by using violin plots, which were not statistically

significant (Figure 9K), and the correlation between mutation load

and risk scores was demonstrated by using scatter plots, which were

not statistically significant (Figure 9L). According to the tumor

mutation load score, divided into four groups: high-risk high

mutation load, high-risk low mutation load, low-risk high

mutation load, and low-risk low mutation load, and the curves

showed the results of the survival analysis of the four groups: the
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FIGURE 8

Differential analysis of immune infiltration in high and low PLP2+ Tumor EPCs score group (A) Heatmap showed differential expression of immune infiltration
in high and low PLP2+ Tumor EPCs score group. (B) Stacked bar graph of immune infiltration (top); box-and-line plot showed the differential immune
infiltration of 12 immune cells which had significant differences in high and low PLP2+ Tumor EPCs score groups (bottom). (C, D) Bar graph and heatmap
showed the correlation analysis of immune cells with genes constituting PLP2+ Tumor EPCs score. (E) Box line plot showed the difference between high
and low PLP2+ Tumor EPCs score groupin StromalScore, ImmuneScore, and ESTIMATEScore. (F) Violin plot showed the differences of TumorPurity in high
and low PLP2+ Tumor EPCs score group. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001 indicated a significant difference and ns indicated a non-
significant difference.
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FIGURE 9

Gene mutations of tumor epithelial cell.s (A, B) Volcano plot and heatmap showed the expression of differential genes in the high and low PLP2+
Tumor EPCs score group. (C) Bar graph showed the results of all GO-BP enrichment analysis. (D) Results of enrichment on different pathways were
shown by KEGG enrichment analysis of differential genes. (E) Enrichment score values on different pathways were displayed by GSEA scoring of GO-
BP enrichment entries for differential genes. (F) Mutation waterfall plot showed the differences in the top 30 most frequently mutated genes in the
somatic cells between the two groups. The upper bars indicated the mutation load for each sample and the right bars indicated the total percentage
of mutations of the genes in these samples. (G) Mutation waterfall plot showed mutations load of the genes that constituted the PLP2+ Tumor EPCs
score in the samples. The upper bars indicated the mutation load for each sample, and the right bars indicated the total proportion of mutations of
this gene in these samples. (H) Bar graph showed the results of predicting chromosome gains and losses in TCGA samples. Blue color indicated
chromosome copy number gain; red color indicated chromosome copy number loss; orange color indicated no change in chromosome copy
number. (I) Heatmap showed the correlation of mutation profiles of genes that constituted the PLP2+ Tumor EPCs score. (J) Lollipop chart
visualized the mutation analysis of genes. (K) Box-and-line plot showed the differences of mutation load in high and low PLP2+ Tumor EPCs score
groups. (L) Scatter plot showed the correlation analysis between mutation load and PLP2+ Tumor EPCs score. (M) Scoring according to tumor
mutation load,all datas were divided into four groups: high-risk high mutation load, high-risk low mutation load, low-risk high mutation load, and
low-risk low mutation load, and the curve showed the survival analysis results of the four groups. (N) Violin plots showed the differences of different
drug sensitivities in the high and low PLP2+ Tumor EPCs score group. ***, p < 0.001 indicated a significant difference.
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low-risk high mutation load group had the best survival, while the

high-risk high mutation load group had the worst survival (p <

0.0001) (Figure 9M).
Drug sensitivity analysis

Finally, the differences in different drug sensitivities in the high

PLP2+ Tumor EPCs score group versus the low PLP2+ Tumor

EPCs score group were shown by violin plots (Figure 9N). For

example, CI.1040, Nutlin.3a, PF.02341066, Metformin, EHT.1864,

and LFM.A13 had higher drug sensitivities in high PLP2+ Tumor

EPCs group than in low PLP2+ Tumor EPCs score group.
Experimental verification

To further elucidate the function of ATF6, we conducted in

vitro functional experiments. As shown in Figures 10A, B, the CCK8

experiment showed that compared with the control group, the

proliferation capacity of the two cell lines in the ATF6 knockdown

group was significantly decreased. The results of plate cloning

showed that the number and size of colony formation in both cell

lines were significantly inhibited after ATF6 gene knockdown

(Figures 10C, D). Further, the inhibitory effect of ATF6

knockdown on the proliferation of two cervical cancer cell lines

was demonstrated. The subsequent wound healing experiment

results showed that the cell migration rate was slower in the

ATF6 knockdown group, and the results were statistically

significant (Figures 10E, F). The results of the Transwell

experiment showed that the number of cells penetrating the lower

chamber was significantly reduced after ATF6 gene knockdown,

indicating that ATF6 gene knockdown significantly inhibited the

migration and invasion ability of cervical cancer cells

(Figures 10G–I).
Discussion

In recent years, the rapid advancement of bioinformatics has

profoundly accelerated the diagnosis and prognosis of diseases (48–

50). In this investigation, we employed single-cell RNA sequencing

(scRNA-seq) to comprehensively delineate the cellular

heterogeneity of human CC. Leveraging scRNA-seq technology,

we identified all cellular phenotypes present in CC, including NK_T

cells, epithelial cells, fibroblasts, plasmacytoid dendritic cells

(pDCs), B plasma cells, and myeloid cells. Among these, epithelial

cells emerged as the predominant cellular population. Drawing

upon prior research indicating the pivotal role of squamous

epithelial cell dysfunction in the initiation of cervical cancer (51),

our focus shifted towards the investigation of epithelial cells.

Through inferCNV analysis, we characterized tumor epithelial

cells and conducted dimensionality reduction clustering, revealing

five distinct cellular subgroups: C0 TMPRSS2+ Tumor Epithelial

Progenitor Cells, C1 ANKRD36C+ Tumor Epithelial Progenitor

Cells, C2 HK2+ Tumor Epithelial Progenitor Cells, C3 PLP2+
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Tumor Epithelial Progenitor Cells, and C4 MKI67+ Tumor

Epithelial Progenitor Cells.

Through the application of slingshot, monocle, and

cytoTRACE, the differentiation trajectory of tumor epithelial cells

along a pseudo-temporal sequence was demonstrated. This analysis

identified our targeted subgroup for this study: the C3 PLP2+

Tumor EPCs subgroup. Regarding the nomenclature of this

subgroup gene, previous research suggests that PLP2 is a

transmembrane protein located in the endoplasmic reticulum (52,

53). It is recognized as an oncogenic inducer in various cancers,

including melanoma, osteosarcoma, breast cancer, hepatocellular

carcinoma, and acute lymphoblastic leukemia (54). PLP2 has been

implicated in accelerating UCEC cell proliferation, the epithelial-

mesenchymal transition (EMT) process, invasion, and metastasis,

thereby promoting tumor progression (55). It is associated with the

persistence and metastasis of tumor cells in melanoma and

hematologic malignancies (53). Additionally, PLP2 is known to

enhance tumor sphere-forming ability and cell proliferation (56,

57). It can be seen that there is an inevitable link between PLP2 and

tumor progression. Therefore, we hypothesize that the C3 PLP2+

Tumor EPCs subgroup is intricately linked to the progression of

the tumor.

To explore the interactions between the C3 PLP2+ Tumor EPCs

subgroup and other cell types, CellChat communication pattern

analysis was employed to unveil coordinated responses among

different cell types. Distinct cell types can simultaneously activate

either common cell type-independent signaling transduction

pathways or distinct cell type-specific signaling transduction

pathways. This methodology is utilized for inferring, analyzing,

and visualizing intercellular communication from given scRNA-seq

data (31). Through the application of CellChat to depict the

relationships between the tumor epithelial cell subgroup and

other cell types, three patterns were identified along with their

corresponding signal pathway expressions. Notably, the CD99

signaling pathway corresponds to Tumor EPCs pattern 1 and is

secreted by almost all cell types in cervical cancer, signifying its

crucial role as a significant signaling pathway. The presentation of

the subgroups on the CD99 signaling pathway reveals that the C3

PLP2+ Tumor EPCs subgroup has the highest quantity and

centralization score, providing evidence of a robust association

between this pathway and the C3 PLP2+ Tumor EPCs subgroup.

This confirmation underscores the significance of the C3 PLP2+

Tumor EPCs subgroup as the focal point in this study.

To substantiate the role of the C3 PLP2+ Tumor Epithelial

Progenitor Cells subgroup in tumor advancement, we proceeded

with the development of a novel prognostic model using LASSO

regression analysis and COX risk regression analysis. This model

was designed to elucidate the association between this subgroup and

prognosis, with a focus on nine selected genes to establish the PLP2

+ Tumor EPCs score. Among the nine genes in the model, PLAG1 is

acknowledged as an oncogene with significant DNA binding affinity

and overlapping functions. Its involvement in promoter swapping

and subsequent activation plays a pivotal role in the pathogenesis of

pleomorphic adenomas of the salivary gland, lipoblastomas, and

hepatoblastomas (58–60). ERG, in concert with co-repressive

proteins such as HDAC and EZH2, governs AR transcriptional
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activity, suppressing epithelial differentiation and fostering tumor

progression (61). ELF1 exhibits heightened expression in glioma

tissues and exhibits a close correlation with WHO grading and

patient Karnofsky Performance Status (KPS) scores, suggesting its

potential role as a tumor-promoting factor (62). ATF6 serves as an

inducer of genes that augment protein folding and restore protein

homeostasis (63), while also promoting inflammation during the

course of chronic pancreatitis (64). SPIB is upregulated in various

malignant tumors, including colorectal cancer, hepatocellular

carcinoma, and gastric cancer (65).

The constructed PLP2+ Tumor EPCs score has been

demonstrated as an independent prognostic factor. Based on the
Frontiers in Immunology 18
median risk score, it has been divided into two distinct prognostic

groups: the high PLP2+ Tumor EPCs score group and the low PLP2

+ Tumor EPCs score group. Subsequent construction of ROC

curves and column charts, along with comprehensive analysis,

indicates that a low PLP2+ Tumor EPCs score is associated with

a better prognosis, while a high PLP2+ Tumor EPCs score is

conversely related to a poorer prognosis. Therefore, the PLP2+

Tumor EPCs score can serve as a theoretical basis for clinical

decision-making.

The immune system plays a pivotal role in carcinogenesis (66).

It is widely acknowledged that the migratory capacity of tumor cells

is closely associated with poor prognosis and recurrence (67).
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FIGURE 10

ATF6 significantly affects the proliferation and migration of cervical cancer cell lines. (A, B) CCK-8 experiment. After ATF6 knockdown, the
proliferation ability of SiHa and Hela cell lines decreased significantly. (C, D) Plate cloning experiment. After ATF6 knockdown, the colony formation
ability of SiHa and Hela cell lines decreased significantly. (E, F) wound healing test. After ATF6 knockdown, the migration ability of SiHa and Hela cell
lines decreased significantly. (G–I) Transwell experiment. After ATF6 knockdown, the migration and invasion ability of SiHa and Hela cell lines were
significantly reduced. (**P<0.01; ***P< 0.001).
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Immune cells form the cellular foundation for immunotherapy, and

gaining in-depth insights into immune infiltration is crucial for

uncovering potential molecular mechanisms and providing new

immunotherapeutic strategies to enhance clinical outcomes (68).

Therefore, to further discuss the role of the PLP2+ Tumor EPCs

score in the tumor process, we analyzed the immune infiltration in

two groups based on the PLP2+ Tumor EPCs score (high PLP2+

Tumor EPCs score group and low PLP2+ Tumor EPCs score

group). The high PLP2+ Tumor EPCs score group was found to

have a higher prevalence of activated Mast cells, Macrophages M0,

and activated Dendritic cells. In contrast, the low PLP2+ Tumor

EPCs score group exhibited a higher prevalence of T cells CD8,

regulatory T cells, and naive B cells, mostly associated with

favorable prognoses in various cancers (69). Visualization of the

analysis results through Stromal Score, Immune Score, ESTIMATE

Score, and Tumor Purity revealed that the Stromal Score had no

statistical significance. A higher estimated score in Immune Score

indicated a greater abundance of immune components in the tumor

microenvironment (TME), while the ESTIMATE Score,

representing the sum of Immune Score and Stromal Score,

reflected the comprehensive proportion of these two components

in the TME (70). Tumor purity refers to the proportion of tumor

cells in tumor tissue (71). Consequently, the conclusion can be

drawn that the low PLP2+ Tumor EPCs score group has a higher

total of immune and stromal components, with a lower proportion

of tumor cells, potentially correlating with better prognostic

outcomes in this group.

The presentation includes differential gene expression, enriched

pathways, mutation profiles, and variances in drug sensitivity

between the two groups. Notably, drugs such as CI.1040,

Nutlin.3a, PF.02341066, Metformin, EHT.1864, and LFM.A13

have undergone investigation in various malignancies,

encompassing gastric cancer, breast cancer, endometrial cancer,

and prostate cancer (72–75). Metformin has emerged as a

promising anti-tumor agent, leading to significant advancements

in the management of breast cancer and colorectal cancer (72).

Nutlin-3a exhibits immune-modulating properties, rendering it a

viable option for tumor therapy (76). PF.02341066 serves as a multi-

target inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and

MET proto-oncogene receptor tyrosine kinase, and is the first agent

approved by the U.S. Food and Drug Administration (FDA) and the

European Medicines Agency (EMA) for the treatment of advanced

ROS1 fusion-positive lung cancer (77, 78). Based on the analysis of

drug sensitivity, it is suggested that heightened sensitivity to drugs

may correlate with a high PLP2+ Tumor EPCs score. Our findings

from drug sensitivity analysis furnish a foundation for the

election of targeted therapies for cervical cancer patients and

provide novel insights for the development of innovative targeted

therapeutic agents.

Furthermore, our cellular experiments have provided additional

evidence regarding the functions of key molecules. However, this

study still has certain limitations. Firstly, the sample size selected is

relatively small, focusing only on a small subset of CC patients.

Secondly, we conducted only transcriptomic studies and in vitro

experiments. Thirdly, in previous studies, it has been found that

there is a link between cervical cancer and HPV infection. In cases
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of cervical squamous lesions, the hrHPV positivity rate was 55.6%

(79). The relationship between the C3 PLP2+ Tumor EPCs and

HPV infection can be further explored in the following studies.

Fourth, the article mentions the cellular immune infiltration in

different groups. Studies have proposed that T lymphocytes can

improve the tumor microenvironment of cervical cancer, improve

treatment efficacy, and improve prognosis (80, 81), and may

continue to explore in this direction in the future. In subsequent

research, we plan to validate the role of the PLP2+ Tumor EPCs

score in CC across a larger sample size. Additionally, we aim to

explore the functions of relevant subgroups and key molecules in

various omics data, such as metabolomics, proteomics, and ATAC-

seq. We will integrate in vivo and in vitro experiments to provide

more comprehensive validation.
Conclusion

In summary, our investigation elucidated alterations in the tumor

microenvironment and highlighted the pivotal role of the C3 PLP2+

Tumor Epithelial Progenitor Cells subpopulation in the onset and

progression of cervical carcinoma (CC). Additionally, we identified

an independent prognostic factor, the PLP2+ Tumor EPCs score. Our

findings unveil prospective therapeutic targets for CC, offering

valuable resources and enhanced understanding of the etiology and

progression of the disease.
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SUPPLEMENTARY FIGURE 1

The InferCNV heatmap illustrates copy number variations in Epithelial cells,

using NK T cells as reference cells.

SUPPLEMENTARY FIGURE 2

The box plots depict the differential expression of modeled genes in the high
PLP2+ Tumor EPCs score group and low PLP2+ Tumor EPCs score group, as

well as variations in expression across different age groups, T, N, M stages,
and ethnicities.
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