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Disruption of IL-17-mediated
immunosurveillance in the
respiratory mucosa results in
invasive Streptococcus
pyogenes infection
Jamie-Lee Mills1†, Ailin Lepletier1†, Victoria Ozberk1,
Jessica Dooley1, Jacqualine Kaden1, Ainslie Calcutt1,
Yongbao Huo1, Allan Hicks2, Ali Zaid2, Michael F. Good1*

and Manisha Pandey1*

1Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia, 2School of Pharmacy and
Medical Sciences, Griffith University, Gold Coast, QLD, Australia
Introduction: Streptococcus pyogenes is a Gram-positive pathogen that causes

a significant global burden of skin pyoderma and pharyngitis. In some cases,

infection can lead to severe invasive streptococcal diseases. Previous studies

have shown that IL-17 deficiency in mice (IL-17−/−) can reduce S. pyogenes

clearance from the mucosal surfaces. However, the effect of IL-17 on the

development of severe invasive streptococcal disease has not yet been assessed.

Methods: Here, we modeled single or repeated non-lethal intranasal (IN) S.

pyogenes M1 strain infections in immunocompetent and IL-17−/− mice to assess

bacterial colonization following a final IN or skin challenge.

Results: Immunocompetent mice that received a single S. pyogenes infection

showed long-lasting immunity to subsequent IN infection, and no bacteria were

detected in the lymph nodes or spleens. However, in the absence of IL-17, a

single IN infection resulted in dissemination of S. pyogenes to the lymphoid

organs, which was accentuated by repeated IN infections. In contrast to what

was observed in the respiratory mucosa, skin immunity did not correlate with the

systemic levels of IL-17. Instead, it was found to be associated with the activation

of germinal center responses and accumulation of neutrophils in the spleen.

Discussion:Our results demonstrated that IL-17 plays a critical role in preventing

invasive disease following S. pyogenes infection of the respiratory tract.
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Introduction

Streptococcus pyogenes (Group A Streptococcus) colonizes the

upper respiratory tract (URT) and skin. In some cases, the mucosal

and skin barriers become vulnerable to bacterial escape, leading to

invasive infections. These infections include potentially life-

threatening conditions, such as sepsis, pneumonia, necrotizing

fasciitis, and toxic shock syndrome. S. pyogenes infection can also

lead to post-streptococcal autoimmune diseases, primarily acute

rheumatic fever and rheumatic heart disease (RHD). Collectively,

streptococcus-related pathologies are responsible for the loss of

approximately 500,000 lives each year (1, 2), with the greatest

burden experienced by people in developing countries and

indigenous populations living in economically advanced societies

(3). The development of natural immunity to S. pyogenes at the

primary site of infection is slow, and a vaccine is not yet available.

Antibodies (IgA and IgG) (4–6), effector immune cells (CD4+ T

cells, macrophages, and neutrophils) (7–9) and cytokines (including

IL-17A and IFN-ɣ) (7, 8, 10) have been shown to play critical roles

in regulating immune responses to S. pyogenes at the site of

infection. These immune responses collectively target multiple

streptococcal antigens, with a key antigen being the major

virulence factor, the M-protein (encoded by the emm gene). In

addition to the M protein, other bacterial virulence factors have also

been shown to suppress innate and acquired immune responses in

S. pyogenes infection (11). However, the immune mechanisms that

facilitate systemic dissemination of S. pyogenes from the respiratory

mucosa and skin remain elusive.

Early streptococcal research in humans demonstrated that

protection against homologous strains following pharyngeal

infection is long lasting. M-type-specific antibodies were

recovered in convalescent blood following pharyngitis (12, 13),

with bacteriostatic properties persisting in some individuals (13)

and remaining present in the blood for a substantial length of time.

The longest duration reported by Lancefield was up to 32 years (14).

While earlier studies focused on infections of the URT, later studies

in First-Nation Australian communities, where skin infections are

far more prevalent than pharyngitis, identified different strains

moving through communities. In some cases, more than one

strain existed at a time and persisted for longer than 6 months

(15). Thus, it is likely that S. pyogenes strains will remain in the

community as a reservoir of skin infection. In tropical communities

with high rates of RHD, immunity to a skin strain of S. pyogenes is

slow to develop (15). In agreement with these clinical findings, our

previous study using a murine model of invasive streptococcal

disease associated with skin pyoderma showed that immunity in

the skin and spleen required repeated homologous skin infections

(5). In that study, enduring protection was correlated with M-type-

specific memory B-cell responses in the sera, spleen, and bone

marrow, in the absence of which immunity was rapidly lost (5).

While systemic immunity to S. pyogenes infection is associated

with IgG responses in the sera, mucosal immunity relies on the

production of secretory IgA (which can prevent the attachment of S.

pyogenes to mucosal surfaces (16)), and IL-17 (which results in

recruitment of neutrophils and other inflammatory cells that
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contribute to bacterial clearance at mucosal sites (17, 18). Inborn

IL-17 deficiency and therapeutics based on IL-17 inhibitors increase

the risk of mucocutaneous candidiasis in humans (19–21).

Similarly, the most common adverse effect of anti-IL-17 therapy

in patients with psoriasis is an increase in nasopharyngeal tract

infections (22).

Besides S. pyogenes, the route of infection by other bacteria can

cause fundamental differences in the resulting immune responses

(23). Intranasal Francisella tularensis infection induces a Th17

response in the lungs, whereas the intradermal route of infection

favors a Th1 response in both the spleen and lungs (24). Therefore,

immunity at the mucosal, skin, and systemic sites may be regulated

separately. These diverse immune responses may impede the

development of resistance to infection in cases where an

organism can infect via different anatomical sites.

In this study, we investigated the development of mucosal and

systemic immunity following single or multiple URT infections

with a homologous S. pyogenes isolate and correlated it with

immune mechanisms underpinning site-specific or cross-

compartmental protection. Through the assessment of both

humoral and cellular immune responses and via the use of IL-17

deficient mice, we showed that CD4+ T cells, IL-17, and neutrophil

responses in the lungs collectively regulate the protection of the

respiratory mucosa. In the absence of IL-17, URT infections

resulted in the passage of S. pyogenes from mucosal sites into the

lymph nodes and spleen. This study provides critical insights into

the role of IL-17 in orchestrating the interplay between immune

cells in the respiratory mucosa and lymphoid organs, highlighting

the importance of integrating strategies that are capable of inducing

IL-17 responses alongside humoral responses in the design

of vaccines.
Results

A single S. pyogenes IN infection results in
enduring immunity at the respiratory tract

We initially sought to demonstrate immunity in the respiratory

tract following an intranasal (IN) infection. Cohorts of BALB/c

mice received either one or two non-lethal IN infections with

mouse-passaged S. pyogenes 2031 (emm1), each 3 weeks apart

(Figure 1A). To assess whether the number of prior intranasal

exposures would determine the level of site-specific protection, mice

received a final IN challenge with homologous S. pyogenes isolate

three weeks following a single (1x) or two (2x) sequential infections

infections. Mice were closely monitored for the appearance of

clinical symptoms and scored based on an approved clinical

scoring system (25). All mice, regardless of the number of prior

IN exposures (1× or 2×), showed a significant reduction (p <0.01-

0.001) in clinical scores when compared to the control group, which

was not infected prior to challenge (Figure 1B). On day 2 post-

challenge, mice were euthanized to assess bacterial burden (colony

forming units [CFU]) in the nasal-associated lymphoid tissue

(NALT) and in the lungs. Following 1x or 2x prior exposures, all
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FIGURE 1

Assessment of mucosal protection and endurance following 0–2 intranasal homologous infections prior to IN challenge. (A) BALB/c mice (n = 10,
female, 4–6 weeks old) were administered IN infections with 2031 (emm1), 3 weeks apart. All mice were subjected to a homologous IN challenge.
(B) On day 2 following the challenge, the mice were assessed for clinical scores as per the approved score sheet. The bacterial load in (C) NALT,
(D) lungs, and (E) lymphoid organs (spleen and pooled cervical lymph nodes). (F) BALB/c mice (n = 10, female, 4–6 weeks old) administered IN
infections with 2031 were rested for 9 weeks before receiving a homologous IN challenge. (G) Blinded clinical scores were assessed on days 1 and 2
following the challenge and are shown as averages. Mice were sacrificed on day 2 post IN challenge to assess the bacterial load in (H) NALT, (I) lung,
and (J) lymphoid organs. Data are shown as the CFU geometric mean ± geometric SD. Significance was determined using Mann–Whitney rank
analysis of CFU in the sequentially infected group compared to CFU in the challenge control (0×), *p <0.05, **p <0.01, ***p <0.001. The x-axis
shows the number of infections before the challenge. 1× only received infection at week 3 and 2× at weeks 0 and 3. The mice were rested for 9
weeks and challenged at week 12. 0× received only the challenge.
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mice had significant reductions in bacterial burden in the NALT

(66.6%–92.6%; p <0.05) and lungs (90%–100%; p <0.01) when

compared to the control group (0×) (Figures 1C, D). IN challenge

of these mice resulted in a very low to undetectable bacterial burden

in lymphoid organs (including spleen and cervical lymph nodes

(CLN)), which was comparable across all groups, with or without

prior exposure (Figure 1E).

To assess the longevity of protection in the respiratory tract, a

separate cohort of mice (also previously infected 1x or 2x with S.

pyogenes) was rested for 9 weeks before receiving a homologous IN

challenge (Figure 1F). We observed that 1x or 2x infections

(Figures 1A–D) induced enduring immunity, which did not wane

after a 9-week rest period. All mice previously infected with S.

pyogenes demonstrated a significant reduction in clinical scores

compared to control mice (p <0.001) (Figure 1G). This was

associated with significantly reduced bacterial burden in the

NALT (96.3%–99.4%, p <0.05–0.01) and lungs (93.8%–99%,

p <0.05–0.01) (Figures 1H, I, respectively). Interestingly, IN

challenge in mice not previously infected led to bacterial

dissemination to lymphoid organs only in the older naive mice

(Figure 1J), which presented a higher burden in the CLN and

spleen, than 9-weeks younger naive mice (Figure 1E) (>99.9%,

p <0.05), suggesting that age was associated with reduced innate

protection. All mice with prior S. pyogenes infection demonstrated

complete protection against dissemination to the CLN and spleen,

which was significantly reduced (>99.9%, p<0.05) compared to the

control group (0x) (Figure 1J).

Overall, we found that a single IN exposure to S. pyogenes

resulted in immunity in the respiratory mucosa. Furthermore, our

data show age-related susceptibility to bacterial dissemination

following S. pyogenes IN challenge; however, this was completely

prevented by previous exposure to the organism.
Mucosal immunity against S. pyogenes is
associated with local humoral and
cellular responses

To investigate the role of humoral immunity in mucosal

protection, we measured the levels of M-protein type-specific

IgG in the sera of mice following each sequential infection. S.

pyogenes M1 type-specific IgG antibodies were not evident

following a single IN infection (Supplementary Figure 1A).

Nevertheless, M1-specific IgG titers developed after two

infections and remained consistent in cohorts that received

subsequent IN infections (Supplementary Figure 1A).

The fact that M1-specific circulating antibodies were not

evident in mice after a single S. pyogenes infection prompted us

to investigate other immune correlates of protection in the

respiratory mucosa. Salivary antibodies play important roles in

protecting against S. pyogenes by preventing bacterial attachment

to the mucosal epithelia, opsonizing the bacteria, and directly lysing

them (26, 27). To investigate URT mucosal immunity, we measured

the levels of M1-specific IgG and IgA in the saliva of the mice

following each infection. M1-specific IgG and IgA titers were

significantly increased in the saliva after a single infection
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(Figures 2Ai, ii, respectively). A progressive increase in M1-

specific IgG and IgA responses in saliva of 2x infected mice was

also noted. To investigate the long-term humoral immunity

mediated by antibody-secreting cells in the bone marrow (BM)

(known as long-lived plasma cells (LLPCs)) (28, 29), we counted the

number of M1-specific IgG-secreting LLPC in naive and infected

mice using an ELISpot assay. We found that the number of M1-

specific IgG- and IgA-secreting BM cells was significantly higher in

mice that received 2x IN infections than in naïve mice (Figures 2Bi,

ii, respectively).

Next, to explore the role of effector cell-mediated responses in

immunity to S. pyogenes, we assessed specific cell populations in the

lungs and spleens of sequentially infected mice using flow

cytometry. Mice that received either 1x or 2x IN infections had a

significant increase in Ly6G+ neutrophils in both the lungs

(Figures 2C, Di) and spleen (Figure 2Dii) when compared to

naïve mice. Similarly, an increase in effector/memory CD4+ T

cells was observed in mice that received 1x or 2x infections prior

to an IN challenge (Figures 2E, F).

To assess whether infection site-specific IL-17 secretion was

associated with immunity in the URT, we measured IL-17 secreted

by lung cells and splenocytes from mice that received 1x, 2x or 3x

IN infections or remained as naive infections. Immune cells isolated

from the lungs and spleens were stimulated ex vivo with heat-killed

(HK) homologous S. pyogenes 2031 prior to the detection of IL-17

in the culture supernatant by ELISA. Mice that received 1x, 2x or 3x

IN infections produced significantly higher (p <0.001) levels of IL-

17 in the lungs than to naïve mice (Figure 2Gi); however, at least 2x

IN infections were required for induction of IL-17 in the

spleen (Figure 2Gii).

Taken together, these data show that mucosal immunity

following a single S. pyogenes IN infection is associated with an

increase in M1-specific IgG and IgA antibodies in the saliva,

alongside the expansion of neutrophils, effector/memory CD4+ T

cells, and IL-17+ cells in the lung.
Disruption of IL-17 signaling results in
S. pyogenes dissemination from the
respiratory mucosa

To assess the importance of IL-17 in mucosal immunity against

S. pyogenes IN infection, we compared IL-17 knockout (IL-17−/−)

mice with wild-type (WT) BALB/c mice receiving no (0x) or 2x IN

infections prior to the final IN challenge (Figure 3A). IL-17−/− mice

sequentially infected prior to challenge demonstrated significant

increases in bacterial burden in throat swabs (p <0.01), NALT

(p <0.01), lungs (p <0.05), and lymphoid organs (p <0.01)

compared to 2x infected WT mice (Figures 3B–E). Sequentially

infected IL-17−/− mice showed an increased bacterial burden in the

NALT (1.71-fold increase, non-significant), throat swab (3.04-fold

increase, non-significant), and lymphoid organs (4.53-fold

increase, non-significant) compared to control mice (IL17-/- 0x)

(Figures 3B–E). In contrast, sequentially infected WT mice showed

a reduction in bacterial burden in NALT (p <0.05), lungs (non-

significant), and throat swabs (p <0.001) (Figures 3B–D). As shown
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FIGURE 2

Immune mechanisms involved in mucosal protection. BALB/c mice (n = 5–10 female, 4–6 weeks old) were given a 1x or 2x infections with 2031
(emm1), each 3 weeks apart. Three weeks later, all mice received a homologous IN challenge. Mice were sacrificed on day 2 post IN challenge, and
organs were homogenized to produce single-cell suspensions for downstream analysis. (A) Assessment of salivary (i) IgG and (ii) IgA using ELISA.
End point titers were defined as the highest dilution of saliva for which the OD was >3 standard deviations above the mean OD of control saliva.
Significance was determined using One-way ANOVA comparing each group against each other, *p <0.05, ***p <0.001. (B) Quantification of long-
lived plasma cells in bone-marrow. M1-specific (i) IgG and (ii) IgA long-lived plasma cell (LLPC) in the bone marrow were enumerated by ELISpot
using 3–5 mice/group and are presented as LLPC per 107 bone marrow (BM) cells. Data shown are geometric mean ± geometric SD minus cell
counts from naive group [to remove background]). Statistical analysis was performed using Mann–Whitney rank analysis, *p <0.05, **p <0.01. (C, D)
Neutrophils in lungs and spleen. (C) Representative contour plots from flow cytometry analysis of neutrophils (CD45+CD11b+Ly6G+) from the lungs
of naïve mice and mice receiving one IN infection with 2031. (D) Percentage (%) of neutrophils from CD45+ immune cells in the (i) lungs and (ii)
spleen are shown. Data are shown as box-and-whisker. (E, F) CD4+ T cell in the lungs and spleen. (E) Representative contour plots of CD4+ T cell
memory populations from the lungs of naïve mice and mice receiving one IN infections with 2031. (F) Percentage (%) of effector/memory (EM,
CD62L−CD44+) from CD4+ T cells (CD3+CD4+) cells in the (i) lungs and (ii) spleen are shown. Significance was determined using One-way ANOVA
comparing each group against each other *p <0.05, **p <0.01, ***p <0.001. (G) IL-17 production by lungs and spleen cells. IL-17A responses were
assessed in mice that received a 1x, 2x or 3x infections. Cell isolates from (i) lungs and (ii) spleens were stimulated ex vivo with heat killed 2031
(shown as circle) or media as negative control (shown as triangle). At 72 h post-stimulation, supernatants were isolated, and concentrations of
secreted IL-17A was determined using ELISA. Data are presented as pg/mL mean ± SEM. Statistical analysis was performed using Mann–Whitney
rank analysis, *p <0.05, **p <0.01, ***p <0.001. X-axis shows the number of infections prior to challenge. 1× only received infection at week 3, 2× at
both week 3 and 6 and 3× at weeks 0, 3, and 6. Naïve mice are uninfected controls that did not receive infection or challenge.
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previously (Figure 1E), the young and immunocompetent mice did

not develop systemic infection post-challenge (Figure 3E).

The higher susceptibility to S. pyogenes mucosal infection in

IL-17-/- mice was due to impaired humoral and cellular responses.

This is evidenced by the significantly lower (p <0.001) M1-specific

IgG antibodies in the saliva of 2x infected IL-17−/− mice compared

to WT mice (Figure 4Ai). No difference in M1-specific salivary IgA

levels was observed between the sequentially infected IL-17−/− and

WT mice (Figure 4Aii). The number of M1-specific IgG+ and IgA+

LLPC in the BM of IL-17−/− mice that received 2x infections, was

significantly lower than that in WT mice (p <0.05–0.01)

(Figures 4Bi, ii, respectively). In contrast to the reduction

observed in WT mice, M1-specific IgG titers did not change in

the sera of IL-17−/− mice after the 2x infections (Supplementary

Figure 2A). No changes in IgA responses were observed in the sera

of either WT or IL-17−/− mice (Supplementary Figure 2B). The role

of IL-17 in cell-mediated immunity was assessed in the lungs and

spleen of sequentially infected mice. IL-17−/− mice that received 2x

infections showed a significant decrease in Ly6G+ neutrophils in the

lungs (Figures 4C, Di), paralleled by an increase in the spleen

(Figure 4Dii), when compared to the respective WT control. This

suggests that mice with intact IL-17 are able to recruit neutrophils

from the spleen into the lungs to combat mucosal infection.
Frontiers in Immunology 06
Taken together, these data show that the absence of IL-17

prevents the development of humoral and cellular immunity

against S. pyogenes in the respiratory tract.
Repeated IN infections can partially
prevent systemic dissemination of
S. pyogenes after skin challenge

Next, we modeled a scenario in streptococcal endemic settings to

assess whether sequential IN infections could provide cross-

compartmental protection to the skin and prevent systemic

dissemination to lymphoid organs. We have previously

demonstrated that at least two sequential homologous skin infections

are required to generate skin immunity against a homologous skin

challenge (5). In the current study, WTmice were given either 2x or 3x

homologous IN infections 3 weeks apart or left naïve (cohort 1). Three

weeks after the last IN infection, all mice received a skin challenge with

the homologous isolate 2031 (Figure 5A). Six days after the skin

challenge, the mice in each cohort were euthanized to assess the

bacterial burden in various tissues. We found that none of the mice

that received 2x or 3x sequential IN infections were protected from the

skin challenge (Figure 5B). This was evident from the bacterial burden
B C D

E

A

FIGURE 3

Role of IL-17 in mucosal protection following sequential intranasal infection. (A) IL-17-/- and WT BALB/c mice (n = 10, male and female, 4–6 weeks
old) were given 2x infections with 2031 (emm1), 3 weeks apart. Three weeks later, all mice received a homologous IN challenge. Mice were
sacrificed on day 2 post IN challenge to assess the bacterial load in (B) throat swab, (C) NALT, (D) lungs, and (E) lymphoid organs. The data are
shown as the geometric mean ± geometric SD. Significance was determined using Mann–Whitney rank analysis comparing the sequentially infected
IL-17−/− mice with their corresponding infected or naïve WT controls, *p <0.05, **p <0.01, ***p <0.001. The x-axis shows the number of infections
before the challenge. 2× received infection at weeks 0 and 3. 0× received only the challenge.
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observed in the skin lesions of sequentially infected mice, which was

comparable to that observed in control mice (Figure 5B). To further

investigate whether a higher number of prior IN exposures could

induce cross-compartmental protection in the skin, a second cohort of

mice (cohort 2) received 4x infections, each 3 weeks apart, following

which, 3 weeks later, they received a skin challenge (Figure 5C). The

mice showed a significant reduction (p <0.01) in the bacterial burden in

the skin (95%) and lymphoid organs (95%) compared to control mice

(Figures 5D, E).

Therefore, cross-compartmental protection against S. pyogenes

infection is hard to achieve and requires at least four previous

homologous exposures.
Activation of immune responses in the
spleen mediate cross-compartmental
protection against S. pyogenes

To understand whether skin and systemic immunity observed after

repeated IN infections are associated with the induction of immune

responses in the spleen, we analyzed splenic CD4+ T cells and

neutrophils using immunohistochemistry (IHC) staining. No

difference was observed between mice that received 1x or 3x IN

infections (Figures 6A, B). However, when mice received 4x

infections, a significant increase (p <0.05) in the number of

neutrophils and neutrophil elastase H-score (a surrogate marker for
Frontiers in Immunology 07
neutrophil extracellular trap formation (30)) was observed in

comparison to mice that received 1x infection (Figures 6A–C). While

neutrophils accumulated in the perifollicular spaces, increased numbers

of CD4+ T cells were observed in the splenic follicles of mice that

received 4x infections (Figures 6A, D). Interestingly, a significant

increase in IL-17 secretion by splenocytes stimulated ex vivo with

HK S. pyogenes 2031 was observed after 3x IN infections (Figure 6E);

however, it did not correlate with protection from skin challenge

(Figures 5B). CD4+ T cell accumulation in splenic follicles led to the

hypothesis that germinal center responses may play a role in cross-

compartmental protection. To confirm this, we investigated plasma

CXCL13 levels. CXCL13 is a B cell chemoattractant used as a plasma

marker of germinal center activity (31) and has also been shown to play

a role in mucosal immunity (32). We assessed the level of CXCL13 in

mouse sera collected three days and three weeks after each homologous

sequential IN infection (Figure 6F). A significant transient increase in

serum CXCL13 levels was noted at 3 days post 2nd, 3rd, and 4th IN

infections (4.4- and 5.5-fold increase, respectively); however, at 3 weeks

post 2nd and 3rd infection, CXCL13 levels had dropped to levels

comparable to those in the naive sera. However, following the 4th IN

infection, significantly increased CXCL13 levels were maintained for at

least until 3-weeks post infection (Figure 6F). Notably, in these mice, a

significant increase in CXCL13 levels following 2nd infection also

coincided with an increase in serum IgG (Supplementary Figure 1).

Although CXCL13 demonstrated a transient, albeit significant, increase

following each IN infection, serum IgG titers remained consistent.
B

C D

A

FIGURE 4

IL-17-mediated immune mechanisms in mucosal protection. IL-17−/− and WT BALB/c mice (n = 5–10, male and female, 4–6 weeks old) were given
two IN infections with 2031 (emm1), each 3 weeks apart. Three weeks later, all mice received a homologous IN challenge. (A) Secreted salivary
antibody in IL-17−/− mice. Saliva was collected 7 days following 2x IN to determine M1-specific total (i) IgG and (ii) IgA titers using ELISA. Data shown
are antibody titers in saliva from 2× sequentially infected WT and IL-17−/− mice. (B) Quantification of M1 specific (i) IgG and (ii) IgA LLPC in the bone
marrow were enumerated by ELISpot using 3–5 mice/group. Data are presented as number of LLPC per 107 bone marrow (BM) cells obtained from
2× sequentially infected WT and IL-17−/− mice (C, D) Neutrophils in lungs and spleen. Representative contour plots from flow cytometry analysis of
neutrophils (CD45+CD11b+Ly6G+) in the lungs of WT mice and IL-17-/- mice receiving 2x infections with 2031. (D) Data are shown as box-and-
whisker plot representing the percentage (%) of neutrophils from CD45+ immune cells in the (i) lungs and (ii) spleen from IL-17 2× sequentially
infected WT and IL-17−/− mice. Significance was determined using Mann–Whitney rank analysis. *p <0.05, **p <0.01, ***p <0.001, comparing naïve
IL-17−/− and 2× IN infected IL-17−/− mice.
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Taken together, repeated URT mucosal infections generated cross-

compartmental immunity in the skin and spleen, which was not

associated with changes in IL-17 levels but rather correlated with

neutrophil infiltration and germinal center activity, as evidenced by

increased levels of serumCXCL13 and expansion of CD4+ T cells in the

splenic follicles.
Frontiers in Immunology 08
Discussion

The mechanisms governing natural immunity to S. pyogenes, a

major human pathogen associated with high morbidity and

mortality, are poorly understood due to the diversity of the

pathogen and the various infection sites it targets. In this study,
B

C

D E

A

FIGURE 5

Cross-compartmental protection at the skin following 0–4 prior intranasal homologous infections. (A) Cohort 1—mice received homologous
superficial skin challenge three weeks following 0x, 2x or 3x infections. BALB/c mice (n = 10, female, 4–6 weeks old) were given IN infections with
2031 (emm1), 3 weeks apart. (B) Mice were sacrificed on day 6 post skin challenge and skin tissues. Skin CFU for the entire skin lesion are presented
(C) Cohort 2—mice received 4x infections, 3 weeks apart prior to a homologous skin challenge. (D, E) Mice were sacrificed on day 6 post skin
challenge to assess bacterial load (CFU) in the skin lesion and lymphoid organs. (D) Skin CFU are calculated for the entire skin lesion, and (E) CFU in
lymphoid organs combined CFU of spleen and pooled cervical lymph nodes for each mouse. The data are shown as the CFU geometric mean ±
geometric SD. Significance was determined using Mann–Whitney rank analysis of CFU in sequentially infected group compared to CFU of the
control, **p <0.01. The x-axis shows the number of infections prior to challenge. 2× received infection at weeks 0 and 3, 3× at weeks 0, 3, and 6,
and 4× at weeks 0, 3, 6, and 9. 0× only received the challenge.
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F

FIGURE 6

Immune mechanisms associated with cross-compartmental protection. BALB/c mice (n = 5–10, female, 4–6 weeks old) were given repeated IN
infections with 2031 (emm1), 3 weeks apart. Mice were rested for 3 weeks prior to receiving a homologous skin challenge. (A) Representative
immunohistochemistry (IHC) images of neutrophils and CD4+ T cells. Spleen samples from mice with different number of IN infections (1×, 3x, 4x)
were formalin-fixed, paraffin-embedded (FFPE) for IHC. Samples were stained with anti-neutrophil elastase and anti-CD4 for the identification of
neutrophils and CD4+ T cells, respectively, and counterstained with hematoxylin. Splenic follicles (FO) indicated in the figure. Scales bar = 50 µm.
Images representing 1x and 3x were obtained from cohort 1 and images representing 4x from cohort 2. (B–D) Enumeration of neutrophils and CD4+

T cells. (B) Total counts for neutrophils, (C) neutrophil elastase H-score, and (D) total counts for CD4+ T cells were obtained from entire spleen
section. Positive cell detection was used to generate a H-score in QuPath. Cell counts were normalized by total tissue area (um2). Data are shown as
violin plots depicting distribution of numerical data against number of infections. Significance was determined using Mann–Whitney in sequentially
infected group compared to 1x infected, *p <0.05. (E) IL-17 production by spleen cells was assessed using cytokine bead array (CBA). Splenocytes
were stimulated ex vivo during 72 h with heat killed 2031 and the supernatant collected for determining the concentrations of IL-17. Data from
duplicates are presented as pg/mL mean + SEM. The x-axis shows the number of infections prior to challenge. One Way ANOVA analysis in
sequentially infected group compared to 1x infected, **p <0.01 (F) Quantitative assessment of GC response. Sera were collected on day 3 and on
day 20 post each infection to define concentration of CXCL13. Dotted lines indicate time that 2nd, 3rd, and 4th IN infections were given. Significance
was determined using Mann–Whitney to compare day 3 with day 20 in each infection group, *p <0.05, n.s. = non-significant. Blue * is comparing
day 0 (before infection) with day 3 after each sequential infection, *p <0.05. The x-axis shows the number of infections prior to challenge. 1x only
received infection at week 3, 3x at weeks 0, 3, and 6, and 4x at weeks 0, 3, 6, and 9.
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we modeled streptococcal exposure in a natural scenario to elucidate

the immune mechanisms underlying protection of the respiratory

mucosa and cutaneous (skin) sites. Our findings demonstrate a

dichotomous role of IL-17 in protection against streptococcal

infections. IL-17 plays a crucial role in preventing the systemic

dissemination of S. pyogenes, which colonizes the respiratory

mucosa. To our knowledge, this is the first study to demonstrate

that a single IN infection with S. pyogenes can lead to protective

immunity against a homologous reinfection in the respiratory

mucosa, associated with an early induction of IL-17 secretion by

lung cells. Conversely, systemic immunity following 4x IN infections

was independent of IL-17 production by spleen cells and relied on

germinal center formation and neutrophil recruitment.

IL-17 is a pro-inflammatory cytokine that exerts protective

effects against bacterial and fungal infections. It is rapidly released

in response to specific triggers on mucosal surfaces. IL-17

contributes to maintaining epithelial homeostasis, recruiting

neutrophils, and stimulating T cell-dependent B cell responses,

and acts as a crucial link between innate and acquired immune

responses (33). Mice deficient in the IL-17 receptor have increased

susceptibility to mucoepithelial bacterial infections (34, 35).

Additionally, the kinetics of IL-17 generation in the lungs appears

to be important. In the context of safeguarding against lung

infection with Klebsiella pneumoniae, the initial 12 h–24 h post-

infection has been demonstrated to be critical for neutrophil

recruitment, as well as for the optimal expression of granulocyte

colony-stimulating factor and macrophage-inflammatory protein-2

(36). Furthermore, reduced IL-17 production has been linked to

increased bacterial dissemination and diminished survival of

Citrobacter rodentium (37), Mycoplasma pneumoniae (38), and

Porphyromonas gingivitis (39). In all these infection models,

increased susceptibility resulting from IL-17 deficiency is

associated with reduced early neutrophil infiltration into the

infected tissue. Moreover, a study by 17 suggested that IL-17 may

augment neutrophil bactericidal activity. Taken together, these

findings highlight that the progression of IL-17 is of critical

importance in vaccine design. These results align with our data,

indicating that following a single IN infection with S. pyogenes, IL-

17 plays a critical role in protecting mice from subsequent infections

and prevents dissemination into systemic sites. Furthermore, we

found that IL-17 deficiency led to S. pyogenes escaping from the

respiratory tract into sterile sites, demonstrating its importance in

preventing invasive streptococcal disease originating at mucosal

sites. This was likely due to the inadequate production of M protein-

specific IgG antibodies in saliva and impaired recruitment of

effector immune cells to the respiratory mucosa.

Furthermore, we identified the prerequisites for mucosal and

systemic protection following repeated IN infections. Previous

studies in mice have reported the ability of repeated infections

with S. pyogenes to develop mucosal immunity (8, 40). However, the

number of infections required to induce immunity and the duration

of protective immune responses remain unclear. We found that a

single mucosal infection occurring 3 weeks prior to a homologous

challenge generated S. pyogenes type-specific immunity. Given over

250 emm types, achieving pan-streptococcal immunity will likely

take several years or may never fully occur following a natural
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infection. This explains the high incidence of streptococcal skin

and mucosal infections in children under the age of 10, which

decreases in early adulthood (41). Furthermore, we have previously

demonstrated age-related acquisition of antibodies to the conserved

region of S. pyogenes M-protein in teenagers and adults residing in

endemic areas (42) and demonstrated that vaccination of mice with

conserved region peptides can induce protection from both mucosal

and skin challenges (43–45).

Understanding the mechanisms and longevity of immune

responses following infection is of paramount importance for

developing effective public health measures against infectious

diseases. Our study investigated immunity at various anatomical

sites of S. pyogenes infection. Remarkably, we observed that mice

developed mucosal immunity after a single IN infection, which

persisted for at least 9 weeks. In contrast, our previous findings

following S. pyogenes skin infection showed that mice required

reinfection with the same strain to establish long-lasting

immunity (5). These findings emphasize the existence of distinct

immune mechanisms associated with different infection routes.

Epidemiological evidence from Australian communities with

recurrent pyoderma suggests that repeated skin exposure confers

immunity against throat infections (46–48). Nonetheless, it is

important to note that repeated skin infections have also been

implicated in the development of rheumatic fever (49). Our study

aimed to investigate the lack of protection against a single skin

infection and assess whether multiple mucosal exposures could

provide immunity to the skin and prevent systemic dissemination

of S. pyogenes. We found that mice required a minimum of 4x

homologous mucosal infections to achieve significant protection in

the skin and lymphoid organs, underscoring the challenges

associated with developing multi-site immunity (50–52).

Only after the fourth IN infection did the levels of CXCL13

become sustained in the plasma. CXCL13 is expressed in lymphoid

follicles and acts as a chemotactic signal for CXCR5 expressing B-

and T cells (32). CXCL13 has been implicated in mucosal immunity

by promoting germinal center formation, facilitating Ig isotype

switching (32), and activating macrophages via IL-17-dependent

mechanisms (5, 53, 54). Accordingly, we observed a modest

increase in M-type specific serum IgG after 2x infections,

coinciding with the initial increase in CXCL13 systemic levels.

Evidence suggests that antibodies produced in response to

primary skin infection can confer type-specific immunity against

future streptococcal skin infections (5, 14, 55). Interestingly,

protective immunity in the respiratory mucosa did not rely

heavily on germinal center activation or circulating antibodies,

as mice with low levels of M-specific IgG antibodies were still

protected after a single infection. Low levels of circulating M-type-

specific antibodies during active infection are unsurprising,

potentially stemming from IgG cleavage by specific proteases or

binding to S. pyogenes, followed by subsequent removal (56).

Interestingly, we observed an increase in IgG- and IgA-secreting

cells in the bone marrow following sequential IN infections,

consistent with our previous findings that S. pyogenes skin

infections gradually increased the number of M-type-specific

antibody-secreting cells in the bone marrow, which led to

increased protection (5).
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After initial priming (first mucosal infection), we observed a

significant influx of neutrophils in the lungs, which likely led to

bacterial killing via antibody-mediated phagocytosis (57). This was

paralleled by an increase in effector/memory CD4+ T cells in the lungs.

This population contains both long-lived lung resident memory T cells

that mediate immunity against S. pyogenes mucosal infection (44, 58)

and short-lived effector T cells, which recirculate between the blood,

lymphatics, or other peripheral tissues and die after acute infections

(59, 60). The markers used to identify EM CD4+ T cells in this study

were not sufficient to distinguish short-lived effector T cells without

memory potential from long-lived memory cells. A subset of lung

CD4+ effector T cell producers of IL-17 (Th17 cells), has been shown to

effectively support B cell responses and induce a pronounced IgG

antibody response (61), corroborating our findings of disrupted M-

specific IgG antibodies in the saliva and BM of IL-17−/− mice. While

most IgG in saliva is derived from the blood circulation by passive

leakage, dimeric IgA is produced in the stroma of the salivary glands.

IL-17A is vital for the generation of salivary IgA (36) and protects

against S. pyogenes (18) and other bacterial mucosal infections (62, 63).

In the current study, WT mice generated M1-specific antibodies

proportional to the number of mucosal exposures, while IL-17−/−

mice had significantly lower IgG antibodies, which correlated with a

lack of protection. The protective role of IL-17 through recruitment of

neutrophils and tissue-resident memory T cells is evident in our study,

as IL-17−/−mice had reduced numbers of lung neutrophils and effector/

memory CD4+ T cells, as also shown elsewhere (63–65). Instead

of generating immunity, repeated IN infections in IL-17−/− mice led

to S. pyogenes accumulation in the respiratory mucosa and the invasion

of sterile sites. This could be attributed to the fact that in the absence of

IL-17, S. pyogenes could not be cleared from the respiratory mucosa

and accumulated post-infection. IL-17A is vital for maintaining the

integrity of the epithelial barrier (66).

In summary, our findings highlight that IL-17 orchestrates a

multifaceted mechanism required to induce immunological

memory and neutrophil recruitment to the lungs, preventing the

subsequent systemic dissemination of S. pyogenes following

mucosal infections. However, it does not prevent S. pyogenes

infections that begin at the skin site. Our study demonstrates that

cross-compartmental protection is challenging to achieve with

natural infections. This highlights the importance of developing

vaccine strategies that lead to timely induction of cellular and

humoral responses capable of protecting multiple anatomical sites

from S. pyogenes infection. Understanding the molecular and

cellular basis of mucosal and systemic immune responses will

provide important insights into the rational design of effective

vaccines to prevent superficial and invasive streptococcal diseases.
Materials and methods

Ethical statement

Mice were housed at the Animal Facility of Griffith University

(Gold Coast, Australia). All experiments and animal procedures were

approved by the Griffith University Animal Ethics Committee (Animal

Ethics Approval GLY/04/18), in compliance with the Australian
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National Health and Medical Research Council Guidelines.

Experimental protocols involving IL-17 knockout (IL-17−/−) mice

were reviewed and approved by the Office of the Gene Technology

Regulator (OGTR). BALB/c mice (female, 4–6 weeks old) were sourced

from the Animal Resource Centre, Western Australia. IL-17−/− mice

were obtained from Yoichiro Iwakura (Tokyo University of Science,

Japan) under a Material Transfer Agreement (MTA) (67). Knockout

mice were bred in-house at the Griffith University Animal Facility. The

general health of the mice was monitored daily. Following the

challenge, mice were monitored for signs of illness as per a score

sheet approved by the Griffith University Animal Ethics Committee

(68). The observer was blinded to the experimental groups.
Bacterial strains and culture media

S. pyogenes 2031 (emm1) was obtained from the Menzies School

of Health Research (Darwin, NT, AUS). The isolate was serially

passaged in mice to ensure virulence and was resistant to 200 µg/ml

of streptomycin. The isolate was grown overnight in liquid Todd–

Hewitt broth medium (THB; Oxoid, AUS), supplemented with 1%

yeast and 1% neopeptone (THBYN; Difco, AUS). The isolate was

10-fold serially diluted and plated in duplicate on Columbia Blood

Agar (CBA; Oxoid, UK) supplemented with 5% defibrinated horse

blood (Equicell, AUS) and 200 µg/ml streptomycin (Sigma, China)

to determine the number of colony-forming units (CFUs).
Pepsin extraction of the M protein

M-protein was extracted using pepsin digestion as described

previously (69, 70). Overnight THBYN cultures were pelleted and

resuspended in four times the weighted volume of PBS pH 5.8 twice.

Resuspended pellets were pre-warmed to 37°C for enzymatic

digestion with pepsin A (Merck, AUS) (1 mg pepsin per 10 g

bacterial suspension) for 45 min with intermittent mixing. The

digested suspension was pelleted, and the pepM extract buffer was

exchanged with PBS pH 7 using a 10 kDa Amicon centrifugal filter

unit (Merck, Ireland). PepM extracts were confirmed by SDS-PAGE

and stored in solution at −20°C.
Sequential intranasal infection protocol

The mice received sequential intranasal infections 3 weeks

apart. Mice were anesthetized via an IP injection of ketamine 100

mg/kg and xylazine 20 mg/kg (71). Using a pipette, 5 µL of bacterial

inoculum was administered to each nare (1 × 107 CFU in 10 µL/

mouse) while the mouse remained on its back to ensure inhalation.

Mice were monitored daily as described above.
Superficial skin challenge

Mice were challenged using a skin scarification model as

previously described (72). The mice were anesthetized with an IP
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injection of ketamine 100 mg/kg and xylazine 20 mg/kg. The fur

from the neck nape was removed using clippers and then

superficially scarified. A 10 µL inoculum was topically applied;

once the inoculum had absorbed into the skin, a temporary cover

(Band-Aid™) was applied to the wound, and mice were housed

individually. The mice were monitored daily for signs of illness, as

described above.
Antibody response by indirect enzyme-
linked Immunosorbent assay (ELISA)

Indirect-ELISA was used to quantify antigen-specific IgG and

IgA antibody titers as described elsewhere (73). Goat anti-mouse

IgG (Bio-Rad, AUS) or IgA (Invitrogen) horseradish peroxidase

(HRP) linked antibodies were used to detect antigen-specific

antibodies. Optical density (OD) at 450 nm was measured using a

Tecan Infinite m200 Pro plate reader. Titers were defined as the

highest dilution of serum for which the OD was >3 standard

deviations (SD) above the mean OD of the control samples

(naïve sera).
Sample collection and CFU quantification

Serum samples were collected by puncturing the submandibular

vein. Whole blood was allowed to clot and be removed prior to

centrifugation for serum separation.

Throat swabs were performed using floq swabs (Interpath,

USA) moistened in PBS prior to swabbing both sides of the

throat. Swabs were squeezed into tubes containing PBS, 10-fold

serially diluted, and plated onto CBA plates supplemented with 5%

horse blood and 200 µg/ml of streptomycin. Following overnight

incubation at 37°C, the CFU were counted to determine the

bacterial load.

At designated time points, the mice were sacrificed via CO2

inhalation, and whole blood was collected via cardiac puncture into

tubes containing ethylenediaminetetraacetic acid (EDTA; Thermo,

AUS). Tissues were collected and mechanically homogenized

using a Bullet Blender™ (Next Advance, USA) following the

manufacturer’s instructions. Samples were 10-fold serially diluted

and plated in replicates on CBA plates supplemented with 5% horse

blood and 200 mg of streptomycin. Following overnight incubation

at 37°C, CFU were counted to determine bacterial load.
Antibody-secreting cell response by
enzyme-linked immunosorbent spot
assay (ELISpot)

ELISpot was used to quantify the number and location of

antibody-secreting cells (ASC) in the splenocytes, lungs, and

long-lived plasma cells (LLPCs) in the bone marrow. Multiscreen

HA filter plates (Merck, Ireland) were coated with 5 mg/mL M1

extract in carbonate coating buffer overnight at 4°C. Isolated cells
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were adjusted to 5 × 106/mL and directly tested for IgG/IgA-

secreting cells using previously published methods (74, 75). Spots

were developed using an AEC substrate kit (BD, AUS) according to

the manufacturer’s instructions and manually counted to

determine ASCs.
CXCL13 assay

The CXCL13 assay was performed according to the

manufacturer’s instructions (R&D Systems, USA). Test sera were

diluted 1:4 and assay standards were prepared in a 1:1 ratio of assay

diluent in duplicate and incubated at room temperature for 2 h on a

shaker. The plate was washed five times before conjugate incubation

at room temperature for 2 h on a shaker. After washing, the

substrate solution was added for 30 min at room temperature in

the dark prior to the addition of the stop solution. The OD was

measured at 450 nm with a correction of 540 nm using a Tecan

Infinite m200 Pro plate reader.
IL-17 ELISA

IL-17A ELISA was performed according to the manufacturer’s

instructions (Mouse IL-17A ELISA MAX; Biolegend, USA). Nunc

MaxiSorp plates (Thermo, AUS) were coated overnight with an IL-

17A capture antibody diluted in carbonate coating buffer. The plates

were blocked with 1% BSA/PBS for 1 h prior to washing. Splenocyte

supernatants (diluted 1:4 in duplicate) and standards were

incubated at room temperature for 2 h. The detection antibody

was incubated for 1 h prior to avidin–HRP incubation for 30 min.

TMB substrate solution was incubated for 20 min, followed by the

addition of an acid stop solution. The absorbance (OD) was

measured at 450 nm with a correction of 570 nm. IL-17A

concentration was determined by plotting the unknown samples

on a standard curve to determine IL-17A pg/mL.
Cell purification for ex vivo assays

Lymphocyte populations were purified from the splenocytes,

lungs, and bone marrow. Lungs were digested in Worthington

collagenase III (Scimar, AUS) supplemented with DNase I (Merck,

AUS), and all tissues were transferred through a 0.70 mM cell

strainer (Corning, USA) to obtain single-cell suspensions. RBCs

were lysed with ACK lysis buffer and washed with RPMI (Thermo

Fisher Scientific, AUS).
Cytokine production by cytometric bead
CBA analysis

Single cell suspensions of splenocytes were prepared as

described above, counted using a hemocytometer in trypan blue

(Sigma, AUS) and adjusted to 4 × 106 cells/mL. Splenocytes were
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stimulated with heat-killed 2031 or medium as a negative control.

After 72-hour stimulation at 37°C with 5% CO2, the cells were

centrifuged at 300g for 10 min, and the supernatant was collected.

The supernatants were stored at −80°C. Cytokines in the

supernatant were subsequently measured using a mouse Th1/

Th2/Th17 CBA kit (BD, AUS) according to the manufacturer’s

instructions. Samples were acquired using a BD LSR Fortessa

cytometer, and data were analyzed using FCAP Array v3.1 (BD).
Cell population analysis by flow cytometry

The cell populations were determined by flow cytometry. Single

cell suspensions were prepared as described above and pre-

incubated with the Fc block (CD16/32) for 15 min on ice. The

cells were surface-stained with a master mix containing dead cell

exclusion dye (NIR), CD4-FITC, CD62L-PE-Cy7, CD44-APC,

CD45-BUV395, CD11b-BUV737, CD3-PE-CF594, and Ly6G-

BV510. Cells were stained on ice in the dark for 40 min.

Following incubation, the cells were washed in FACS buffer

(2.5% fetal calf serum, 5mM EDTA in PBS) and fixed in 2%

paraformaldehyde for 15 min. Samples were washed in PBS and

acquired on a BD LSR Fortessa flow cytometer, and data were

analyzed using FlowJo V.10.7 (BD).
Immunohistochemistry (IHC)

Formalin-fixed paraffin-embedded (FFPE) spleens were

sectioned at 3 mm thickness on SuperFrost+ slides. IHC staining

of spleen sections for CD4 (1:200, D7D2Z; Cell Signaling

Technology) and neutrophil elastase (1:200, E8U3X; Cell

Signaling Technology) was performed using a Leica BOND™ RX

auto-stainer (Leica, Nussloch, Germany) with the BOND Polymer

Refine Detection (Leica) kit and developed with 3,3 ’-

diaminobenzidine as the chromogen. The stained slides were

mounted in Dako Mounting Medium (Dako) and coverslipped

using a Dako coverslipper.
IHC acquisition and analysis

Images were acquired using an Olympus VS200 digital slide

scanner (EVIDENT Life Science, USA) under bright-field emission.

Each tissue section was acquired using a ×20 objective (UPLXAPO

×20; NA 0.8). Individual images were obtained from regions of

interest (ROI) drawn using the VS200 software based on automatic

outline thresholding. Cell counts were performed using QuPath (v

4.0.1), and the neutrophil elastase H-score was assigned in the range

of 0–300. Cell counts are given as the average of cells per µm2Data

was exported to Microsoft Excel for tabulation and plotted using

GraphPad Prism.
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Statistical analysis

The data were analyzed using Graph Pad PRISM version 10.7

for Windows. All data, except where noted, are presented as the

geometric mean ± standard error of the mean (SEM). Statistical

differences between the two groups were determined using the non-

parametric Mann–Whitney t-test. When comparing more than two

groups, analyses were performed using one-way ANOVA with

p <0.05 considered to be statistically significant.
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