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Background: The relationship between inflammation-related genes (IRGs) and

keloid disease (KD) is currently unclear. The aim of this study was to identify a new

set of inflammation-related biomarkers in KD.

Methods: GSE145725 and GSE7890 datasets were used in this study. A list of

3026 IRGs was obtained from the Molecular Signatures Database. Differentially

expressed inflammation-related genes (DEGs) were obtained by taking the

intersection of DEGs between KD and control samples and the list of IRGs.

Candidate genes were selected using least absolute shrinkage and selection

operator (LASSO) regression analysis. Candidate genes with consistent

expression differences between KD and control in both GSE145725 and

GSE7890 datasets were screened as biomarkers. An alignment diagram was

constructed and validated, and in silico immune infiltration analysis and drug

prediction were performed. Finally, RT-qPCR was performed on KD samples to

analyze the expression of the identified biomarkers.

Results: A total of 889 DEGs were identified from the GSE145725 dataset, 169 of

which were IRGs. Three candidate genes (TRIM32, LPAR1 and FOXF1) were

identified by the LASSO regression analysis, and expression validation analysis

suggested that FOXF1 and LPAR1 were down-regulated in KD samples and

TRIM32 was up-regulated. All three candidate genes had consistent changes in

expression in both the GSE145725 and GSE7890 datasets. An alignment diagram

was constructed to predict KD. Effector memory CD4 T cells, T follicular helper

cell, Myeloid derived suppressor cell, activated dendritic cell, Immature dendritic

cell and Monocyte were differentially expressed between the KD and control

group. Sixty-seven compounds that may act on FOXF1, 108 compounds that may

act on LPAR1 and 56 compounds that may act on TRIM32were predicted. Finally,

RT-qPCR showed that the expression of LPAR1 was significantly lower in KD

samples compared to normal samples whereas TRIM32 was significantly higher,

while there was no difference in the expression of FOXF1.

Conclusion: This study provides a new perspective to study the relationship

between IRGs and KD.
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1 Introduction

Keloid disease (KD) is a benign skin fibroplasia caused by

abnormal wound healing after skin injury (1) leading to

hyperplasic invasive growth, and has a high recurrence rate (2).

The occurrence of KD involves trauma, chronic inflammation, and

fibrosis tumor inheritance (1, 3, 4). Keloids can grow on all parts of

the body (5), and are accompanied by unbearable itching and pain

which seriously affects quality of life. Keloids, especially on the face,

can also have a serious impact on mental health (6, 7). Although

there are many studies on KD the pathogenesis is still not

completely clear (8); improved understanding of the pathogenesis

will likely lead to new treatments. Several studies have shown that

inflammation is involved in regulating KD collagen synthesis, and

the intensity of inflammation is positively correlated with the final

scar size (9, 10). Therefore, study of the inflammation-related

molecular pathogenesis of KD may lead to new KD prevention

and treatment strategies.

It is well known that scars are the result of both inflammation

and fibrosis after injury repair (1, 8, 11). In the early stage of

repair, inflammatory cells play a pro-inflammatory role through

cytokines. It usually enters the repair and healing stage after 72

hours and finally completes the remodeling of collagen (12). Pro-

inflammatory factors such as IL-1a, IL-1b, IL-6 and TNF-a are

up-regulated in KD tissue (11). It has been speculated that chronic

inflammation persists in KD causing excessive deposition of

extracellular matrix which is an important cause of keloid

formation (13, 14). This indicates that KD is an inflammatory

disease of the skin (12). In addition, Shi et al. demonstrated that

IL-10 can negatively regulate collagen synthesis, thereby reducing

scar formation (13, 15). Nishiguchi et al. reported that the

chemokine CXCL12 can promote scar formation in mice (12,

16). A large number of studies have shown that KD is correlated

with chronic inflammation (11, 12, 17). However, few studies have

explored of inflammation-related genes IRGs in KD and the

specific mechanism of action in KD pathogenesis. Therefore, we

identified and analyzed differentially-expressed IRGs in KD in

order to discover new genes that might be important in KD

pathogenesis, both as biomarkers for early diagnosis and as

novel drug targets.
2 Materials and methods

2.1 Data source

Two KD datasets (GSE145725 and GSE7890) were obtained from

the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/gds). The GSE145725 dataset contains 9

fibroblast samples from KD and 10 normal fibroblast control

samples. The GSE7890 dataset contains 5 fibroblast samples from

KD and 5 normal fibroblast control samples. IRGs were obtained

from the Molecular Signatures Database (MSigDB, https://www.gsea-

msig) by using the search term “INFLAMMATORY”. A total of 57

fibrosis-related genes were shown in Supplementary Table 1.
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2.2 Identification of inflammation-
related DEGs

Differential expression analysis was performed between KD and

control samples in the GSE145725 dataset using the limma R

package (18) to screen differentially expressed genes (DEGs)

using cutoffs of |log2FC| > 0.5 and adj. P < 0.05. Gene ontology

(GO) and Kyoto encyclopedia of genes and genomes (KEGG)

enrichment analyses of DEGs were completed using the

clusterProfiler package (19). Inflammation-related DEGs were

obtained by taking the intersection of DEGs and IRGs. To

explore whether interactions existed among the inflammation-

related DEGs, a protein-protein interaction (PPI) network was

created using STRING (https://string-db.org).
2.3 Acquisition of biomarkers

To obtain candidate genes, least absolute shrinkage and

selection operator (LASSO) regression analysis SVM, and Boruta

algorithms were performed on the inflammation-related DEGs

using the glmnet (20), e1071 and Boruta packages. In addition,

candidate genes were validated by checking that they were also

differentially expressed in the GSE7890 dataset. Validated candidate

genes were screened as biomarkers. To explore the potential

mechanisms of the biomarkers, Gene Set Enrichment Analysis

(GSEA) of biomarkers in GSE145725 was conducted using the

h.all.v2023.1.Hs.symbols.gmt dataset in the clusterProfiler package

(19). Differential analysis of fibrosis-related genes in the GSE145725

dataset and correlation analysis of differential fibrosis-related genes

with biomarkers to further explore the function of biomarkers.
2.4 Construction and validation of
alignment diagram

To predict the probability of KD from the expression of the

identified biomarkers, an alignment diagram was constructed using

the rms package (21) in R. In order to assess the predictive ability of

the alignment diagram, a calibration curve was plotted using the

calibrate function in the rms package, where the closer the slope is

to 1, the more accurate the prediction. In order to evaluate the

clinical effectiveness of the alignment diagram, decision curve

analysis (DCA) was performed using the “rmda” package. Based

on the DCA curve, the clinical impact curve (CIC) was plotted using

the model to predict the risk stratification of 1000 people.
2.5 Immuno-infiltration analysis and
drug prediction

The immune abundance of 28 immune cells in KD and control

samples from GSE145725 was calculated using the ssGSEA

algorithm (22) to obtain differentially expressed (DE) immune

cells, and the correlation between the ssGSEA scores of DE
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immune cells and biomarkers was calculated and presented using a

heatmap. Compounds that may act on biomarkers were predicted

using the Comparative Toxicogenomics Database (CTD) database

(http://ctdbT2Dme.org/) and key gene-compound networks

were constructed.
2.6 Protein expression analysis of
biomarkers and construction of miRNA-
mRNA-TFs regulatory network

The expression of the identified biomarkers was analyzed in

different human skin tissues using the Bgee database (https://

bgee.org/). To further explore their expression in different cell types

of the skin, the Human Protein Atlas (http://www.proteinatlas.org/)

was used. The miRNAs that may target the identified biomarkers

were predicted using the MicroRNA Target Prediction Database

(miRDB, https://mirdb.org/) and The Encyclopedia of RNA

Interactomes (ENCORI, http://starbase.sysu.edu.cn/index.php), and

the intersection of the predictions from the two databases was taken

as the candidate miRNA. Transcription factors (TF) that regulate the

expression of the identified biomarkers were predicted using the

NetworkAnalyst online tool (https://www.networkanalyst.ca/ and

hTFtarget database (http://bioinfo.life.hust.edu.cn). Finally, miRNA-

mRNA-TF regulatory networks were constructed using Cytoscape.
2.7 Statistical analysis

The limma package was used to identify DEGs. Venn diagrams

were constructed using the venn package. ClusterProfiler was used for

enrichment analysis. STRING was used to build PPI networks. LASSO

was used to screen candidate genes. ssGSEA was used to calculate the

infiltration abundance of immune cells. Statistical analysis was done

using R software (version 4.1.1 https://www.r-project.org/). Differences

between groups were analyzed using the Wilcox test. P < 0.05 was

considered a statistically significant difference.
2.8 RT-qPCR Analysis

The expression of the three biomarkers was measured using RT-

qPCR. We collected KD and control samples from The Second

Hospital of Shandong University department of plastic surgery with

5 samples in each group. This study was performed in line with the

principles of the Declaration of Helsinki. Approval was granted by

the Ethics Committee of the Second Hospital of Shandong

university(Date: December 6, 2023; No: KYLL-2023LW088).

Total RNA was extracted using TRIzol (Ambion, Austin USA)

according to the manufacturer’s instructions. The extracted RNA

was reverse transcribed into cDNA using the SureScript First strand

cDNA synthesis kit before RT-qPCR. RT-qPCR was performed

using the 2xUniversal Blue SYBR Green qPCR Master Mix

(Servicebio, Wuhan China). The GAPDH gene was used as a

housekeeping gene and the relative expression of the biomarkers

was determined using the 2-DDCt method.
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3 Results

3.1 Identification of inflammation-
associated DEGs in the GSE145725 dataset

A total of 889 DEGs were identified from the GSE145725 dataset, of

which 433 were up-regulated in KD and 456 were down-regulated

(Figures 1A, B). GO analysis revealed that DEGs were associated with

skeletal system morphogenesis, regulation of animal organ

morphogenesis, and cartilage development (Supplementary Figure 1A)

and KEGG analysis revealed enriched in transcriptional misregulation in

cancer, cGMP-PKG signaling pathway, and Wnt signaling pathway

(Supplementary Figure 1B). A total of 169 inflammation-related DEGs

were obtained from the overlap between the 889 DEGs and 3026 IRGs

(Figure 1C). To explore whether there are any known interactions

between the proteins coded for by the 169 inflammation-associated

DEGs, a PPI network was created (Figure 1D) which had a confidence

level of 0.4 (Confidence = 0.4) with strong interactions between A2M

and SERPINF1, ABCC1 and CASP3, and ADAMTS3 and TTC12.
3.2 Screening and verification of
biomarkers for KD

FOXF1, LPAR1, SERPINF1, TRIM32 were found as candidate

genes by machine learning (SVM and Boruta) (Supplementary

Figure 2A). The results of the LASSO regression analysis suggested

that when l = 0.004102608 three candidate genes (TRIM32, LPAR1,

and FOXF1) with regression coefficients that were not penalized to 0

were obtained after tenfold cross-validation (Figure 2A). FOXF1 and

LPAR1 were down-regulated in KD samples and TRIM32 was up-

regulated in KD samples and all three candidate genes had the same

expression trends in the GSE145725 and GSE7890 datasets (Figure 2B).

GSEA results showed that FOXF1 was mainly enriched in E2f targets,

G2M checkpoint, and myogenesis. LPAR1 was mainly enriched in

reactive oxygen species pathway, apoptosis, and IFN-a response.

TRIM32 was mainly enriched in IFN-a response, apoptosis, and

hypoxia (Figure 2C). Correlation analysis showed that nine fibrosis-

related genes were significantly different between KD and controls and

showed high correlation with biomarkers (Supplementary Figure 2B).
3.3 Prediction of KD risk from
biomarker expression

Based on the expression of the biomarkers, an alignment diagram

was constructed. The score of each sample was calculated by the

alignment diagram, with a higher score indicating a higher likelihood of

KD (Figure 3A). The slope of the calibration curve is close to 1 and the

CIC converge with the trend of the real situation suggests that the

predictive efficacy of the model is excellent (Figure 3B). Expression

distribution analysis of the identified biomarkers suggested that they

are expressed at high levels in the skin of the abdomen (Figure 3C). In

addition, FOXF1 is expressed in endothelial cells and smooth muscle

cells, LPAR1 is expressed in endothelial cells and fibrosis, and TRIM32

is expressed in mitotic cells (skin) (Figure 3D).
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3.4 Immune cell infiltration and its
relevance with biomarkers

Six differentially abundant immune cells were identified

between the KD and control group (Figure 4A). Correlation

analysis between the ssGSEA scores of the differentially

abundant immune cells and the biomarkers suggested that

LPAR1 was positively correlated with activated CD4 T cells,

myeloid-derived suppressor cells, effector memory CD4 T cells,

and type 2 T helper cells (P < 0.01), TRIM32 was positively

correlated with monocytes (P < 0.01), and FOXF1 was positively
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correlated with activated CD8 T cells, and myeloid-derived

suppressor cells (P < 0.01) (Figure 4B).
3.5 Prediction of potential
regulatory mechanisms

A total of 32 miRNAs and 9 TFs were obtained and a miRNA-

mRNA-TF regulatory network was constructed (Figure 5A; biomarkers in

red,miRNAs in blue andTFs in green). FOXF1 and LPAR1were regulated

by E2F1 and TRIM32 and FOXF1 were regulated by CREB1. Sixty-seven
A B

D

C

FIGURE 1

Differential expression analysis in the GSE145725 dataset. (A) Heatmap of differentially expressed genes (DEGs) between keloid disease (KD) and
normal samples. A heat map of gene density is shown at the top, and a heat map of gene expression is shown at the bottom (red is high expression,
blue is low expression). (B) Volcano plot of DEGs between KD and normal groups. Each dot represents a gene, the darker colored dots indicate
inflammation-related genes, and the black circles indicate genes with an adjusted P value < 0.01. The names of genes associated with inflammation
with very significant differences are labeled in the figure. (C) Venn diagram of 169 inflammation-related DEGs obtained by overlapping the DEGs and
inflammation-related genes (IRGs). (D) Protein-protein interaction (PPI) network of 169 inflammation-associated DEGs.
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compounds that may act on FOXF1, 108 compounds that may act on

LPAR1, and 56 compounds that may act on TRIM32 were predicted and

gene-compound action networks were constructed (Figure 5B).
3.6 Expression of biomarkers in
clinical samples

RT-qPCR data showed that the mRNA level of LPAR1 was

significantly lower, and the mRNA level of TRIM32 was
Frontiers in Immunology 05
significantly higher (P < 0.05) in the KD samples compared to

the normal samples. There was no significant difference in the

expression of FOXF1 (Figure 6).
4 Discussion

KD is a benign skin tumor caused by abnormal hyperplasia of

connective tissue in the skin, that occurs during prolonged

abnormal wound healing. The mechanisms by which keloids form
A

B C

FIGURE 2

Identification of biomarkers and exploration of potential function. (A) Error plots for 10-fold cross-validation, plot of gene coefficients, and receiver
operating characteristic (ROC) curve of the least absolute shrinkage and selection operator (LASSO) model. The different colored lines represent different
genes. AUC, area under the curve. (B) The expression of biomarkers in the KD and normal samples in the GSE7890 and GSE145725 datasets. (C) The top
10 pathways significantly enriched in FOXF1, LPAR1, and TRIM32 according to gene set enrichment analysis (GSEA) enrichment analysis. * means p<0.05,
*** means p<0.001.
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are currently unclear. Some scholars believe that the abnormal

response of fibroblasts to inflammation is causes keloid formation.

We propose that the inflammatory response is a significant factor in

keloid pathogenesis (13–15). However, most of the current research

on keloids focuses on fibroblasts and collagen with little emphasis

on the importance of inflammatory genes. Therefore, finding key

inflammatory genes associated with KD may help to identify new

diagnostic biomarkers and drug targets.

In this study we explored the differentially expressed IRGs in

two KD datasets, conducted multiple functional enrichment

analyses, constructed a PPI network, and explored immune

infiltration in the KD microenvironment. Finally, three keloid

biomarkers were identified: LPAR1, FOXF1 and TRIM32. In the

RT-qPCR data collected from our clinical samples LPAR1 and
Frontiers in Immunology 06
TRIM32 were differentially expressed in KD samples (P<0.05)

whereas FOXF1 was not (P>0.05).

The protein encoded by TRIM32 is a member of the tripartite

motif-containing family. This protein is located in the cytoplasm

and nucleus and has E3 ubiquitin ligase activity (23). TRIM32 can

ubiquitinate PIAS4/PIASY and promote its degradation in UVB

and TNF-a stimulated keratinocytes. In our study, the GSEA results

indicated that TRIM32 was mainly enriched in IFN-a reactions, cell

apoptosis, and hypoxia. Chaudhuri et al. reported that knocking

down TRIM32 inhibited glucose-induced podocyte apoptosis,

oxidative stress, and inflammatory response (24). Liu et al.

reported that the gene manipulation of Trim32 can regulate Th17

vs. Th2 immunity in response to TLR activation, suggesting that

atopic dermatitis is a result of TRIM32 protein deficiency in the
A

B D

C

FIGURE 3

Construction of the alignment diagram to predict the risk of KD. (A) Alignment diagram based on expression of FOXF1, LPAR1, and TRIM32.
(B) Clinical impact curve (CIC), decision curve analysis (DCA), and calibration curve of the alignment diagram. (C) Distribution of biomarkers in
human tissues. (D) Expression of biomarkers in different skin cell types.
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skin. It was speculated that TRIM32 plays a crucial role in

inflammatory diseases and congenital immunodeficiency diseases

(25). Our analysis found that TRIM32 was upregulated in publicly

available KD microarray data, and RT-qPCR from our clinical

samples confirmed this (P < 0.05). We speculate that TRIM32 is

closely involved in the formation of keloids. Further research on the

inflammatory regulation of scarring by TRIM32 may establish

TRIM32 as a potential treatment target for keloids.

The protein encoded by LPAR1 is an integral membrane protein in

the family of lysophosphatidic acid receptors also known as EDG

receptors (26, 27). LPAR1 is involved in the reorganization, migration,

differentiation, and proliferation of actin cytoskeleton, as well as its

response to tissue damage and infection (28–30). LPAR1 promotes the

formation of lamellar pseudopodia at the anterior edge of migrating

cells by activating RAC1. This activation plays a role in chemotaxis and

cell migration, which are important in injury responses (31–33). Wu

et al. reported that LPAR1 can mediate various biological functions of

tumors (34) and participate in the activation, proliferation

differentiation, and migration of immune cells (32). Our correlation

analysis between the ssGSEA scores of the differentially abundant

immune cells and biomarkers in this study showed that LPAR1 was

positively correlated with activated CD4 T cells and effector memory

CD4 T cells. LPAR1 expression was reported to be positively correlated

with the expression of chemokines and chemokine receptors,

suggesting that LPAR1 may regulate immune cell migration (35).

The E2F family of transcription factors regulate cell function via

gene transcription. E2F was reported as a novel fibrotic gene

regulating pulmonary fibrosis (36). The enrichment of single gene
Frontiers in Immunology 07
GSEA in this study indicated that LPAR1 is significantly enriched in the

“E2F target” pathway. LPAR1 is most highly expressed in endothelial

cells and fibroblasts in skin and soft tissues. Our analysis showed that

LPAR1 was downregulated in KD samples, and this was confirmed by

our RT-qPCR data from clinical samples. We therefore speculate that

LPAR1 plays an important inflammatory and immune regulatory role

in the formation of keloids.

FOXF1 belongs to the forkhead transcription factor family and

is characterized by a unique forkhead domain (37). In an immune

cell analysis of infantile angiomatosis, FOXF1 was found to be

positively correlated with the degree of monocyte infiltration (38).

Recent studies have shown that overexpression of FOXF1 can

inhibit the production of a-SMA, fibronectin, and type IV

collagen, thereby alleviating TGF-b1-induced fibrosis (39). In

addition, overexpression of FOXF1 can promote the proliferation

of BEAS-2B cells, inhibit apoptosis, and inhibit inflammation in

response to TGF-b1. Fenghua et al. reported that increasing FOXF1

expression in endothelial cells could alleviate pulmonary fibrosis

(40). FOXF1 is highly expressed in both endothelial cells and

fibroblasts, suggesting that FOXF1 is involved in chronic

inflammation following tissue injury and inhibits collagen

deposition and fiber proliferation in keloid formation. In this

study, GSEA results showed that FOXF1 was mainly enriched in

E2f targets, G2M checkpoints and myogenesis. However, in our RT-

qPCR experiment, we found no significant difference in FOXF1

expression between KD and normal samples (P > 0.05). This may be

due to the smaller number of samples in the verification set (5 vs. 5)

compared to the microarray data (10 vs. 9).
A

B

FIGURE 4

Immune infiltration analysis. (A) Relative abundance of immune cells and comparison between KD and normal samples. ns, not significant; *p<0.05;
**p<0.01. (B) Correlation between biomarkers and immune cells.
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Our clinical predictive model predicts that the risk of

developing KD increases as the expression of FOXF1 and LPAR1

decrease and the expression of TRIM32 increases. Previous studies

on these three genes support this prediction. FOXF1 is associated

with tissue development and inhibition of FOXF1 may cause

abnormalities in the cell cycle of wound tissue leading to

impaired wound healing. The inhibition of LPAR1 leads to a
Frontiers in Immunology 08
decrease in chemotaxis which is crucial for the inflammatory

response around the wound. Moderate migration of inflammatory

cells such as macrophages, mast cells, and granulocytes helps to

remove necrotic cell debris and repair fibers during wound healing.

Decreased expression of LPAR1 inhibits the formation of lamellar

pseudopodia at the leading edge of migrating cells which also slows

down wound healing. TRIM32 promotes the degradation of PIAS4
A

B

FIGURE 5

Investigation of potential regulatory mechanisms KD biomarkers, and drug predictions. (A) Regulatory network based on microRNAs (miRNAs),
transcription factors (TFs), and biomarkers. Red circles are biomarkers, blue quadrangles are miRNAs, and green triangles are TFs. (B) Biomarker-drug
network for KD. Red circles represent biomarkers and gray quadrangles represent drugs targeting these biomarkers.
A B C

FIGURE 6

The expression of biomarkers in clinical samples by RT-qPCR. (A) FOXF1. (B) LPAR1. (C) TRIM32. ns, not significant; *p<0.05; **p<0.01.
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in keratinocytes. Therefore, increased TRIM32 expression reduces

the inhibitory effect of PIAS4 on the formation of keratinocytes,

resulting in a large accumulation of keratinocytes around the

wound, which secrete keratin fibers that are the main

components of scar tissue.

In this study, immuno-infiltration analysis showed significant

differences between keloid and normal tissue in CD4+ effector T

cells, myeloid-derived suppressor cells, activated dendritic cells,

immature dendritic cells, follicular helper T cells, and monocytes.

The levels of CD4+ effector T cells, myeloid-derived suppressor

cells, activated dendritic cells, and immature dendritic cells were

significantly lower in KD tissues than in control tissues while the

levels of follicular helper T cells and monocytes were significantly

higher. It has been confirmed that the Th2 characteristic is

possessed by KD (41). Our analysis suggested that FOXF1 and

LPAR1 were significantly negatively correlated with monocytes and

follicular helper T cells, and significantly positively correlated with

myeloid-derived suppressor cells, and that the levels of monocytes

and follicular T helper cells at the wound were significantly

increased. Henderson et al. analyzed more than 100,000 human

hepatocytes and identified a subset of macrophages associated with

scarring. This group of macrophages express TRIM32 and CD9, are

differentiated from circulating monocytes, and are known to

promote fibrosis (42). Previous studies have reported that

monocytes and macrophages are key components of the immune

system and participate in the regulation of inflammatory immunity

and tissue repair by activating T and B lymphocytes (43). Follicular

helper T cells are involved in the humoral immune regulation of

inflammation and play a crucial role in autoimmunity and tumor-

related immunity (44). Myeloid-derived suppressor cells are a group

of suppressor cells of bone marrow origin which are precursors of

dendritic cells, macrophages, and granulocytes, and have the ability

to significantly inhibit immune cell responses (45). Chronic

inflammation and fibrosis may be caused by improper activation

of the immune response mediated by macrophages, an example of

which is the development of fibrosis in systemic sclerosis (46). The

biomarkers we identified are related to monocytes, myeloid-derived

suppressor cells, and follicular helper T cells, which may all play an

important role in the formation of keloids.

In the immune infiltration analysis, we found that there were

different degrees of correlation between the biomarkers and the

infiltration of immune cells. In order to further explore the role of

immune cells in the development of KD, we used the HPA

database to explore the expression of the biomarkers in different

cell types. LPAR1 was enriched in macrophages, T-cells and mast

cells, TRIM32 was enriched in T cells and mast cells, while FOXF1

was not significantly expressed in any immune cells. In a mouse

model of multiple sclerosis, Choi et al. found that LPAR1-3

antagonists increased cell infiltration and immune cell

activation (including macrophages) (PMID:34666785). In

addition, Choi et al. demonstrated that in the immune

microenvironment of tumors, different LPA receptors promoted

metastasis, which helped create a T cell rejection and pro-tumor

microenvironment suitable for therapeutic intervention (PMID:
Frontiers in Immunology 09
34788605). Wang et al. reported that in a mouse model of atopic

dermatitis (AD), TRIM32 acted as a regulator of PKCz and could

control the differentiation of Th2 cells, which are very important

for the pathogenesis of AD (PMID: 33096083). We believe that

immune cells, in particular T cells, play an important role in the

development of KD, and are expected to become a new target for

KD immunotherapy. However, the molecular mechanisms

involved need further investigation.

In this study the transcriptional regulatory network analysis

indicated that FOXF1 and LPAR1 share two transcriptional

regulatory factors, E2F1 and SP1. In addition, the two share three

miRNAs, hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-miR-429. The

downregulation of FOXF1 and LPAR1 in keloid patients could be

caused by the inactivation of E2F1 and SP1 due to mutations or other

factors, or by the effect of the three miRNAs. TRIM32 did not share any

miRNAs with the other two genes. JUND and TP53 were predicted to

target TRIM32, which may contribute to its upregulation.

This study has several limitations. First, our analysis was based

on a limited number of clinical samples from public databases, and

may suffer from poor statistical power due to the small sample size.

In addition, our analysis of the expression patterns of the identified

biomarkers was based on public databases, and further validation is

necessary, which would need to be done by collecting a larger

number of clinical samples or conducting animal experiments.

Given these limitations, larger datasets are needed to support

further research and validation of the genes and molecular

mechanisms that we identified.

In this article we analyzed IRGs in KD, leading to the

identification of two new biomarkers of keloid tissue. Further

studies on IRGs in KD may lead to new tools for early diagnosis

as well as the identification of novel drug targets for treatment

of KD.
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