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Background: The relationship between inflammation-related genes (IRGs) and
keloid disease (KD) is currently unclear. The aim of this study was to identify a new
set of inflammation-related biomarkers in KD.

Methods: GSE145725 and GSE7890 datasets were used in this study. A list of
3026 IRGs was obtained from the Molecular Signatures Database. Differentially
expressed inflammation-related genes (DEGs) were obtained by taking the
intersection of DEGs between KD and control samples and the list of IRGs.
Candidate genes were selected using least absolute shrinkage and selection
operator (LASSO) regression analysis. Candidate genes with consistent
expression differences between KD and control in both GSE145725 and
GSE7890 datasets were screened as biomarkers. An alignment diagram was
constructed and validated, and in silico immune infiltration analysis and drug
prediction were performed. Finally, RT-gPCR was performed on KD samples to
analyze the expression of the identified biomarkers.

Results: A total of 889 DEGs were identified from the GSE145725 dataset, 169 of
which were IRGs. Three candidate genes (TRIM32, LPAR1 and FOXF1) were
identified by the LASSO regression analysis, and expression validation analysis
suggested that FOXF1 and LPAR1 were down-regulated in KD samples and
TRIM32 was up-regulated. All three candidate genes had consistent changes in
expression in both the GSE145725 and GSE7890 datasets. An alignment diagram
was constructed to predict KD. Effector memory CD4 T cells, T follicular helper
cell, Myeloid derived suppressor cell, activated dendritic cell, Immature dendritic
cell and Monocyte were differentially expressed between the KD and control
group. Sixty-seven compounds that may act on FOXF1, 108 compounds that may
act on LPAR1 and 56 compounds that may act on TRIM32 were predicted. Finally,
RT-gPCR showed that the expression of LPARI was significantly lower in KD
samples compared to normal samples whereas TRIM32 was significantly higher,
while there was no difference in the expression of FOXF1.

Conclusion: This study provides a new perspective to study the relationship
between IRGs and KD.
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1 Introduction

Keloid disease (KD) is a benign skin fibroplasia caused by
abnormal wound healing after skin injury (1) leading to
hyperplasic invasive growth, and has a high recurrence rate (2).
The occurrence of KD involves trauma, chronic inflammation, and
fibrosis tumor inheritance (1, 3, 4). Keloids can grow on all parts of
the body (5), and are accompanied by unbearable itching and pain
which seriously affects quality of life. Keloids, especially on the face,
can also have a serious impact on mental health (6, 7). Although
there are many studies on KD the pathogenesis is still not
completely clear (8); improved understanding of the pathogenesis
will likely lead to new treatments. Several studies have shown that
inflammation is involved in regulating KD collagen synthesis, and
the intensity of inflammation is positively correlated with the final
scar size (9, 10). Therefore, study of the inflammation-related
molecular pathogenesis of KD may lead to new KD prevention
and treatment strategies.

It is well known that scars are the result of both inflammation
and fibrosis after injury repair (1, 8, 11). In the early stage of
repair, inflammatory cells play a pro-inflammatory role through
cytokines. It usually enters the repair and healing stage after 72
hours and finally completes the remodeling of collagen (12). Pro-
inflammatory factors such as IL-1c, IL-1f3, IL-6 and TNF-o are
up-regulated in KD tissue (11). It has been speculated that chronic
inflammation persists in KD causing excessive deposition of
extracellular matrix which is an important cause of keloid
formation (13, 14). This indicates that KD is an inflammatory
disease of the skin (12). In addition, Shi et al. demonstrated that
IL-10 can negatively regulate collagen synthesis, thereby reducing
scar formation (13, 15). Nishiguchi et al. reported that the
chemokine CXCL12 can promote scar formation in mice (12,
16). A large number of studies have shown that KD is correlated
with chronic inflammation (11, 12, 17). However, few studies have
explored of inflammation-related genes IRGs in KD and the
specific mechanism of action in KD pathogenesis. Therefore, we
identified and analyzed differentially-expressed IRGs in KD in
order to discover new genes that might be important in KD
pathogenesis, both as biomarkers for early diagnosis and as
novel drug targets.

2 Materials and methods
2.1 Data source

Two KD datasets (GSE145725 and GSE7890) were obtained from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/gds). The GSE145725 dataset contains 9
fibroblast samples from KD and 10 normal fibroblast control
samples. The GSE7890 dataset contains 5 fibroblast samples from
KD and 5 normal fibroblast control samples. IRGs were obtained
from the Molecular Signatures Database (MSigDB, https://www.gsea-
msig) by using the search term “INFLAMMATORY”. A total of 57
fibrosis-related genes were shown in Supplementary Table 1.
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2.2 ldentification of inflammation-
related DEGs

Differential expression analysis was performed between KD and
control samples in the GSE145725 dataset using the limma R
package (18) to screen differentially expressed genes (DEGs)
using cutoffs of |log,FC| > 0.5 and adj. P < 0.05. Gene ontology
(GO) and Kyoto encyclopedia of genes and genomes (KEGG)
enrichment analyses of DEGs were completed using the
clusterProfiler package (19). Inflammation-related DEGs were
obtained by taking the intersection of DEGs and IRGs. To
explore whether interactions existed among the inflammation-
related DEGs, a protein-protein interaction (PPI) network was
created using STRING (https://string-db.org).

2.3 Acquisition of biomarkers

To obtain candidate genes, least absolute shrinkage and
selection operator (LASSO) regression analysis SVM, and Boruta
algorithms were performed on the inflammation-related DEGs
using the glmnet (20), e1071 and Boruta packages. In addition,
candidate genes were validated by checking that they were also
differentially expressed in the GSE7890 dataset. Validated candidate
genes were screened as biomarkers. To explore the potential
mechanisms of the biomarkers, Gene Set Enrichment Analysis
(GSEA) of biomarkers in GSE145725 was conducted using the
h.all.v2023.1.Hs.symbols.gmt dataset in the clusterProfiler package
(19). Differential analysis of fibrosis-related genes in the GSE145725
dataset and correlation analysis of differential fibrosis-related genes
with biomarkers to further explore the function of biomarkers.

2.4 Construction and validation of
alignment diagram

To predict the probability of KD from the expression of the
identified biomarkers, an alignment diagram was constructed using
the rms package (21) in R. In order to assess the predictive ability of
the alignment diagram, a calibration curve was plotted using the
calibrate function in the rms package, where the closer the slope is
to 1, the more accurate the prediction. In order to evaluate the
clinical effectiveness of the alignment diagram, decision curve
analysis (DCA) was performed using the “rmda” package. Based
on the DCA curve, the clinical impact curve (CIC) was plotted using
the model to predict the risk stratification of 1000 people.

2.5 Immuno-infiltration analysis and
drug prediction

The immune abundance of 28 immune cells in KD and control
samples from GSE145725 was calculated using the ssGSEA
algorithm (22) to obtain differentially expressed (DE) immune
cells, and the correlation between the ssGSEA scores of DE
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immune cells and biomarkers was calculated and presented using a
heatmap. Compounds that may act on biomarkers were predicted
using the Comparative Toxicogenomics Database (CTD) database
(http://ctdbT2Dme.org/) and key gene-compound networks
were constructed.

2.6 Protein expression analysis of
biomarkers and construction of miRNA-
MRNA-TFs regulatory network

The expression of the identified biomarkers was analyzed in
different human skin tissues using the Bgee database (https://
bgee.org/). To further explore their expression in different cell types
of the skin, the Human Protein Atlas (http://www.proteinatlas.org/)
was used. The miRNAs that may target the identified biomarkers
were predicted using the MicroRNA Target Prediction Database
(miRDB, https://mirdb.org/) and The Encyclopedia of RNA
Interactomes (ENCORI, http://starbase.sysu.edu.cn/index.php), and
the intersection of the predictions from the two databases was taken
as the candidate miRNA. Transcription factors (TF) that regulate the
expression of the identified biomarkers were predicted using the
NetworkAnalyst online tool (https://www.networkanalyst.ca/ and
hTFtarget database (http://bioinfo life hust.edu.cn). Finally, miRNA-
mRNA-TF regulatory networks were constructed using Cytoscape.

2.7 Statistical analysis

The limma package was used to identify DEGs. Venn diagrams
were constructed using the venn package. ClusterProfiler was used for
enrichment analysis. STRING was used to build PPI networks. LASSO
was used to screen candidate genes. ssGSEA was used to calculate the
infiltration abundance of immune cells. Statistical analysis was done
using R software (version 4.1.1 https://www.r-project.org/). Differences
between groups were analyzed using the Wilcox test. P < 0.05 was
considered a statistically significant difference.

2.8 RT-qPCR Analysis

The expression of the three biomarkers was measured using RT-
qPCR. We collected KD and control samples from The Second
Hospital of Shandong University department of plastic surgery with
5 samples in each group. This study was performed in line with the
principles of the Declaration of Helsinki. Approval was granted by
the Ethics Committee of the Second Hospital of Shandong
university(Date: December 6, 2023; No: KYLL-2023LWO088).
Total RNA was extracted using TRIzol (Ambion, Austin USA)
according to the manufacturer’s instructions. The extracted RNA
was reverse transcribed into cDNA using the SureScript First strand
cDNA synthesis kit before RT-qPCR. RT-qPCR was performed
using the 2xUniversal Blue SYBR Green qPCR Master Mix
(Servicebio, Wuhan China). The GAPDH gene was used as a
housekeeping gene and the relative expression of the biomarkers

was determined using the 2"**“" method.

Frontiers in Immunology

10.3389/fimmu.2024.1351513

3 Results

3.1 Identification of inflammation-
associated DEGs in the GSE145725 dataset

A total of 889 DEGs were identified from the GSE145725 dataset, of
which 433 were up-regulated in KD and 456 were down-regulated
(Figures 1A, B). GO analysis revealed that DEGs were associated with
skeletal system morphogenesis, regulation of animal organ
morphogenesis, and cartilage development (Supplementary Figure 1A)
and KEGG analysis revealed enriched in transcriptional misregulation in
cancer, cGMP-PKG signaling pathway, and Wnt signaling pathway
(Supplementary Figure 1B). A total of 169 inflammation-related DEGs
were obtained from the overlap between the 889 DEGs and 3026 IRGs
(Figure 1C). To explore whether there are any known interactions
between the proteins coded for by the 169 inflammation-associated
DEGs, a PPI network was created (Figure 1D) which had a confidence
level of 0.4 (Confidence = 0.4) with strong interactions between A2M
and SERPINF1, ABCCl1 and CASP3, and ADAMTS3 and TTC12.

3.2 Screening and verification of
biomarkers for KD

FOXF1, LPAR1, SERPINF1, TRIM32 were found as candidate
genes by machine learning (SVM and Boruta) (Supplementary
Figure 2A). The results of the LASSO regression analysis suggested
that when A = 0.004102608 three candidate genes (TRIM32, LPARI,
and FOXFI) with regression coefficients that were not penalized to 0
were obtained after tenfold cross-validation (Figure 2A). FOXFI and
LPARI were down-regulated in KD samples and TRIM32 was up-
regulated in KD samples and all three candidate genes had the same
expression trends in the GSE145725 and GSE7890 datasets (Figure 2B).
GSEA results showed that FOXFI was mainly enriched in E2f targets,
G2M checkpoint, and myogenesis. LPARI was mainly enriched in
reactive oxygen species pathway, apoptosis, and IFN-o response.
TRIM32 was mainly enriched in IFN-a response, apoptosis, and
hypoxia (Figure 2C). Correlation analysis showed that nine fibrosis-
related genes were significantly different between KD and controls and
showed high correlation with biomarkers (Supplementary Figure 2B).

3.3 Prediction of KD risk from
biomarker expression

Based on the expression of the biomarkers, an alignment diagram
was constructed. The score of each sample was calculated by the
alignment diagram, with a higher score indicating a higher likelihood of
KD (Figure 3A). The slope of the calibration curve is close to 1 and the
CIC converge with the trend of the real situation suggests that the
predictive efficacy of the model is excellent (Figure 3B). Expression
distribution analysis of the identified biomarkers suggested that they
are expressed at high levels in the skin of the abdomen (Figure 3C). In
addition, FOXFI is expressed in endothelial cells and smooth muscle
cells, LPARI is expressed in endothelial cells and fibrosis, and TRIM32
is expressed in mitotic cells (skin) (Figure 3D).
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FIGURE 1
Differential expression analysis in the GSE145725 dataset. (A) Heatmap of differentially expressed genes (DEGs) between keloid disease (KD) and
normal samples. A heat map of gene density is shown at the top, and a heat map of gene expression is shown at the bottom (red is high expression,
blue is low expression). (B) Volcano plot of DEGs between KD and normal groups. Each dot represents a gene, the darker colored dots indicate
inflammation-related genes, and the black circles indicate genes with an adjusted P value < 0.01. The names of genes associated with inflammation
with very significant differences are labeled in the figure. (C) Venn diagram of 169 inflammation-related DEGs obtained by overlapping the DEGs and
inflammation-related genes (IRGs). (D) Protein-protein interaction (PPI) network of 169 inflammation-associated DEGs.

3.4 Immune cell infiltration and its
relevance with biomarkers

Six differentially abundant immune cells were identified
between the KD and control group (Figure 4A). Correlation
analysis between the ssGSEA scores of the differentially
abundant immune cells and the biomarkers suggested that
LPARI was positively correlated with activated CD4 T cells,
myeloid-derived suppressor cells, effector memory CD4 T cells,
and type 2 T helper cells (P < 0.01), TRIM32 was positively
correlated with monocytes (P < 0.01), and FOXFI was positively
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correlated with activated CD8 T cells, and myeloid-derived
suppressor cells (P < 0.01) (Figure 4B).

3.5 Prediction of potential
regulatory mechanisms

A total of 32 miRNAs and 9 TFs were obtained and a miRNA-
mRNA-TF regulatory network was constructed (Figure 5A; biomarkers in
red, miRNAs in blue and TFs in green). FOXF1 and LPARI were regulated
by E2F1 and TRIM32 and FOXFI were regulated by CREBI. Sixty-seven
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Identification of biomarkers and exploration of potential function. (A) Error plots for 10-fold cross-validation, plot of gene coefficients, and receiver

operating characteristic (ROC) curve of the least absolute shrinkage and selection operator (LASSO) model. The different colored lines represent different
genes. AUC, area under the curve. (B) The expression of biomarkers in the KD and normal samples in the GSE7890 and GSE145725 datasets. (C) The top
10 pathways significantly enriched in FOXF1, LPAR1, and TRIM32 according to gene set enrichment analysis (GSEA) enrichment analysis. * means p<0.05,

*** means p<0.001.

compounds that may act on FOXFI, 108 compounds that may act on
LPARI, and 56 compounds that may act on TRIM32 were predicted and
gene-compound action networks were constructed (Figure 5B).

3.6 Expression of biomarkers in

clinical samples

RT-qPCR data showed that the mRNA level of LPARI was
significantly lower, and the mRNA level of TRIM32 was
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expression of FOXFI (Figure 6).

4 Discussion

significantly higher (P < 0.05) in the KD samples compared to
the normal samples. There was no significant difference in the

KD is a benign skin tumor caused by abnormal hyperplasia of

05

connective tissue in the skin, that occurs during prolonged
abnormal wound healing. The mechanisms by which keloids form
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FIGURE 3

Construction of the alignment diagram to predict the risk of KD. (A) Alignment diagram based on expression of FOXF1, LPAR1, and TRIM32.
(B) Clinical impact curve (CIC), decision curve analysis (DCA), and calibration curve of the alignment diagram. (C) Distribution of biomarkers in

human tissues. (D) Expression of biomarkers in different skin cell types.

are currently unclear. Some scholars believe that the abnormal
response of fibroblasts to inflammation is causes keloid formation.
We propose that the inflammatory response is a significant factor in
keloid pathogenesis (13-15). However, most of the current research
on keloids focuses on fibroblasts and collagen with little emphasis
on the importance of inflammatory genes. Therefore, finding key
inflammatory genes associated with KD may help to identify new
diagnostic biomarkers and drug targets.

In this study we explored the differentially expressed IRGs in
two KD datasets, conducted multiple functional enrichment
analyses, constructed a PPI network, and explored immune
infiltration in the KD microenvironment. Finally, three keloid
biomarkers were identified: LPARI, FOXF1 and TRIM32. In the
RT-qPCR data collected from our clinical samples LPARI and
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TRIM32 were differentially expressed in KD samples (P<0.05)
whereas FOXF1 was not (P>0.05).

The protein encoded by TRIM32 is a member of the tripartite
motif-containing family. This protein is located in the cytoplasm
and nucleus and has E3 ubiquitin ligase activity (23). TRIM32 can
ubiquitinate PIAS4/PIASY and promote its degradation in UVB
and TNF-o stimulated keratinocytes. In our study, the GSEA results
indicated that TRIM32 was mainly enriched in IFN-a. reactions, cell
apoptosis, and hypoxia. Chaudhuri et al. reported that knocking
down TRIM32 inhibited glucose-induced podocyte apoptosis,
oxidative stress, and inflammatory response (24). Liu et al.
reported that the gene manipulation of Trim32 can regulate Th17
vs. Th2 immunity in response to TLR activation, suggesting that
atopic dermatitis is a result of TRIM32 protein deficiency in the
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FIGURE 4

Immune infiltration analysis. (A) Relative abundance of immune cells and comparison between KD and normal samples.

**p<(0.01. (B) Correlation between biomarkers and immune cells.

skin. It was speculated that TRIM32 plays a crucial role in
inflammatory diseases and congenital immunodeficiency diseases
(25). Our analysis found that TRIM32 was upregulated in publicly
available KD microarray data, and RT-qPCR from our clinical
samples confirmed this (P < 0.05). We speculate that TRIM32 is
closely involved in the formation of keloids. Further research on the
inflammatory regulation of scarring by TRIM32 may establish
TRIM32 as a potential treatment target for keloids.

The protein encoded by LPARI is an integral membrane protein in
the family of lysophosphatidic acid receptors also known as EDG
receptors (26, 27). LPARI is involved in the reorganization, migration,
differentiation, and proliferation of actin cytoskeleton, as well as its
response to tissue damage and infection (28-30). LPARI promotes the
formation of lamellar pseudopodia at the anterior edge of migrating
cells by activating RACI. This activation plays a role in chemotaxis and
cell migration, which are important in injury responses (31-33). Wu
et al. reported that LPARI can mediate various biological functions of
tumors (34) and participate in the activation, proliferation
differentiation, and migration of immune cells (32). Our correlation
analysis between the ssGSEA scores of the differentially abundant
immune cells and biomarkers in this study showed that LPARI was
positively correlated with activated CD4 T cells and effector memory
CD4 T cells. LPARI expression was reported to be positively correlated
with the expression of chemokines and chemokine receptors,
suggesting that LPARI may regulate immune cell migration (35).
The E2F family of transcription factors regulate cell function via
gene transcription. E2F was reported as a novel fibrotic gene
regulating pulmonary fibrosis (36). The enrichment of single gene
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GSEA in this study indicated that LPARI is significantly enriched in the
“E2F target” pathway. LPARI is most highly expressed in endothelial
cells and fibroblasts in skin and soft tissues. Our analysis showed that
LPARI was downregulated in KD samples, and this was confirmed by
our RT-qPCR data from clinical samples. We therefore speculate that
LPARI plays an important inflammatory and immune regulatory role
in the formation of keloids.

FOXF1 belongs to the forkhead transcription factor family and
is characterized by a unique forkhead domain (37). In an immune
cell analysis of infantile angiomatosis, FOXFI was found to be
positively correlated with the degree of monocyte infiltration (38).
Recent studies have shown that overexpression of FOXFI can
inhibit the production of o-SMA, fibronectin, and type IV
collagen, thereby alleviating TGF-B1-induced fibrosis (39). In
addition, overexpression of FOXFI can promote the proliferation
of BEAS-2B cells, inhibit apoptosis, and inhibit inflammation in
response to TGF-P1. Fenghua et al. reported that increasing FOXF]I
expression in endothelial cells could alleviate pulmonary fibrosis
(40). FOXFI is highly expressed in both endothelial cells and
fibroblasts, suggesting that FOXFI is involved in chronic
inflammation following tissue injury and inhibits collagen
deposition and fiber proliferation in keloid formation. In this
study, GSEA results showed that FOXFI was mainly enriched in
E2f targets, G2M checkpoints and myogenesis. However, in our RT-
qPCR experiment, we found no significant difference in FOXFI
expression between KD and normal samples (P > 0.05). This may be
due to the smaller number of samples in the verification set (5 vs. 5)
compared to the microarray data (10 vs. 9).
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Our clinical predictive model predicts that the risk of
developing KD increases as the expression of FOXFI and LPARI
decrease and the expression of TRIM32 increases. Previous studies
on these three genes support this prediction. FOXFI is associated
with tissue development and inhibition of FOXFI may cause
abnormalities in the cell cycle of wound tissue leading to
impaired wound healing. The inhibition of LPARI leads to a

decrease in chemotaxis which is crucial for the inflammatory
response around the wound. Moderate migration of inflammatory
cells such as macrophages, mast cells, and granulocytes helps to
remove necrotic cell debris and repair fibers during wound healing.
Decreased expression of LPARI inhibits the formation of lamellar
pseudopodia at the leading edge of migrating cells which also slows
down wound healing. TRIM32 promotes the degradation of PIAS4
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(A) FOXF1. (B) LPARI. (C) TRIM32. ns, not significant; *p<0.05; **p<0.01.
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in keratinocytes. Therefore, increased TRIM32 expression reduces
the inhibitory effect of PIAS4 on the formation of keratinocytes,
resulting in a large accumulation of keratinocytes around the
wound, which secrete keratin fibers that are the main
components of scar tissue.

In this study, immuno-infiltration analysis showed significant
differences between keloid and normal tissue in CD4+ effector T
cells, myeloid-derived suppressor cells, activated dendritic cells,
immature dendritic cells, follicular helper T cells, and monocytes.
The levels of CD4+ effector T cells, myeloid-derived suppressor
cells, activated dendritic cells, and immature dendritic cells were
significantly lower in KD tissues than in control tissues while the
levels of follicular helper T cells and monocytes were significantly
higher. It has been confirmed that the Th2 characteristic is
possessed by KD (41). Our analysis suggested that FOXFI and
LPARI were significantly negatively correlated with monocytes and
follicular helper T cells, and significantly positively correlated with
myeloid-derived suppressor cells, and that the levels of monocytes
and follicular T helper cells at the wound were significantly
increased. Henderson et al. analyzed more than 100,000 human
hepatocytes and identified a subset of macrophages associated with
scarring. This group of macrophages express TRIM32 and CD9, are
differentiated from circulating monocytes, and are known to
promote fibrosis (42). Previous studies have reported that
monocytes and macrophages are key components of the immune
system and participate in the regulation of inflammatory immunity
and tissue repair by activating T and B lymphocytes (43). Follicular
helper T cells are involved in the humoral immune regulation of
inflammation and play a crucial role in autoimmunity and tumor-
related immunity (44). Myeloid-derived suppressor cells are a group
of suppressor cells of bone marrow origin which are precursors of
dendritic cells, macrophages, and granulocytes, and have the ability
to significantly inhibit immune cell responses (45). Chronic
inflammation and fibrosis may be caused by improper activation
of the immune response mediated by macrophages, an example of
which is the development of fibrosis in systemic sclerosis (46). The
biomarkers we identified are related to monocytes, myeloid-derived
suppressor cells, and follicular helper T cells, which may all play an
important role in the formation of keloids.

In the immune infiltration analysis, we found that there were
different degrees of correlation between the biomarkers and the
infiltration of immune cells. In order to further explore the role of
immune cells in the development of KD, we used the HPA
database to explore the expression of the biomarkers in different
cell types. LPAR1 was enriched in macrophages, T-cells and mast
cells, TRIM32 was enriched in T cells and mast cells, while FOXF1
was not significantly expressed in any immune cells. In a mouse
model of multiple sclerosis, Choi et al. found that LPARI-3
antagonists increased cell infiltration and immune cell
activation (including macrophages) (PMID:34666785). In
addition, Choi et al. demonstrated that in the immune
microenvironment of tumors, different LPA receptors promoted
metastasis, which helped create a T cell rejection and pro-tumor
microenvironment suitable for therapeutic intervention (PMID:
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34788605). Wang et al. reported that in a mouse model of atopic
dermatitis (AD), TRIM32 acted as a regulator of PKC{ and could
control the differentiation of Th2 cells, which are very important
for the pathogenesis of AD (PMID: 33096083). We believe that
immune cells, in particular T cells, play an important role in the
development of KD, and are expected to become a new target for
KD immunotherapy. However, the molecular mechanisms
involved need further investigation.

In this study the transcriptional regulatory network analysis
indicated that FOXFI and LPARI share two transcriptional
regulatory factors, E2F1 and SP1. In addition, the two share three
miRNAs, hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-miR-429. The
downregulation of FOXFI and LPARI in keloid patients could be
caused by the inactivation of E2F1 and SP1 due to mutations or other
factors, or by the effect of the three miRNAs. TRIM32 did not share any
miRNAs with the other two genes. JUND and TP53 were predicted to
target TRIM32, which may contribute to its upregulation.

This study has several limitations. First, our analysis was based
on a limited number of clinical samples from public databases, and
may suffer from poor statistical power due to the small sample size.
In addition, our analysis of the expression patterns of the identified
biomarkers was based on public databases, and further validation is
necessary, which would need to be done by collecting a larger
number of clinical samples or conducting animal experiments.
Given these limitations, larger datasets are needed to support
further research and validation of the genes and molecular
mechanisms that we identified.

In this article we analyzed IRGs in KD, leading to the
identification of two new biomarkers of keloid tissue. Further
studies on IRGs in KD may lead to new tools for early diagnosis
as well as the identification of novel drug targets for treatment
of KD.
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