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Single-cell and Bulk RNA-Seq
reveal angiogenic heterogeneity
and microenvironmental features
to evaluate prognosis and
therapeutic response in
lung adenocarcinoma
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Sichu Wang1,2, Taoming Mo2,4, Weibiao Zeng3*,
Hao Ding3* and Shu Pan3,5*

1Dalian Medical University, Dalian, China, 2Department of Pathology, Affiliated Hospital of Nantong
University, Nantong, China, 3Department of Thoracic Surgery, The First Affiliated Hospital of Soochow
University, Suzhou, China, 4Medical School of Nantong University, Nantong, China, 5Suzhou Gene
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Background: Angiogenesis stands as a pivotal hallmark in lung adenocarcinoma

(LUAD), intricately shaping the tumor microenvironment (TME) and influencing

LUAD progression. It emerges as a promising therapeutic target for LUAD,

affecting patients’ prognosis. However, its role in TME, LUAD prognosis, and its

clinical applicability remain shrouded in mystery.

Methods: We employed integrated single-cell and bulk transcriptome

sequencing to unravel the heterogeneity of angiogenesis within LUAD cells.

Through “consensus clustering”, we delineated distinct angiogenic clusters and

deciphered their TME features. “Monocle2” was used to unravel divergent

trajectories within malignant cell subpopulations of LUAD. Additionally, regulon

submodules and specific cellular communication patterns of cells in different

angiogenic states were analyzed by “pyscenic” and “Cellchat” algorithms. The

“univariate Cox” and “LASSO” algorithms were applied to build angiogenic

prognostic models. Immunohistochemistry (IHC) on clinical samples validated

the role of model factors in LUAD angiogenesis. We utilized CTRP 2.0 and PRISM

databases for pinpointing sensitive drugs against lung adenocarcinoma.

Results: Two clusters for the activation of angiogenesis were identified, with

Cluster 1 showing a poor prognosis and a pro-cancerous TME. Three

differentiated states of malignant epithelial LUAD cells were identified, which

had different degrees of angiogenic activation, were regulated by three different

regulon submodules, and had completely different crosstalk from other cells in

TME. The experiments validate that SLC2A1 promotes angiogenesis in LUAD. ARS

(Angiogenesis related score) had a high prognostic value; low ARSs showed

immunotherapy benefits, whereas high ARSs were sensitive to 15

chemotherapeutic agents.
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Conclusion: The assessment of angiogenic clusters helps to determine the

prognostic and TME characteristics of LUAD. Angiogenic prognostic models

can be used to assess the prognosis, immunotherapeutic response, and

chemotherapeutic drug sensitivity of LUAD.
KEYWORDS

angiogenesis, tumor microenvironment, immune infiltration, immune therapy,
prognosis, lung adenocarcinoma
1 Introduction

Lung cancer is the most common cause of cancer-related death

(1), and lung adenocarcinoma (LUAD) is its leading pathological type

(2), which accounts for 50% of all lung cancer cases (3).

Tumor heterogeneity is the main cause of drug resistance and

tumor recurrence in LUAD (4), and the complex tumor

microenvironment (TME) is key to LUAD heterogeneity (5).

Chemotherapeutic and immunotherapeutic efficacy exhibit varying

degrees of heterogeneity in patients with LUAD (6), thus hindering

precise assessment of individual patient prognosis. Recent studies

have suggested that the components of TME can determine the

cancer immunophenotype and help guide chemotherapy and

immunotherapy stratification in the future (6–8).

Angiogenesis is defined as the formation of new blood vessels

from pre-existing vessels through a process called germination.

Angiogenesis is important for the phenotypic differentiation of

TME (9). Vascular endothelial growth factor (VEGF) is a critical

driver of tumor neo-angiogenesis, and its expression within TME is

heterogeneous, leading to an immunosuppressive effect (10).

VEGFA exerts angiogenic effects by activating VEGFR2 expressed

on endothelial cells (11). In recent years, anti-angiogenic drugs

targeting the VEGFA pathway have significantly contributed to the

treatment of LUAD (12).

Cancer-associated fibroblasts within TME are involved in

angiogenesis, immune escape, and drug resistance (13). Tumor-

associated macrophages (TAMs) are enriched in TME in most

cancer types. TAMs polarise into the M1 or M2 phenotype

depending on the environment, and M2 macrophages express

anti-inflammatory cytokines (e.g. IL-10, CCL22, and CCL18) and

low levels of IL-12, thereby exerting anti-inflammatory, angiogenic

and pro-tumor effects (14). Chemokines in TME mediate the

recruitment of immune cells to TME and directly affect cancer

and endothelial cells to regulate tumor neo-angiogenesis (15).

Furthermore, angiogenesis modulates metabolism and immunity.

An abnormal vascular system inevitably leads to hypoxia and

acidosis, resulting in the upregulation of tumor factors such as

VEGF and TGF-b in the TME and eventually promoting metastasis

and immunosuppression (16). Therefore, the regulation of

angiogenesis is extremely complex and closely related to the

TME. However, no multi-omics study of LUAD based on
02
angiogenesis-related genes has analyzed their specific role in the

TME and prognosis.

Employing scRNA-seq, we can analyze RNA profile variations at

a high resolution to comprehend the intricate tumor

microenvironment (TME) (17). Previous LUAD studies utilized

scRNA-seq to explore diverse cell profi les within the

microenvironment. In this study, distinct angiogenic clusters were

identified based on 36 previously reported angiogenesis-related genes.

We revealed heterogeneity of angiogenic activity in the LUAD tumor

microenvironment at the single-cell level. Additionally, to enhance

clinical applicability, an angiogenic scoring system was developed.

This system evaluates LUAD aggressiveness and TME phenotype,

guiding the customization of chemotherapy and immunotherapy

strategies for individualized patient care.
2 Materials and methods

2.1 Pre-processing of bulk RNA-seq data

The gene expression data and clinical information of patients

with LUAD were downloaded from the NCBI GEO (https://

www . n c b i . n lm . n i h . g o v / g e o / ) a nd TCGA (h t t p s : / /

cancergenome.nih.gov/) databases. A total of 884 LUAD samples

from the GSE31210 (N = 226), GSE42127 (N = 133), GSE50081 (N =

127), and GSE72094 (N = 398) datasets were included in this study.

The RNA-seq data (FPKM format, N = 500) and survival information

of patients with LUAD were extracted from the TCGA database and

converted to the transcripts per million (TPM) format. The Combat

algorithm of the R package “SVA”was used to remove batch effects in

samples from the GEO datasets. All data were log2(X+1) normalized

for subsequent analysis. The somatic gene mutation data of patients

with LUAD were downloaded from the UCSC Xena database

(https://xenabrowser.net/datapages/).
2.2 Extraction and manipulation of single-
cell RNA-seq data

Raw scRNA-seq data were downloaded from the GSE127465

dataset for single-cell analysis. The data contains 12 samples from 5
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lung adenocarcinoma patients. In addition, the expression matrix,

cell clustering, and cell type annotation data of the dataset were

downloaded from the TISCH database (17). Samples with UMI

counts of >1000 and >500 genes expressed in each cell were

retained. For subsequent analysis of malignant epithelial LUAD

cells, the number of highly variable genes was set to 2000, and the

resolution was set to 0.6 for cell clustering. The data were

dimensionalized using the “tSNE” method, and differentially

expressed genes among malignant cell clusters were calculated

using the “FindAllMarkers” algorithm.
2.3 Consensus clustering of
angiogenic clusters

We extracted a set of 36 angiogenesis-related genes from

MsigDB (http://www.gsea-msigdb.org/gsea/msigdb/search.jsp) for

this study. Utilizing the R package “ConsensusClusterPlus”, we

conducted consensus clustering analysis on the gene expressions.

The algorithm employed was “KM”, using “euclidean” distance

calculation and a random seed set to “5555555”. The GEO and

TCGA-LUAD cohorts were categorized into two expression

patterns, Cluster1 and Cluster2. Differential gene expression

between the clusters was identified using the R package “limma”.
2.4 ssGSEA, GSVA, and single-cell
functional gene set activity scores

Transcriptomic pathway activity scores were assessed using gene

set variation analysis (GSVA) with the “HALLMARK dataset”.

Enrichment scores were calculated using single-sample gene set

enrichment analysis (ssGSEA) to represent the activity scores of

cancer-related biological pathways and immune microenvironment-

related signatures. Functional activity scores for each cell were

determined using the “SingleCellSignatureScorer” software, relying

on the differential expression of genes between the two expression

clusters (18).
2.5 GO and KEGG enrichment analyses
and GSEA

GO and KEGG functional enrichment analyses of differentially

expressed genes were performed using the R package “clusterProfiler”.

GO analysis included functional enrichment of biological processes

(BP), cellular components (CC), molecular functions (MF), and

other categories.
2.6 Single-cell trajectory analysis

Based on the single-cell data (Seurat objects), single-cell

trajectories were constructed using the R package “Monocle2”,
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and genes regulated in a branch-dependent manner were

identified using the branched expression analysis modeling

(BEAM) algorithm (19).
2.7 Cell communication analysis

Based on the human CellChatDB database, cellular

communication among LUAD cells of different trajectory

branches, immune, and stromal cells in TME was analyzed using

the R package “CellChat”. In addition, ligand–receptor pairs

involved in different signaling pathways in tumor, immune, and

stromal cells were identified.
2.8 Identification of Regulon submodules

A list of human transcription factors was downloaded from the

RcisTarget database (https://resources.aertslab.org/cistarget/) and

used to construct a transcription factor regulatory network. The

“pyscenic” algorithm in Python was used to build a gene co-

expression network based on the abovementioned transcription

factors, establish transcription factor–target regulatory

relationships, and identify a regulon (20). In addition, the regulon

activity score (RAS) of cells was evaluated using the “AUCell”

algorithm. The area under the curve (AUC) and connection

specificity index (CSI) were calculated, and the regulon

submodules were defined by hierarchical clustering of regulons

based on CSI.
2.9 Immunohistochemistry

A total of 18 lung adenocarcinoma samples, along with 7

corresponding paracancerous tissues, were collected. Ethical

approval has been obtained from the Medical Ethics Committee

at The Affiliated First Hospital of Soochow University for the

collection of tissue specimens. The tissues were fixed with 4%

paraformaldehyde, dehydrated, and paraffin-embedded, resulting

in 4 mm sections. Tissue sections underwent incubation at 4°C

overnight with primary antibodies targeting SLC2A1 (Sangon,

D160433, 1:200), CD34 (Sangon, D363155, 1:200), and VEGFA

(Sangon, D260788, 1:200) post-deparaffinization, rehydration, and

antigen retrieval. Subsequently, the slides were exposed to an

antirabbit secondary antibody, followed by DAB staining and

hematoxylin counterstaining. Two blinded pathologists

independently assessed the immunohistochemistry (IHC) results.

Tissue sections were scored based on the percentage of positive cells

and staining intensity. Staining intensity was graded as 0 (negative),

1 (weak), 2 (moderate), or 3 (strong), while the expression

proportion of positive cells was scored as 1 (0–25%), 2 (26–50%),

3 (51–75%), or 4 (76–100%). The proportion and intensity scores

were amalgamated to derive a final score. An IHC score of ≥6

denoted high expression, while <6 indicated low expression.
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2.10 Analysis of immunotherapy response
and chemotherapy drug sensitivity

Data regarding the response of patients with LUAD to

immunotherapy were extracted from the GSE126044 (N = 16)

cohort, and immunotherapeutic efficacy was predicted using the

TIDE algorithm (http://tide.dfci.harvard.edu/). Data regarding the

sensitivity of patients to chemotherapeutic drugs were extracted

from the CTRP 2.0 database (https://portals.broadinstitute.org/

ctrp.v2.1/), and AUC data for PRISM analysis were extracted

from the PRISM Repurposing Secondary Screen 19Q4 dataset

(https://depmap.org/portal/download/). The area under the dose-

response curve (AUC) in both datasets was used to measure drug

sensitivity, with lower AUC values indicating higher sensitivity.

Differences in drug sensitivity were analyzed using the Wilcoxon

test and Spearman correlation analysis (log2FC > 0.15, r < –0.4).

Missing AUC values in the dataset were imputed using the K-

nearest neighbors (KNN) algorithm, and chemotherapeutic drugs

with >20% missing data were excluded (20). The expression profile

data of the CCLE cell line (https://portals.broadinstitute.org/ccle/

data) were used as a training set for predicting drug sensitivity.

Drug response in each sample was evaluated using the

pRRophetic package.
2.11 Statistical analysis

Statistical analyses were performed using the R software

(version 4.2). For comparing the data of two datasets, the

significance of normally distributed variables was estimated using

the Student t-test, whereas that of non-normally distributed

variables was estimated using the Wilcoxon test. For comparing

the data of more than two groups, one-way ANOVA was used to

analyze normally distributed data, whereas the Kruskal–Wallis test

was used to analyze non-normally distributed data. The two-sided

Fisher exact test was used for R*C tables containing <5 samples.

Kaplan–Meier survival analysis and Cox proportional hazards

model were used to analyze the significance of prognostic

features. A multivariate regression model was used to adjust for

confounders. The Benjamini–Hochberg method was used to control

the false discovery rate (FDR) for multiple hypothesis testing, with

all comparisons being two-sided with an alpha level of 0.05 (21) (*,

P < 0.05; **, P < 0.01; ***, P < 0.001).
3 Results

Figure 1 shows the flow chart of this study.
3.1 Identification of angiogenic clusters
for LUAD

We conducted consensus clustering analysis on lung

adenocarcinoma patients using expression data of 36 angiogenesis-

related genes to differentiate angiogenic clusters of LUAD. Two
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clusters, namely, Cluster1 and Cluster2, were identified using

LUAD samples in the GEO dataset (Supplementary Figures S1A–

C). The two clusters possess different angiogenic gene expression

patterns and are associated with different prognoses, with Cluster 1

having a worse prognosis (P < 0.001, log-rank test) (Figure 2A).

Principal component analysis revealed that the two clusters were

completely distinguishable based on the expression of angiogenesis-

related genes (Figure 2B). Samples from both clusters were evenly

distributed in the independent GEO cohort, and only Cluster 1

showed a worse prognosis (Supplementary Figures S1D–G).

Consensus clustering was performed in the TCGA-LUAD cohort

using the same method (Supplementary Figures S1H, I), and similar

results were obtained (Figure 2C). The results of multivariate Cox

analysis validated that the angiogenic clusters identified based on

angiogenesis-related genes might serve as independent prognostic

factors for LUAD (Cluster2 versus Cluster1; HR, 0.57; 95% CI, 0.43–

0.76; P < 0.001) (Figure 2D). Next, the GSVA algorithm evaluated

Hallmark gene sets to explore potential biological mechanisms of the

differences between the two clusters. Cluster1 was significantly

enriched in various oncogenic pathways, such as TGF-b signaling,

epithelial–mesenchymal transition, angiogenesis, hypoxia, and

apoptosis, whereas Cluster2 was mainly involved in the activation

of biological pathways, such as the P53 signaling pathway and fatty

acid metabolism (Figure 2E). These results suggest that angiogenesis

is closely related to the TME of LUAD and is involved in

LUAD development.
3.2 Differences in TME characteristics
between angiogenic clusters

To understand the tumor microenvironmental phenotype

mapped by angiogenic clusters, the activity of signatures

associated with cancer-related pathways was analyzed using the

ssGSEA algorithm. The results indicated that the expression of

multiple signatures was significantly different between the two

clusters. The expression of signature genes associated with

cancer-related pathways including EMT, WNT targeting, cell

cycle, antigen presentation, and immune checkpoints was higher

in Cluster1 than in Cluster2 (P < 0.001) (Figure 2F). Furthermore,

differences in immune and stromal cell regulation between the two

clusters were analyzed. Stromal cells with pro-oncogenic effects

(e.g., MDSCs and CAFs) and regulatory T cells that suppress anti-

tumor immunity were more active in Cluster1. Meanwhile, the

expression of genes associated with immune checkpoint blockade

(ICB) resistance was also high in Cluster1. However, despite the

aggregation of various cancer-promoting stromal and immune cells

in Cluster1, MHC and co-stimulatory molecules were activated,

suggesting that anti-cancer immune responses are also related to

Cluster1. These results indicate that immune cells and pro-cancer

biological pathways play an important role in Cluster 1. Besides,

there are complex chemokine and cytokine regulatory networks in

TME, and we found that there are entirely different regulatory

factor expression levels for different angiogenic expression patterns

based on the ssGSEA enrichment results of the signature of these

tumor microenvironmental regulators. For example, BCR (B cell
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receptor) signaling, TCR (T cell receptor) signaling, natural killer

cell cytotoxicity, interleukin expression, chemokine expression, and

cytokine expression were significantly upregulated in Cluster1,

suggesting that the destabilization of chemokine and cytokine

regulation in Cluster1 leads to a poor prognosis of LUAD.

Furthermore, immune cell infiltration was analyzed in the two

clusters. The infiltration of T helper, TFH (Follicular helper T cell),

DC (Dendritic cells), mast, Tem (Effective Memory T Cell), and

Th17 cells was significantly high in Cluster2, whereas that of

macrophages and neutrophils was significantly high in Cluster1.

These results validated our previous hypothesis, indicating that the
Frontiers in Immunology 05
pro-oncogenic immune microenvironment and pathways

predominated in Cluster1, which suggests that elevated

angiogenic activity accompanies the pro-oncogenic TME.

The two angiogenic clusters exhibited distinct tumor

microenvironmental phenotypes. Differentially expressed genes (|

log2fold change| > 1, adj. P < 0.05) between angiogenic Cluster1 and

Cluster2 were identified as angiogenic clusters-related genes

(Figure 2G). Subsequent GO and KEGG functional enrichment

analysis revealed significant enrichment in the extracellular matrix,

cytokine and chemokine production, angiogenesis regulation,

immune response regulation, Wnt signaling pathway, and EMT-
FIGURE 1

The flow chart of this study.
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FIGURE 2

Angiogenic clusters distinguish tumor microenvironment phenotypes and prognostic characteristics in lung adenocarcinoma. (A) Kaplan-Meier
curves for overall survival (OS) of lung adenocarcinoma patients with different angiogenic cluster in the GEO cohort, Log-rank test P<0.001. (B)
Principal component analysis based on 36 genes related to angiogenesis can well distinguish the two angiogenic clusters. (C) Overall survival (OS)
Kaplan-Meier curves for lung adenocarcinoma patients in the TCGA cohort with different angiogenic cluster, Log-rank test P=0.008. (D) Multivariate
Cox regression analysis based on clinicopathological characteristics of patients to assess the prognostic value of angiogenic cluster in lung
adenocarcinoma. (E) Enrichment scores for the 50 “Hallmark “ gene sets in lung adenocarcinoma patients were assessed using the GSVA algorithm
and tested for the significance of differences, with the horizontal axis indicating the t-value of the difference analysis. Entries with |t value| > 1.96 in
this study were statistically significant, and a negative t value indicated that the signaling pathway was actively expressed in Cluster1. (F) The
enrichment scores of Carcinogenic pathways, TME signature, TME regulatory factor, and immune cell signatures were evaluated based on the
ssGSEA algorithm, and displayed with Heatmap and compared the difference in enrichment scores between the two angiogenic clusters. (G)
Significantly differentially expressed genes (DEGs) between the two angiogenic clusters, 72 genes were upregulated and 81 genes were
downregulated in Cluster2. (H) Functional annotation of DEGs using GO and KEGG functional enrichment analysis. The innermost circle represents
the number of enriched genes in the corresponding pathway, and the remaining circle meanings have been labeled in the center of the circle.
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related processes. This validates that the differentially expressed

genes exhibit characteristics of angiogenesis and its mediated TME

(Figure 2H), reflecting differences in angiogenic clusters and their

underlying biological mechanisms.
3.3 Angiogenic heterogeneity among
different cell types and subtypes

To explore the heterogeneity of angiogenic activity among cell

types, angiogenic clusters-related genes were used as the angiogenic

signature, and scored using the “SingleCellSignatureScorer”

algorithm. Firstly, a total of 12 samples in the scRNA-seq dataset

had a good integration effect among samples, with no significant

batch effect, thus allowing for subsequent analysis (Figure 3A).

Through descending and unsupervised clustering, samples were

classified into 13 cell types, encompassing immune, stromal, and

malignant tumor cells (Figure 3B). Angiogenesis scores, reflecting

the degree of biological activity, varied among these cell types.

Notably, fibroblasts, malignant cells, and neutrophils displayed

significantly higher scores than immune cells, indicating more

active angiogenesis (Figures 3C, D).

Furthermore, focusing on the heterogeneity of scores among

malignant tumor cells, the cells were divided into 11 different

subtypes (Figure 3E). Similarly, significant differences in

angiogenesis scores were observed in different subpopulations of

malignant tumor cells (Figure 3F). Altogether, these results suggest

that different cells in TME exhibit different levels of angiogenesis.

Therefore, it is important to investigate the causes of

angiogenic dysregulation.

To examine the important role of angiogenesis in malignant cell

heterogeneity, cellular pseudo-time analysis was performed to

investigate malignant cell differentiation trajectories. The results

revealed three main differentiation states of malignant cells, namely,

State1, State2, and State3 (Figure 3G). Malignant cells in State1 are

the initiating factors of the reverse chronological trajectory, whereas

State2 is at the end of the trajectory. (Figure 3H). The transition of

State1, State2, and State3 with pseudotime can be visualized clearly

through density diagrams and trajectory plots. (Figures 3I, J).

Furthermore, significant differences in angiogenesis scores were

observed among the three cell states (Kruskal–Wallis test; P < 0.001)

(Figure 3K). State3 had the lowest angiogenesis scores (low-score

group), and State2 had the highest scores (high-score group)

(Figure 3L), suggesting that angiogenesis is involved in malignant

cell heterogeneity. In addition, angiogenesis is dysregulated in

LUAD, and its activation is closely related to the differentiation

status of LUAD cells.
3.4 Regulon submodules of different
cell states

Clustering regulons based on the Connection Specialty Index

(CSI) revealed three submodules, M1, M2, and M3 (Figure 4A).

Regulons within the same submodule exhibited tight expression

correlations. Subsequently, regulon activity scores were calculated
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for the three cell states, indicating the activation of regulons in each

state. M1, M2, and M3 module regulons were predominantly

activated in State2, State3, and State1, respectively (Figures 4B–D).

The M1 module regulon, associated with high angiogenic scores,

appeared to primarily regulate angiogenic activation (Figure 4E). The

establishment of a regulon-based regulatory network enhances our

understanding of the three cell differentiation states and aids in

identifying markers and therapeutic targets for LUAD.
3.5 Cell communication of malignant cells
with TME

The findings indicate an association between angiogenesis and

the microenvironment of lung adenocarcinoma. Cell communication

pattern recognition predicts how cells, as signal senders or receivers,

coordinate with each other and signaling pathways to drive

intercellular communication. In this study, we analyzed cell

communication within the lung adenocarcinoma TME involving

malignant cells, immune cells, and stromal cells. The results

revealed there were two incoming signal coordination modes and

two outgoing signal coordination modes for intercellular

communication and the signaling pathways coordinated with it

(Supplementary Figure S2A). State1 cells can be signalled via the

TWEAK signal l ing pathway (TNFSF12–TNFRSF12A,

Supplementary Figure S2B), IGF signalling pathway (IGF2–[ITGA6

+ITGB4], Supplementary Figure S2C), MK signalling pathway

(MDK–[ITGA6+ITGB1], Supplementary Figure S2D), SEMA3

signalling pathway (SEMA3B–[NRP2+PLXNA2], Supplementary

Figure S2E) and PERIOSTIN signalling pathway (POSTN–[ITGAV

+ITGB5], Supplementary Figure S2F) for active communication with

M2 macrophages, endothelial cells, and CD4 T cells. State2 cells can

be signaled through the EGF signaling pathway (HBEGF–EGFR,

Figure 5A), TRAIL signaling pathway (TNFSF10–TNFRSF10B,

Figure 5B), TGF-b signaling pathway (TGFB3–[TGFBR1+TGF,

Figure 5C), complement signaling pathway (C3–[ITGAX+ITGB2],

Figure 5D), UGRP1 signaling pathway (SCGB3A2–MARCO,

Figure 5E) and WNT signaling pathway (WNT3A–[FZD4+LRP5],

Figure 5F) for active communication with M2 macrophages, mast

cells, and endothelial cells. It is interesting to note that there are

similar results between State1 and State2 cells. However, State3 cells

communicate closely with M2 macrophages, fibroblasts, endothelial

cells, and cDC cells through a signaling pathway that is distinct from

that associated with State1 and State2 cells (Supplementary

Figure S3). Although the cell types that communicate with cells in

the three states are similar, the signaling pathways are different,

indicating that heterogeneity of the angiogenic regulatory

microenvironment is closely related to these signaling pathways.
3.6 Construction of the angiogenic risk
score and discussion of its
clinical relevance

To find all genes that differ between the branches, that is, cell

differentiation trajectories, we used the branched expression analysis
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modeling (BEAM) to find “branch-dependent” genes (Figure 6A).

These genes are associated with cell differentiation trajectories and

also with angiogenic activation. Therefore, we took the intersection of

cell branch-related genes and angiogenesis clusters-related genes,

which are essential for angiogenic clustering and cell differentiation
Frontiers in Immunology 08
trajectories in lung adenocarcinoma. Then, to facilitate the

assessment of the individualized prognosis of LUAD and guide

treatment, a prognostic model, namely the angiogenic risk score

(ARS), was developed based on these 60 intersecting genes

(Figure 6B). The model comprised 12 genes identified via
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FIGURE 3

Analysis of angiogenic scores at the cellular level and trajectory analysis by single-cell sequencing. (A) The integration effect of 12 samples of lung
adenocarcinoma samples appeared to be good with no significant batch effect. (B) Reduced-dimension visualization of tSNE of lung
adenocarcinoma cells, each color represents a cluster, and the cell type represented by each color is labeled on the right. (C) Angiogenesis scores of
cells were assessed based on DEGs between angiogenesis clusters. (D) The Kruskal-Wallis test for heterogeneity of angiogenesis scores between
different cell types. (E) Reduced dimensional clustering of tSNE of malignant cells in lung adenocarcinoma, each color represents a cluster, and the
cell type represented by each color is labeled on the right. (F) Visualization of angiogenesis score of Malignant cells in lung adenocarcinoma. Pseudo
time analysis of Malignant cells based on Monocle2 inference, (G) each color represents one cell State, (H) shows pseudo time analysis changes and
pseudo time start and endpoints. (I) Density diagram showing the process of cell State changes with pseudo-time. (J) The mapping of pseudo time
distribution to high and low angiogenesis scores. (K) Kruskal-Wallis test for comparing significant differences in angiogenesis scores between the
three cell State states. (L) State type proportion statistics of Malignant cells in lung adenocarcinoma and the proportion composition of HighScore
and LowScore groups of different cell States were counted separately.
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univariate Cox regression and Lasso regression analyses: ARS = Exp

(HPGD) * (–0.035) + Exp(IRX2) * (–0.026) + Exp(SFTPB) * (–0.025)

+ Exp(CHIA) * (–0.017) + Exp(HOXD1) * (–0.005) + Exp

(HSD17B6) * (–0.004) + Exp(MUC16) * (0.013) + Exp(S100P) *

(0.032) + Exp(C1orf116) * (0.042) + Exp(KRT16) * (0.045) + Exp

(EGLN3) * (0.090) + Exp(SLC2A1) * (0.166) (Figure 6C). The clinical

significance of the prognostic model was assessed, and the low-ARS

group had a significant survival benefit with good clinical efficacy for

predicting 3-year overall survival in the training set, validation set,

TCGA independent validation set, and the whole GEO dataset

(Figure 6D), with AUC values of 0.71, 0.71, 0.68 and 0.70,

respectively (Supplementary Figure S4A). Multivariate Cox

regression analysis integrating the age, sex, pathological stage,

smoking history, and ARSs of patients revealed that ARS was an

independent biomarker for the prognosis of LUAD (HR, 3.12; 95%

CI, 2.36–4.12; P < 0.001, Supplementary Figure S4B).

In addition, a positive correlation was observed between ARS and

cancer-related biological signatures reported by Mariathasan et al,

especially for cell cycle, EMT, and immune checkpoints, which have
Frontiers in Immunology 09
been reported to promote proliferation, metastasis, and immune

escape in LUAD (Figure 6E). These results validate that ARS is

associated with a worse prognosis and can be used as an independent

prognostic biomarker. Furthermore, the correlation between ARS

and immune cell infiltration in the immune microenvironment was

analyzed, which revealed that ARS fairly characterized the immune

microenvironment. ARS had a positive correlation with Th2 cells (r =

0.5, P < 0.05) and neutrophils (r = 0.14) but a negative correlation

with T cells (r = –0.14), Tcm cells (r = –0.34), Tem cells (r = –0.29),

CD8 T cells (r = –0.32), TFH cells (r = –0.5), DC (r = -0.3),

eosinophils (r = –0.34) and mast cells (r = –0.46) (Figure 6F).

These results suggest that an increasingly strong tumor-suppressive

immune microenvironment is characterized by elevated ARSs. In

addition, various immune cells extensively interact with each other,

reflecting the complexity of TME.

Furthermore, mutated genes in LUAD were identified in the

high- and low-ARS groups. The results showed that both groups

had different somatic mutation patterns. The mutation frequency

of TP53 (61% versus 44%, respectively; OR, 2.029; P < 0.01), TTN
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FIGURE 4

Distinct regulon submodules activation in State1, State2, and State3 cells. (A) The transcription factors of different States of lung adenocarcinoma
Malignant cells can be clustered into three regulon submodules, M1, M2, and M3. (B) Regulon activity score for regulon submodules in three cell
states. (C) Visualization of the tSNE reduced the dimensionality of three cell States. (D) The Regulon activity score has been mapped to each cell. (E)
Regulon activity scores of M1, M2, and M3 regulon submodules in three cell states.
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(54% versus 39%, respectively; OR, 1.84; P < 0.05), ZFHX4 (41%

versus 26%, respectively; OR, 2.021; P < 0.01), XIRP2 (37% versus

19%, respectively; OR, 2.552; P < 0.01), KEAP1 (31% versus 15%,

respectively; OR, 2.598; P < 0.01) and COL11A1 (29% versus 16%,

respectively; OR, 2.037; P < 0.01) was higher in the high-ARS

group, suggesting that angiogenesis relates to the occurrence of

somatic mutations in tumor cells (Figure 6G). Therefore, ARS

constructed based on angiogenesis-related genes can help to assess

TME and genomic somatic mutation patterns in each patient with

LUAD, indicating that different ARSs may predict different

chemotherapeutic and immunotherapeutic effects.
3.7 SLC2A1 promotes angiogenesis in
lung adenocarcinoma

The ARS prognostic model was established based on the lasso

regression algorithm. Among them, SLC2A1 was found to have the

largest Lasso regression coefficient of 0.166 and as a high-risk gene,

which had the greatest impact on the model and drove us to further

validate the role of SLC2A1 on angiogenesis. Consequently, we

collected cancerous and paracancerous tissues from seven pairs of

lung adenocarcinoma patients and performed immunohistochemical
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staining for SLC2A1 and VEGFA (Figure 7A), and statistical analyses

showed that the expression of SLC2A1 and VEGFA was significantly

upregulated in lung adenocarcinoma tissues (Figures 7B, C), which

was in agreement with the expression of SLC2A1 in the TCGA public

database (Figure 7D). Meanwhile, we found that the expression level

of SLC2A1 was significantly associated with the prognosis of lung

adenocarcinoma patients, and patients in the high-expression

SLC2A1 group had a significantly lower overall survival rate

(Figure 7E, HR = 1.87, P<0.001). Tumor tissues from 18 patients

with lung adenocarcinoma were collected subsequently, and the

correlation between SLC2A1 expression level and microvessel

density was observed by immunohistochemical staining. Here we

visualized the proliferation of microvessels by immunohistochemical

staining of CD34. The microvessels in the SLC2A1 high-expression

group were shown to be significantly proliferated under high

magnification, and the number of CD34-positive microvessels was

significantly higher at 22.70 ± 10.34 than that in the low-expression

group, which was 4.625 ± 1.506 (Mean ± SD) (Figure 7F), and the

difference was statistically significant (Figure 7G).

Meanwhile, we further verified the role that SLC2A1

mediates VEGFA secretion in lung adenocarcinoma tissues.

We examined the expression levels of SLC2A1 and VEGFA in

the tumor tissues of 18 lung adenocarcinoma patients by
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FIGURE 5

Ligand receptor pairs mediating cell communication between cell state2 and the tumor microenvironment. (A) State2 cells communicate with M2-
type macrophages via HBEGF-EGFR. (B) State2 cells in concert with State1 communicate closely with Mast and Endothelial via TNFSF10-TNFRSF10B.
(C) State2 cells communicate with State1 synergistically via TGFB3-(TGFBR1+TFGBR2), (D) C3-(ITGAX+ITGB2), (E) SCGB3A2-MARCO and M2
macrophages. (F) State2 intercommunicates with Endothelial via WNT3A-(FZD+LRP5).
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immunohistochemical staining, and the IHC results showed that

high expression of SLC2A1 was significantly correlated with the

increased secretion of VEGFA (Figures 7H, I). The chi-square

test showed that more samples in the high-expressing SLC2A1
Frontiers in Immunology 11
group overexpressed VEGFA, OR = 13.33, P = 0.0474 (Figure 7J),

suggesting that patients with high expression of SLC2A1 are

more at risk of overexpressing VEGFA, which promotes

angiogenesis in tumors.
A B

D

E F

G

C

FIGURE 6

Construction of angiogenic prognostic model and its prognostic value assessment. (A) Finding of all genes that differ between the cell branches. The
center of the heatmap is the start of the pseudotime, and to the sides are the dynamics of genes associated with different cell fates or branches. The
columns in the heatmap are pseudotimes and the rows are genes. The cell state branch-related genes can be clustered into four gene clusters
based on co-expression relationships. (B) A total of 60 genes were intersected by cell “branch-dependent” genes and “angiogenesis-clusters” related
genes. (C) Twelve model genes and their coefficients were identified based on univariate Cox regression and Lasso regression analysis. (D) Kaplan-
Meier curves for overall survival (OS) in the high ARS and low ARS groups were evaluated in the training cohort (N = 532), test cohort (N = 352),
external independent validation cohort TCGA cohort (N = 500), and Whole GEO cohort (N = 884), respectively. (E) Correlation of ARS with cancer-
related biological features and (F) the degree of immune cell infiltration using the Spearman analysis. (G) Differences in somatic mutations in the
tumor genome between the high-ARS and low-ARS groups and statistical tests.
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3.8 Prediction of immunotherapeutic and
chemotherapeutic effects and construction
of an individualized nomogram based
on ARS

In recent years, both immunotherapy and chemotherapy have

played an important role in remodeling TME for the treatment of

LUAD. The abovementioned results indicate that ARS is associated

with the TME of LUAD, somatic mutations in LUAD cells, and the
Frontiers in Immunology 12
clinical immunotherapeutic and chemotherapeutic effects,

suggesting that ARS can facilitate individualized prediction of the

efficacy of immunotherapy in patients with LUAD to guide the

selection of chemotherapeutic drugs. Furthermore, a majority of

immune checkpoints were differently expressed in two groups

(Figure 8A). High expression of checkpoints is involved in

promoting the immune escape of LUAD cells, and these

checkpoints mediate the immunosuppressive microenvironment,

which may be attributed to the poor prognosis of the high-ARS
A

B D E

F
G

I
H

J

C

FIGURE 7

Immunohistochemical staining validates that SLC2A1 promotes angiogenesis in lung adenocarcinoma. (A) Immunohistochemical staining of SLC2A1
and VEGFA in lung adenocarcinoma tissues and paracarcinoma tissues. (B) The t-test for SLC2A1 IHC score in paired tissues. (C) Differential
expression of SLC2A1 in lung adenocarcinoma in the TCGA database. (D) Overall survival of high and low expression of SLC2A1 in lung
adenocarcinoma in the TCGA database. (E) Differential expression of VEGFA in lung adenocarcinoma in the TCGA database. (F)
Immunohistochemical staining of CD34+ microvessels in high and low SLC2A1 expression groups. (G) The t-test for the number of CD34+
microvessels per high field in high and low SLC2A1 expression groups. (SLC2A1(+), High SLC2A1 expression group; SLC2A1 (–), Low SLC2A1
expression group). (H) Immunohistochemical staining of VEGFA in high and low SLC2A1 expression groups. (I) The t-test for VEGFA IHC score in
high and low SLC2A1 expression groups. (J) Correlation between SLC2A1 and VEGFA by chi-square test.
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group. These results suggest that the two groups respond differently

to immunotherapy. Furthermore, the SD/PD (Stable disease/

Progressive disease) group in the LUAD immunotherapy cohort

(GSE126044) had higher ARSs, leading to a poor response to
Frontiers in Immunology 13
immunotherapy (Figure 8B). In addition, the TIDE algorithm was

used to assess immunotherapy response in the GEO and TCGA

cohorts. The response to immunotherapy was poorer in the high-

ARS group than in the low-ARS group, indicating that patients with
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FIGURE 8

Prediction of immunotherapy effects and sensitive chemotherapeutic agents in the high and low ARS groups. (A) Differential expression of immune
checkpoints in the high ARS and low ARS groups. (B) ARS differences between samples in the group with and without clinical response to
immunotherapy. The proportion of immunotherapy with clinical response in the High ARS and Low ARS groups in the (C) GEO cohort and (D) TCGA
cohort was predicted based on the TIDE algorithm. GEO cohort: No immunotherapy response in High ARS versus Low ARS (OR =2.297, p<0.001). TCGA
cohort: No immunotherapy response in High ARS versus Low ARS (OR = 3.342, p<0.001). (E) Number of chemotherapy drugs in PRISM database and
CTRP V2 database. (F) Screening of sensitive chemotherapeutic agents based on analysis of variance log2FC and Spearman correlation analysis. (G) The
correlation between the area under the drug dose-response curve (AUC) and ARS in patients with lung adenocarcinoma was calculated from drug
sensitivity data in the PRISM database. (H) The difference between the area under the drug dose-response curve (AUC) between the high ARS and low
ARS groups was calculated based on the PRISM database. (I) The correlation between the area under the drug dose-response curve (AUC) and ARS in
patients with lung adenocarcinoma was calculated from drug sensitivity data in the CTRP V2 database. (J) The difference between the area under the
drug dose-response curve (AUC) between the high ARS and low ARS groups was calculated based on the CTRP V2 database.
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low ARSs can benefit from ICB treatment (GEO cohort

immunotherapy non-response rate: 71.8% versus 52.5%,

respectively; OR, 2.297; P < 0.001) (Figure 8C), (TCGA cohort

immunotherapy non-response rate: 82.8% versus 59.1%; OR, 3.342;

P < 0.001) (Figure 8D).

Given that ARS significantly affects pathways such as drug

metabolism and mediates multiple oncogenic signaling pathways,

sensitive chemotherapeutic agents for LUAD can be identified

based on ARS. To analyze the potential of ARS as a biomarker

for predicting sensitivity to chemotherapeutic agents, the sensitivity

of patients with LUAD to chemotherapeutic agents was evaluated

based on drug sensitivity data (Figure 8E) extracted from the

PRISM (1448 compounds) and CTRP V2 (481 compounds)

databases. The expression data extracted from CCLE were used as

a training cohort. The area under the dose-response curve (AUC)

was used to quantify drug sensitivity, with higher AUC values

representing lower drug sensitivity. Sensitive drugs were screened

using the Wilcoxon test and Spearman correlation analysis (log2FC

> 0.15, r < –0.4, Figure 8F). Based on the CTRP V2 database, 4

chemotherapeutic agents were identified, including paclitaxel, KX2-

391, CR-1-31B, and leptomycin (Figures 8G, H). In addition, 11

chemotherapeutic drugs with high sensitivity were identified based

on the PRISM database using the same screening criteria, including

docetaxel, epothilone-b, ispinesib, paclitaxel, cabazitaxel, litronesib,

irinotecan gemcitabine, vincristine, topotecan, and rubitecan

(Figures 8I, J). Patients with high ARSs may benefit from the

above mentioned chemotherapeutic agents.

Furthermore, the independent prognostic marker ARS was

combined with clinical prognostic characteristics such as age,

gender, pathological stage, and smoking history to construct a

nomogram for clinical prognostic prediction (Figure 9A), which

can better assess the risk factors and guide subsequent treatment

strategies. The calibration curve of the nomogram showed good

performance with a concordance index (C-index) of 0.768

(Figure 9B), and the AUC of the ROC curve for predicting 1-, 3-

and 5-year survival were 0.78, 0.82, and 0.81, respectively (Figure 9C),

indicating that the nomogram had good accuracy in predicting

overall survival. Decision curve analysis (DCA) and time-

dependent C-index revealed that the clinical prediction accuracy of

the nomogram was superior to that of other clinicopathological

features (Figures 9D, E), indicating that the nomogram can be used

in clinical settings in the future. In addition, we validate the accuracy

of the Nomogram in three independent datasets. High and low

Nomogram scores showed significant differences, and notably, the

AUCs of 5-year overall survival for the Nomogram were 0.76, 0.74,

and 0.93, respectively (Figures 9F-H), further confirming the clinical

predictive performance of Nomogram. In conclusion, the assessment

of angiogenesis and the rest of the clinicopathological features can be

integrated to assess the prognosis of lung adenocarcinoma patients

with great accuracy.
4 Discussion

LUAD is a highly heterogeneous malignancy, and several

studies have used single-cell and bulk sequencing studies to
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discuss the heterogeneity of the TME of LUAD (22).

Angiogenesis plays a crucial role in promoting tumor growth and

metastasis, and vascular endothelial growth factor (VEGF) and

inflammatory chemokines exert immunomodulatory effects,

which enhance angiogenesis while leading to immunosuppression

(23). Studies have indicated the importance of angiogenesis for the

differentiation of TME phenotypes (9). Clinically, anti-angiogenic

drugs that block VEGF/VEGFR signaling have been successful in

treating LUAD; however, they can induce hypoxia, leading to drug

resistance, thereby exacerbating immunosuppression and

increasing immune checkpoint PD-L1 expression (24). Therefore,

an in-depth understanding of angiogenesis and TME interactions

can help guide combination therapy for LUAD. Meanwhile, it is

crucial to construct prognostic models based on angiogenesis to

individually assess the prognosis and microenvironmental status

of patients.

In this study, two angiogenic clusters showed different tumor

microenvironmental phenotypes and prognostic features. LUAD

microenvironment has been categorized into three phenotypes,

namely, “inflamed”, “immune-desert”, and “immune-excluded”,

which mediate different prognoses and immunotherapeutic

responses (25). The inflamed phenotype demonstrates anti-cancer

immune activation and has a better prognosis. However, angiogenic

Cluster1 in this study was associated with a poor prognosis,

demonstrating the characteristics of the immune-deserted and

immune-excluded phenotypes, which are characterized by

differential activation of oncogenic signaling pathways such as

glycolysis, cell cycle, hypoxia, and epithelial–mesenchymal

transition. Moreover, immune cell infiltration and the expression of

immune-related regulatory factors were downregulated in Cluster1.

Angiogenesis mediates different tumor microenvironmental

phenotypes in other solid tumors as well (9, 26).

scRNA-seq allows the analysis of interactions between cell

subpopulations and specific transcriptional regulators at a high

resolution (27). In this study, significant differences were observed

in angiogenic activity among different cell types, which validated the

heterogeneity of angiogenesis. The highest angiogenic activity was

observed in malignant cells, fibroblasts, and neutrophils, which is

consistent with the results of previous studies. Unterleuthner et al.

demonstrated that cancer-associated fibroblasts (CAFs) promote

angiogenesis through the expression of WNT2 (28). Neutrophils

have also been reported to secrete pro-angiogenic factors and drive

immunosuppression to promote tumor growth (29).

In this study, angiogenic activation was significantly

heterogeneous in the malignant cell subpopulation of LUAD;

however, the underlying causes and biological mechanisms

warrant further investigation. Pseudotime trajectory analysis of

malignant LUAD cells revealed the presence of three main cell

differentiation states. Furthermore, angiogenesis activated the three

cell states with specific transcription factors (regulons). Evaluation

of RAS revealed differences in transcription factors regulating the

heterogeneity of angiogenic activation in malignant LUAD cells.

Transcription factors of State2 cells were found to be associated

with angiogenic activation. However, transcription factors of State3

cells mediated lower angiogenic activation, and angiogenic

activation was more complex in State 1 cells than in State2 and
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State3 cells. Altogether, exploring the specific regulon of different

cell states is crucial for a deeper understanding of the differences in

angiogenic activation in LUAD.

The complex cellular communication in TME drives cancer

progression and response to the available therapies (30). In this

study, different cell states, that is, different activation states of

angiogenic pathways, communicated significantly differently with

cells in the TME of LUAD, which further reveals the role of
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angiogenesis in the crosstalk in TME. Furthermore, multiple

ligand–receptor pairs associated with malignant, immune, and

stromal cells were identified, some of which have been reported

to play a significant role in lung cancer. For example, the

TNFRSF12A/Fn14 signaling axis activates NF-kB to promote the

survival of LUAD cells (31), and IGF2 promotes neovascularisation

in LUAD (32). However, SEMA3B attenuates tumorigenesis and

angiogenesis (33). Furthermore, a complex relationship was
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FIGURE 9

Prognostic value analysis of Nomogram was constructed by combining age, gender, pathological stage, smoking history, and ARS. (A) Construction
of Nomogram with 1-, 3- and 5-year survival rates of 0.963, 0.859, and 0.769 for the example sample, respectively. (B) Calibration curve to assess
the prediction accuracy of Nomogram with a Concordance index (C-index) of 0.768 (se = 0.018). (C) The ROC curves of the Nomogram assessed
their 1-, 3-, and 5-year overall survival with AUC values of 0.78, 0.82, and 0.81, respectively. (D) Decision curve analysis as well as (E)Time-
dependent C-index calculations showed that the Nomogram outperformed any other clinical characteristics in predicting overall survival. (F-H)
Kaplan-Meier and ROC curves for overall survival for the GSE31210, GSE50081, and GSE72094 cohorts.
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observed between State1 and angiogenesis, and several novel

cellular communication modes of State1 cells were identified.

State1 cells were found to communicate closely with fibroblasts

and M2-type macrophages via the POSTIN–(ITGAV+ITGB5) and

MDK–(ITGA6+ITGB1) signaling pathways, respectively; however,

State2 cells promoted tumorigenesis by interacting with

microenvironmental cells through a different communication

mode, such as the HBEGF–EGFR pathway that induces the

proliferation and growth of lung cancer cells (34). State3 cells

were also regulated by different ligand–receptor pairs. Therefore,

angiogenesis mediates intercellular communication in the

LUAD microenvironment.

Previous studies have demonstrated that abnormal angiogenesis

is associated with the function and migration of immune cells (35).

However, anti-angiogenic therapy has been shown to improve the

response to immunotherapy while preventing tumor immune

escape (36). Given the significant role of angiogenesis in the

prognosis of LUAD and TME, an individualized prognostic

model (ARS) based on angiogenesis-related genes was constructed

in this study for assessing the TME and survival of patients with

LUAD. ARS can be considered an independent prognostic factor for

LUAD and can guide individualized treatment strategies. It was

significantly correlated with immune-related pathways, cell cycle,

and drug metabolism and was significantly positively correlated

with the infiltration of Th2 cells and neutrophils. Th2 cells can form

an immunosuppressive microenvironment and promote tumor

immune escape (37). However, ARS had a significant negative

correlation with the infiltration of anti-tumor immune cells such

as CD8+ T cells, with the high and low ARSs characterizing the

immunosuppressive and anti-tumor immune microenvironments,

respectively. Significant differences were observed in mutation

frequencies between the high- and low-ARS groups. TP53

mutations significantly increased the expression of immune

checkpoints and were associated with the significant clinical

benefits of PD-1 inhibitors (38). KEAP1-driven co-mutations in

LUAD are closely associated with having high TMB but not

responding to immunotherapy (39). In this study, significant

differences in mutation frequencies between the high- and low-

ARS groups and their close correlation with immunotherapy

response indicated that ARS can help to individually assess the

immune infiltration status, immunotherapeutic response, and

chemotherapeutic drug sensitivity in patients with LUAD. In

addition, both immunotherapy cohort and TIDE algorithm

predictions suggested that the low-ARS group benefitted

from immunotherapy.

Specific sensitive chemotherapeutic agents were predicted in the

high-ARS group to guide LUAD chemotherapy. Paclitaxel and

docetaxel have been extensively used in the treatment of LUAD

(40, 41). Cabazitaxel, paclitaxel (42), and epothilone (43) are

commonly used in chemotherapy for advanced non-small cell

lung cancer; they stabilize microtubules and cause apoptosis of

tumor cells. KX2-391 can reduce cell proliferation and angiogenesis,

thereby inhibiting tumor growth (44). Also, gefitinib has excellent

efficacy in the treatment of LUAD (45). Irinotecan in combination

with gemcitabine and cisplatin can be used as a first-line treatment

for advanced LUAD (46). However, the role of CR-1-31B,
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litronesib, and ispinesib in LUAD remains unclear. Although

topotecan, vincristine, and rubitecan are widely used for the

treatment of small cell lung cancer, their efficacy in LUAD

treatment warrants further investigation. In this study, drug

sensitivity analysis revealed that the high-ARS group was more

sensitive to the abovementioned drugs, indicating that patients with

high ARSs may benefit from these chemotherapeutic drugs.

Given that ARS has a good prognostic value, a multifactorial

regression model was constructed, and the accuracy of prognostic

prediction (3-year AUC of 0.82) was significantly improved with

excellent discrimination (47). The accuracy is comparable to our

previously established prognostic models related to sumoylation

and M2 macrophages, and ARS can be combined with them in

prognostic assessments (48, 49). Although the role of angiogenesis

in mediating intercellular crosstalk in the TME of LUAD was

examined by analyzing angiogenic pathway activation, the

underlying mechanisms warrant comprehensive and in-depth

investigation. Therefore, more single-cell sequencing studies

should be conducted to refine the exploration of the role of

angiogenesis in mediating the TME of LUAD. However,

alterations in circRNA and miRNA levels are also important

mechanisms (50). Due to the lack of these data, our multi-omics

analysis was limited to the mRNA level, and in the future, more

abundant and comprehensive data for multi-omics analysis will be

needed for further analysis. Finally, the predictive efficiency of the

prognostic model established in this study was high in both training

and validation cohorts; however, more LUAD and immunotherapy

cohorts are required to validate the results to further improve the

accuracy of the prognostic model.
5 Conclusions

In conclusion, the assessment of angiogenic clusters helps to

determine the prognostic and TME characteristics of LUAD.

Heterogeneity in the activation of angiogenesis in LUAD is regulated

by regulon submodules. There are significant differences in the cell

communication patterns in TME between different angiogenic

activation states. We further constructed a highly accurate prognostic

model to assist in the clinical assessment of individualized LUAD

patient prognosis and tumor microenvironment and to facilitate

the assessment of immunotherapy response and sensitive

chemotherapeutic agents.
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SUPPLEMENTARY FIGURE 1

Consensus clustering of lung adenocarcinoma based on angiogenesis-
related genes. (A-C) Consensus clustering of lung adenocarcinoma

samples from the GEO cohort based on the expression of angiogenesis-
related genes (K = 2, K values determined from CDF curves). (D-G) Survival
analysis of clustered results in an independent data set was performed to

verify prognostic significance. (H-I) Consensus clustering of TCGA cohort
based on angiogenesis-related genes (K = 2, K values determined from

CDF curves).

SUPPLEMENTARY FIGURE 2

Cells communicate in the tumor microenvironment with different ligand-

receptor pairs. (A) Afferent signaling coordination modes of cell-ligand

receptor pairs can be divided into two types. (B) State1 cells communicate
with M2macrophages via TNFSF12-TNFRSF12A and (C) IGF2-(ITGA6+ITGB4).

(D) State1 cells communicate with M2 macrophages and CD4 T cells via
MDK-(ITGA6+ITGB1). (E)State1 cells communicate extensively with other

cells of the tumor microenvironment via SEMA3B-(NRP2+PLXNA2). (F)
State1 cells are in close contact with Fibroblasts and Endothelial via

POSTN-(ITGAV+ITGB5).

SUPPLEMENTARY FIGURE 3

Ligand receptor pairs mediating cell communication between cell state3 and
the tumor microenvironment. (A) State3 cells communicate with Endothelial

via CALCA-CALCRL, (B) with Fibroblasts via FGF8-FGFR1, and (C) with M2-
type macrophages and cDC via CGA-FSHR. (D) State3 cells send signals to

M2-type macrophages and various other cells via ARTN-GFRA1. Through (E)
LIF-(LIFR+IL6ST) and (F)VEGFA-VEGFR1, State3 can communicate extensively
with Mast, M2-type macrophages, and Endothelial each other.

SUPPLEMENTARY FIGURE 4

Prognostic performance assessment for ARS risk scores. (A) Receiver
operating characteristic (ROC) curves for overall survival (OS) in the high

ARS and low ARS groups were evaluated in the training cohort (N = 532), test

cohort (N = 352), external independent validation cohort TCGA cohort (N =
500), and Whole GEO cohort (N = 884), respectively. (B) Multivariate Cox

analysis combining age, sex, pathological stages, smoking history, and other
clinical characteristics confirmed the independent prognostic value of ARS in

lung adenocarcinoma (HR, 3.12 (95% CI, 2.36-4.12), P<0.001).
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