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Background: Understanding the molecular pathogenesis of inflammatory bowel

disease (IBD) has led to the discovery of new therapeutic targets that are more

specific and effective. Our aim was to explore the molecular pathways and genes

involved in IBD pathogenesis and to identify new therapeutic targets and novel

biomarkers that can aid in the diagnosis of the disease.

Methods: To obtain the largest possible number of samples and analyze them

comprehensively, we used amega-analysis approach. This involved reprocessing

raw data from multiple studies and analyzing them using bioinformatic and

machine learning techniques.

Results: We analyzed a total of 697 intestinal biopsies of Ulcerative Colitis

(n = 386), Crohn’s disease (n = 183) and non-IBD controls (n = 128). A

machine learning analysis detected 34 genes whose collective expression

effectively distinguishes inflamed biopsies of IBD patients from non-IBD

control samples. Most of these genes were upregulated in IBD. Notably,

among these genes, three novel lncRNAs have emerged as potential

contributors to IBD development: ENSG00000285744, ENSG00000287626,

and MIR4435-2HG. Furthermore, by examining the expression of 29 genes,

among the 34, in blood samples from IBD patients, we detected a significant

upregulation of 12 genes (p-value < 0.01), underscoring their potential utility as

non-invasive diagnostic biomarkers. Finally, by utilizing the CMap library, we

discovered potential compounds that should be explored in future studies for

their therapeutic efficacy in IBD treatment.

Conclusion: Our findings contribute to the understanding of IBD pathogenesis,

suggest novel biomarkers for IBD diagnosis and offer new prospects for

therapeutic intervention.
KEYWORDS
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Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD), both forms of

inflammatory bowel disease (IBD), are chronic immune-mediated

inflammatory diseases that affect the digestive system, characterized

by periodic episodes of relapse and remission and currently lacking

a definitive cure (1, 2). While UC mainly targets the large intestine

(colon), causing continuous surface inflammation, starting from the

rectum and extends along the colon, CD can affect any part of the

digestive tract, often exhibiting a patchy pattern and frequently

occurring in the small intestine, particularly the terminal ileum (3).

However, distinguishing between CD and UC in some cases can be

challenging, leading to an interim diagnosis of “indeterminate” or

“unclassified” colitis and potential treatment delays. Currently,

indeterminate colitis remains unresolved in 5-15% of IBD

patients (4).

The management of IBD has undergone significant

transformation in the past two decades, thanks to the emergence

of biological therapies. However, not all patients respond to these

biological drugs, and the prevalence of IBD is on the rise globally

(5). Hence, early diagnosis and prompt treatment initiation are

pivotal strategies to enhance patient outcomes and overall well-

being (6).

Upon initiating effective therapy, confirming remission using

measurable endpoints is crucial. objective endpoints such as

endoscopic, histological, and clinical measures, alongside

surrogate biomarkers like blood CRP or fecal calprotectin levels

are helping to evaluate and understand the state of the disease.

However, the practical application of endoscopic and fecal

measurements poses challenges in routine practice and lacks

specificity for intestinal inflammation (7). Previous study has

emphasized the development of a new molecular measurement,

focusing on molecular signature of mucosal and peripheral blood

components to enhance accuracy and predict relapse (8).

Recently, the understanding of the molecular pathogenesis of

IBD has advanced significantly leading to enhanced disease

management. Importantly, specific signaling pathways have

emerged as having a pivotal role in the inflammatory process,

contributing to dysregulated inflammatory responses and playing

essential roles in the development of IBD (9). Key pathways

involved in this process include NF-kB pathway, PI3K/Akt

signaling pathway, and JAK/STAT signaling pathway (10).

Additionally, MAPK signaling pathway, Chemokine signaling

pathway, Cytokine-cytokine receptor interaction pathway are

significant contributors to diseases associated with inflammation

including IBD (11–13). A deeper investigation into these biological

pathways may reveal new targets for therapeutic interventions and

facilitate the discovering of diagnostic and monitoring biomarkers.

Over the years, extensive research has been conducted on

transcriptomic data and gene signatures associated with IBD. The

introduction of next-generation sequencing (NGS) has greatly

improved our ability to study the disease by providing higher

resolution, increased sensitivity, and the capacity to discover

novel IBD-related molecular transcripts. Despite these advances,

integrating findings from different studies has been challenging due

to experimental variations and varying analytical methods. To
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overcome these challenges, we adopted a comprehensive mega-

analysis approach that involved reprocessing and consolidating data

from multiple sources. Through this large-scale analysis and the

application of standardized methods across the combined dataset,

we identified novel biomarkers for IBD diagnosis and offer new

prospects for therapeutic intervention.
Materials and methods

To perform the mega-analysis, we conducted a thorough search

in public databases for relevant studies. The datasets, which

contained raw data, were then downloaded, and consistently

reprocessed to facilitate subsequent analyses. The entire study

design is visually depicted in Figure 1.
Search strategy and study selection criteria

Comprehensive searches of Gene Expression Omnibus (GEO)

(14) and ArrayEpress (AE) (15) databases were performed on

October 5, 2021. The search terms were as follows: (“Inflammatory

Bowel Disease”) OR (“Crohn’s disease”) OR (“Ulcerative colitis”)

AND (“high throughput sequencing”[Platform Technology Type])

AND “homo sapiens”[Organism] AND (“RNA-seq” OR “RNAseq”

OR “RNA sequencing”). This systematic review was performed

according to the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines (16). The flow chart for the

selection of studies is shown in Figure 2.
Inclusion/exclusion criteria

Only studies meeting specific inclusion criteria were considered

for the mega-analysis. These criteria included the availability of

RNA-seq raw data, transcriptomes obtained from whole tissue

samples (punch biopsy), direct sequencing without any further

manipulations (e.g. tissue culture or isolated cells), the use of the

illumina sequencing platform, and the availability of metadata.

Studies based on microarray platform, single-cell RNA-seq and

small RNA-seq were excluded from the analysis. Additionally,

uninflamed biopsies were excluded due to the limited size of the

retrieved cohort.
RNA sequencing data processing

We uniformly processed the RNA sequencing data from the

selected eligible studies. Raw data were downloaded using the SRA-

Toolkit (https://hpc.nih.gov/apps/sratoolkit.html). Briefly, we

utilized the fasterq-dump tool to download FASTQ files, followed

by adapter trimming using Trim Galore (https://www.

bioinformatics.babraham.ac.uk/projects/trim_galore/) and quality

checking with FASTQC (https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/). Next, we aligned the high-quality reads to

the reference genome (GRCh38) using HISAT2 (17). The number
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of reads mapped to each annotated genes was then counted using

featureCounts software (18). For the statistical analysis we retained

only samples with a library size greater than 10 million counts, and

genes with less than 1 count per million reads (CPM) across more

than 90 samples were filtered out using the ‘filterByExpr’ function

implemented in edgR package (19).
Differential expression analysis

Normalization and differential gene expression were conducted

using the edgeR (19) and limma (20) R packages. In brief, raw read

counts were normalized using the TMM method and then a voom

transformation was applied to approximate a normal distribution,

resulted in a dataset with logCPM values. Prior to initiating the

differential expression analysis, we performed Multidimensional

Scaling (MDS) analysis to represent the data in a reduced-

dimensional space which enable the visualization of batch effects

associated with the dataset. We found the “study source” factor to

have the largest contribution to the variation, with a notable

correlation to the tissue source (small intestine vs. large intestine)

(Supplementary Figure 1). Following the consideration of study

batch effects, we applied linear modelling to detect differential

expression. Statistically significant differentially expressed genes

(DEGs) were defined as those having fold change > 2 and False

Discovery Rate (FDR) < 0.05.

To distinguish between UC and CD, we utilized samples from

the large and small intestines, specifically from the Rectum

(UC= 233, non-IBD control= 46) and from the Ileum (CD= 155,

non-IBD control= 24), respectively. We added an interaction term

to the linear model, in order to detect which genes respond

differently to the disease in UC compared to CD. To model the

tissue effect we added a comparison between the small intestine and
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the large intestine among the non-IBD control samples. The study

feature was added as covariate to the model to account for its effect.

Linear equation used to distinguish between each disease type

and control samples as well as analysis details are described in

Supplementary Materials under methods section.
Pathway and upstream regulators analysis

To identify canonical pathways and upstream regulators, we

used the Ingenuity Pathway Analysis (IPA) (21) based on list of

DEGs. Briefly, we performed the core analysis to identify significant

canonical pathways that were enriched among the DEGs and to

predict significant activated upstream regulators. Negative z score

value implies an overall pathway’s inhibition and a positive z-score

value suggests an overall pathway’s activation. Pathways and

upstream regulators having p-value < 0.05 and absolute z‐score ≥

2 were considered statistically significant.
Machine learning

We employed supervised machine learning (ML) techniques on

the gene expression data for classifying various diagnoses: UC (n=

233, Rectum) vs. non-IBD control (n= 46, Rectum), CD (n= 164,

Small intestine) vs. non-IBD control (n= 33, Small intestine), and

IBD (388 cases, including 233 UC rectum and 155 CD ileum) vs.

non-IBD control (70 samples, including 46 rectum and 24 ileum).

These diagnoses were treated as the output variables. Each diagnosis

was subjected to separate analysis using various ML algorithms to

develop a predictive model for classification.

To ensure an unbiased evaluation of the model’s performance,

we split our data into training (80%) and test (20%) sets using the
FIGURE 1

Study design.
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train_test_split function from the Scikit-learn (22) library in Python

(23). After applying feature selection, we trained and tested different

classifier models, followed by validation using the GSE193677

dataset as an external and independent data source (as

detailed below).

1.Feature selection

To reduce the number of features and select input variables that

have the strongest relationship with the output variables we utilized

the SelectKBest algorithm from the Scikit-learn library. This

algorithm ranks the features based on their individual ANOVA

F-values and selects the top k features with the highest F-values as

the most relevant for prediction. This approach is suitable for

categorical output variables, as in our study. Evaluation of the

selected features was performed using a Logistic Regression

classifier with different random states and cross-validation. This

allowed us to assess the effectiveness of the selected k features in

accurately predicting the target variable. By iterating through

different k values and random states, we were able to identify the

combination that yielded the highest accuracy, indicating the

optimal number and significance of features. The k values and

random state are described in Supplementary Table 1.
Frontiers in Immunology 04
2.Classifiers

In our analysis, we utilized six classifier models from the Scikit-

learn (22) and xgboost (24) packages: SVM, KNN, Random Forest,

Extra Trees, XGBoost and Naive Bayes. To optimize their

performance, we implemented a nested loop to iterate over

different hyperparameter values for each algorithm. These

hyperparameters were tuned to enhance predictive capabilities

and mitigate overfitting for each model (Supplementary Table 1).

To distinguish between UC and CD, we first run DE analysis as

described above then, we selected genes meeting two criteria:

1) significant interaction (fold change > 2 and FDR < 0.05) and

2) non-significance in tissue comparison (defined as fold change <

1.3 and FDR > 0.5). This resulted in 365 genes. These genes were

subsequently used as features in a ML analysis. The expression

matrix used as input to ML analysis contained normalized

expression values that were corrected for tissue and study batch

effect using removeBatchEffect() function from the limma package

(20). The ML analysis, included 233 UC-inflamed Rectum samples

and 155 CD-inflamed Ileum samples for training the models. For

validation, we utilized data from the GSE193677 dataset, which

included 60 UC-inflamed Rectum samples, 68 CD-inflamed
FIGURE 2

PRISMA Flow Diagram. *Duplicated samples have been removed. GSE62207, GSE93624 - used same patients taken from RISK project, duplicated
with GSE101794. GSE150961- used same patients as in GSE109142 taken from the PROTECT.
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Rectum samples and 60 CD inflamed ileum. Feature selection and

ML analysis was done as described above.
Independent validation data

As an independent validation dataset we used the

transcriptomic data from the Argmann et al. study (8), available

on GEO database (GSE193677). The raw data was downloaded and

underwent reprocessing steps, including alignment to the GRCh38

reference genome and voom transformation. The dataset

downloaded consisted of 240 samples. For our analysis, we

included 60 samples from patients diagnosed with UC, showing

severe to moderate inflammation, collected from the rectum, and 60

samples from patients with CD, exhibiting similar inflammation

levels, obtained from the ileum. Additionally, we incorporated 120

samples from non-IBD control participants, 60 samples from the

rectum and 60 samples from the ileum. We maintained an equal

representation of male and female participants in all groups. The

dataset was used to validate the six different classifier models. The

accuracy and area under the ROC curve (AUC) were calculated to

assess models’ performance.
Blood samples dataset

The blood samples dataset was obtained from the Argmann

et al. study (8) available on GEO database (GSE186507) which

comprises blood RNA-seq data collected from whole blood samples

during the participant’s endoscopy visits, along with comprehensive

clinical, and endoscopic evaluations. We downloaded and

reanalyzed (as described above) a total of 111 samples collected

from patients diagnosed with both UC and CD. These samples were

from individuals exhibiting clinical symptoms along with either

severe or inactive endoscopic states. Additionally, we included

samples from patients without clinical symptoms and with an

inactive endoscopic state, as well as samples from non-IBD controls.
Drug repurposing analysis

The drug repurposing analysis was conducted using the

Connectivity Map (CMap) (25) through the web application

CLUE (https://clue.io) (26). CMap is a collection of genome-wide

transcriptional expression data responses from human cell lines

that have been treated with chemical compounds known as

perturbagens. These perturbagens induce changes in cellular gene

expression patterns. Our aim was to identify perturbagens that

induced opposing expression patterns, to the top significant 300

upregulated and downregulated genes within the IBD vs. non-IBD

control DEGs, and within the comparison between each of the

diseases and non-IBD control samples separately. Querying these

expression patterns with the CMap reference, particularly the Gene

Expression (L1000) Touchstone dataset, generated a heatmap

displaying the connectivity score (tau) of 2837 small-molecule

compounds as perturbagens. Our focus was on compounds
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score below −95 in the HT-29 cell line column. These compounds

are candidates for drug repurposing. We chose to look at HT-29

cells, since this cell line, originating from colon adenocarcinoma,

serves as a relevant in-vitro model for studying processes like

absorption, transport, and secretion by intestinal cells (27–29).
Statistical analysis

Statistical analyses were conducted using the R statistical

framework (v.4.2.2) (30). Boxplots illustrating expression levels

were generated using the ggplot2 R package (v.3.4.0) (31). Unless

indicated otherwise, comparisons between different groups were

calculated using t test or ANOVA, with a significance threshold set

at p < 0.05. The statistical analysis involved training and evaluating

six machine learning algorithms was done using Python (v.3.10.11)

(23). Model performance was assessed using the accuracy_score

function to compute classification accuracy, while Receiver

Operating Characteristic (ROC) curves were utilized to evaluate

the model’s ability to distinguish between classes, with the AUC

(Area Under the Curve) serving as a measure of classifier

performance. The scikit-learn (v.1.2.0) (22) library was employed

for computation, and matplotlib (v.3.6.2) (32) for visualization.
Results

Datasets and cohorts analyzed in the study

Based on our inclusion criteria, 11 datasets were selected and

subsequently were included in the mega-analysis. The datasets

included clinical data and biopsy samples from the intestines of a

total of 697 participants, comprising 569 IBD patients and 128 non-

IBD controls (Figure 2). Distribution of expression data pre and

post normalization is given in (Supplementary Figure 2).

The 11 eligible studies included in the analysis are described in

Table 1. Within our UC cohort, which is derived from eight of these

studies, we obtained a total of 386 inflamed biopsies specifically from

the large intestine. For the CD cohort, which is derived from four

studies, we identified 183 inflamed biopsies primarily from the small

intestine. Among the included studies, five provided non-IBD control

samples, mostly from subjects suspected of having IBD but with

radiographic, endoscopic, and histologic findings. The remaining

samples obtained from normal bowel sections, located more than

10 cm away from tumors in patients undergoing bowel resection for

sporadic colon cancer. Overall, the control group included 95 samples

from the large intestine and 33 samples from the small intestine.
Inflammatory pathways and upstream
regulators common between UC and CD

We identified 4,027 DEGs (2396 upregulated and 1631

downregulated genes, Figure 3A) when comparing gene

expression from inflamed biopsies of the UC group and the
frontiersin.org
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control group, both taken from the large intestine. Given the

involvement of CD in both the small and large intestines, we

merged data of the biopsies obtained from inflamed regions of

both intestinal segments. We then compared this combined dataset

to non-IBD control biopsies collected also from both the small and

large intestines. By conducting this comparative analysis, we sought

to gain insights into the gene expression patterns associated with

CD across both tissues. We found 1,008 DEGs including 629

upregulated genes and 379 downregulated genes in inflamed

samples vs. non-IBD controls (Figure 3B). Finally, we chose to

investigate IBD as a unified group when compared to the control

group. In the IBD vs. control group we identified 2099 DEGs

including 1387 upregulated and 712 downregulated. (Figure 3C).

The top ten up- and down-regulated genes are displayed in

Figure 3D. Several genes consistently appear across all

comparisons. Notably, a lncRNA ENSG00000254645, stands out

as it ranks among the top ten downregulated genes in the IBD vs.

Control comparison. This transcript has previously been associated

with IBD (33). In our analysis, this transcript demonstrates

significant downregulation in both the CD vs. Control and UC vs.

Control comparisons (Supplementary Figure 3).

We utilized IPA to identify molecular pathways enriched within

the list of DEGs obtained by comparing inflamed to non-IBD

control tissues in the different comparisons (Figures 4A–C). As

expected, activated pathways in all comparisons, were enriched in

immune response pathways, including pathogen induced cytokine

storm signaling, phagosome formation pathway and wound healing

signaling. IL-17 was also upregulated in all comparisons, although

did not rank in the top five upregulated pathways in CD and IBD

comparisons. The downregulated pathways observed in all

comparisons encompassed various metabolism and catabolism

processes. For example; serotonin degradation, nicotine

degradation III, thyroid hormone metabolism II (via conjugation

and/or degradation), and melatonin degradation I. Along with the

metabolism pathways there are also downregulated nuclear receptor

(NR) pathways which related directly to gut microbiota and play
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protective roles in intestinal epithelial integrity (34). Notably, LXR/

RXR Activation signaling, which is a NR pathway, was

downregulated only in CD and IBD comparisons, but not in UC.

IPA Comparison analyses revealed activated and inhibited

upstream regulators (Figure 4D). Upon the common activated

regulators we found pro-inflammatory cytokines (IL1B, TNF),

and the NFkB complex which trigger immune responses. Upon

the common inhibited regulators we identified alpha catenin and

the IL10RA which their inhibition is known to increase intestinal

permeability (35) and promotes inflammation (36), respectively.

Overall, these results show that similar pathways and upstream-

regulators are involved in both diseases and suggest that similar

molecular mechanisms operate in both.
Machine learning prediction models
for IBD

A machine learning analysis aimed at distinguishing between

UC and CD identified ten genes (Supplementary Table 2). To verify

the accuracy of the trained model, we employed two approaches.

Initially, we utilized independent UC and CD samples collected

from the same tissues used in the training set (rectum and ileum,

respectively). This yielded an impressive AUC of 0.97 in ROC

analysis (see Supplementary Figure 4A). However, validation failed

when utilizing external data from the rectum, which represents the

same tissue for both diseases, resulting in AUC scores hovering

around 0.6 (see Supplementary Figure 4B). Acknowledging the

limitations posed by tissue effects in discriminating between the

diseases, we subsequently, developed diagnostic models to identify

genes capable of effectively discriminating between inflamed

samples of UC, CD and IBD each compared separately against

non-IBD controls. Six ML algorithms were employed with

hyperparameter tuning (see methods). We found ten genes

distinguishing between UC and non-IBD samples, another 9

genes for the comparison between CD and non-IBD samples, and
TABLE 1 Characteristic of datasets used for analysis.

Study No. Dataset Small/Large Intestine Sample Size CD UC Control

1 GSE101794 Small 157 135 – 22

2 GSE137344 Small 1 1 – –

3 GSE83687 Small/Large 123 28/11 -/27 11/46

4 GSE107593 Large 12 – 12 –

5 GSE108746 Large 18 – 18 –

6 GSE109142 Large 226 – 206 20

7 GSE117993 Large 41 – 16 25

8 GSE130038 Large 25 – 25 –

9 GSE66207 Large 4 – – 4

10 GSE72819 Large 66 – 66 –

11 EMTAB7845 Large 24 8 16 –

Total 697 183 386 128
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1353402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stemmer et al. 10.3389/fimmu.2024.1353402
34 genes for the differentiation between IBD and non-IBD samples

(the genes are indicated in Figure 5A). The most accurate models

were generated for the classification of UC from non-IBD control

samples, followed by the IBD classification, and finally CD

classification. Specifically, the highest accuracy scores were

achieved with the validation data using KNN and Random Forest.

In the UC analysis, Random Forest achieved 0.947 accuracy, KNN

reached 0.933. For IBD, both models achieved 0.9 accuracy. In CD,

KNN had the highest accuracy of 0.9, followed by Naive Bayes at

0.89. ROC curves were generated for all models and analyses on the

validation data (Figures 5B–D), illustrating their performance in

terms of the true positive rate versus the false positive rate. The

curves demonstrated good discriminatory ability, with a notable

separation between the diseased and non-IBD control samples in all

comparisons. Overall, the results indicate that the classification

models achieved a robust and reliable performance in

distinguishing between different disease groups and non-

IBD controls.
Novel non-coding RNAs in IBD

Among the genes identified through our ML analyses, we

recognized known immune related genes and diagnostic markers.
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Some of the genes were common and intersected between the

different models, with AQP9 present across all of them, FCGR3A

is present in both CD and IBD analyses, while SAA1, SAA2, and

KCNDA3 intersect between UC and IBD analyses (Figure 5A). Of

particular interest, IBD analysis revealed three long non-coding

RNA (lncRNA) genes, two are novel transcripts, ENSG00000285744

and ENSG00000287626, along with known lncRNAMIR4435-2HG.

To verify the differential expression of the six intersected genes

along with the lncRNAs, box plots were generated using the

normalized data and significant expression level differences were

observed in both our mega-analysis dataset and the GSE193677

validation dataset (Figures 6A, B), with lower expression of these

genes in non-IBD control samples compared to CD and UC.

Notably, all genes obtained from the ML analysis showed

significant expression levels differences (Supplementary Figure 5).

To evaluate the potential of the ML-selected genes as non-

invasive biomarkers, we assessed their expression in blood samples

from IBD patients (Supplementary Figure 6). Out of the 34 genes,

29 were available in the blood expression dataset. We observed a

significant upregulation of 12 genes (p-value < 0.01) whose

expression was higher in individuals with severe endoscopic

manifestations of IBD when compared to the control group. The

expression of six of these genes, namely ADGRG3, KCNJ15, AQP9,

MIR4435-2HG, S100A8, and S100A9, which showed the most
A

B

D

C

FIGURE 3

Volcano plots of DEGs selected with a threshold of adjusted p-value < 0.05 and fold-change >2 for the following comparisons: (A) UC vs. control,
(B) CD vs. control and (C) IBD vs. control. Highlighted are the 34 genes found in ML analysis (see ML analysis section below). (D) Top ten up
(yellow)- and down (blue)-regulated genes in the different comparisons. Genes with FDR < 0.05 were ranked based on fold change.
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A B

DC

FIGURE 5

Machine learning results. (A) Venn diagram showing the overlap between ML-selected discriminative genes for the following comparisons: UC vs.
Control, CD vs. Control and IBD vs. Control. (B–D) ROC curve of True positive rate vs. False positive rate at different six models on validation data
GSE193677 for (B) UC (C) CD and (D) IBD analyses.
A

B

D

C

FIGURE 4

IPA Functional analysis. (A-C) Top five activated (orange) and inhibited (blue) canonical pathways based on absolute IPA’s activation z-score > 2 for
the following comparisons: (A) UC vs non-IBD control, (B) CD vs non-IBD control, (C) IBD vs non-IBD control. Negative z score value implies an
overall pathway's inhibition and a positive z-score value suggests an overall pathway's activation. All pathways had -log (B-H p-value) > 1.3 meaning
FDR less than 0.05. (D) Hierarchical clustering of upstream regulators’ activation z score across all comparisons.
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significant differences based on their p-values, are depicted

in Figure 7.
Connection of drug-gene signature
by CMap

Finally, we utilized the Broad Institute Connectivity Map

(CMap) (25) to predict potential novel therapeutic compounds
Frontiers in Immunology 09
based on differential gene expression results. For each the three

DEG comparisons described above, we run a separate CMap

analysis. In each analysis we used the top 300 DEGs, comprising

150 upregulated and 150 downregulated genes as a query to the

CMap system. In addition we run another query that contained the

34 genes selected in IBD ML analysis, 30 of them were recognized

by the CMap tool. These four sets of genes were employed as queries

in seeking potential connections or similarities in gene expression

patterns with drug-induced gene signatures present in the CMap
A

B

FIGURE 6

Distribution of the normalized expression of selected genes across UC, CD and non-IBD control samples in (A) Mega-analysis dataset: CD (n= 183),
UC (n= 386) and control group (n=128). P-values were calculated using two-way analysis of variance (ANOVA). (B) GSE193677 validation dataset:
The dataset includes inflamed samples from CD (n=60, ileum) and UC (n=60, rectum), along with non-IBD control samples from both the ileum
(n=60) and rectum (n=60). Statistical significance was assessed using Student’s t-test. *p < 0.05, ****p < 0.0001 indicate the significance levels.
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database. It’s worth noting that the CMap system employs different

cell lines for its analyses. Given the intestinal nature of our diseases

of interest, we placed a specific emphasis on results derived from the

HT-29 cell line.

After the tool analyzed the valid genes, it revealed 22

compounds with median_tau_score values lower than -95. This

indicates a strong and significantly opposing biological effect

directed towards the gene signatures associated with the various

diseases (as depicted in Figure 8). The compounds and various
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families identified in the CMap suggest potential implications

for IBD treatment. Notably, Antimycin-A exhibits the

highest connectivity score (-99.53), along with Histone

deacetylase (HDAC) inhibitors (Pyroxamide, tacedinaline, and

trichostatin-a),Monoamine oxidase inhibitor (Procarbazine),

BCR-ABL kinase inhibitors (Dasatinib) and RAF inhibitors

(Vemurafenib, AZ-628, PLX-4720) mTOR inhibitors (WYE-

354) and SYK inhibitors (Fostamatinib) MEK inhibitors (PD-

0325901, MEK1-2-inhibitor) Cannabinoid receptor antagonist
FIGURE 7

Distribution of ML detected genes’ normalized expression in serum samples across different patient groups. Pink and blue colors represent CD and
UC patients, respectively. The pattern differentiation—crosshatch for an inactive endoscopic state and circles for a severe endoscopic state—reflects
the severity of endoscopic conditions. The x-axis labels (‘Yes’ or ‘No’) distinguish between the presence or absence of clinical symptoms in patients,
with ‘Yes’ indicating clinical symptoms and ‘No’ representing the absence of symptoms. The groups are: CD patients without clinical symptoms and
either inactive (pink, crosshatch, n=20) or severe (pink, circle, n=15) endoscopic states, CD patients with clinical symptoms and severe endoscopic
states (pink, circle, n=12), UC patients without clinical symptoms and either inactive (blue, crosshatch, n=20) or severe (blue, circle, n=13)
endoscopic states, UC patients with clinical symptoms and severe endoscopic states (blue, circle, n=14) and the control group (green, n=17). The
Wilcoxon test was used to assess statistical significance in the comparison between the severe endoscopic IBD groups and the control group.
FIGURE 8

A heatmap generated by CMap showing the connection, assessed by connectivity score (tau score) between gene expression signature of the 4
groups (columns) and the compounds (rows). The score measures the strength of connection between the query signature and a compound.
Compounds are sorted by decreasing order of median score across the four groups. Compounds with median score lower than -95 are
considered significant.
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(O-1918), cyclooxygenase inhibitor (Valdecoxib) and Histamine

receptor antagonist (Loratadine).
Discussion

Whole-transcriptome analyses of IBD samples have been

extensively performed over the years, but there is no conclusive

understanding regard the mechanisms and expression pattern of

specific genes underlying IBD. To gain a deeper insight into the

mechanism of IBD, we conducted a mega-analysis, incorporating

nearly 700 samples, along with reprocessing over 350 samples of

validation data. Utilizing this comprehensive approach, we

integrated data from multiple studies and applied unified

bioinformatics methods to analyze the combined dataset

thoroughly. By doing so, we have demonstrated the expression of

genes that are already known to be related to the disease, as well as

additional genes and novel transcripts whose expression is different

in IBD and can potentially be exploited as a novel therapeutic target.

We also characterized different pathways and upstream regulators,

which are involved in the disease and can shed light on its

underlying mechanism. Finally, using CMap, we presented new

potential implications for the treatment of IBD.

In this work, we analyzed both CD and UC collectively as a

group of IBD patients and assessed each disease individually. A

search in the literature shows that many studies have already

identified shared genetic risk factors and common pathways

associated with both diseases (37). However, there’s also a

growing interest in understanding the distinctions between UC

and CD, as these differences can have clinical implications (4). In

our attempt to detect genes that can distinguish between CD and

UC, we encountered challenges due to tissue-specific effects. MDS

analysis of the transcriptomes revealed that region of intestinal

biopsy, colon or ileum, had significant effect on gene expression,

overshadowing the discriminatory potential of inflammation status,

with disease subtype (UC vs CD). We identified 10 genes that

effectively distinguished between UC and CD, when testing our

training model using samples originated from the same tissue

source as used to train the model (UC from rectum and CD from

ileum). However, validation using data from external samples

obtained from the same tissue (CD and UC from the rectum)

resulted in models failure. This aligns with the findings of Argmann

et al. who similarly emphasized the dominant influence of the

biopsy site on gene expression variation, with minimal divergence

observed between UC and CD subtypes (8). To the best of our

understanding, many of the differences in gene expression reported

in the literature which were attributed to variations between the two

diseases, can, in fact, be attributed to differences between the

affected tissues rather than the disease themselves, since each of

the diseases is mainly expressed in a different segment of the

intestine (3). In light of these limitations, our primary focus was

on identifying common molecular signatures associated with both

UC and CD. We specifically emphasized shared biological pathways

and mechanisms, aiming to enhance our understanding of the

fundamental processes contributing to IBD. Furthermore, we

sought to explore potential therapeutic targets that could be
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relevant for both diseases, regardless of the specific disease

subtype or biopsy location.

Numerous published studies have consistently demonstrated

differential gene expression in the inflamed intestinal tissues of

individuals with IBD when compared to samples from healthy

subjects. For instance, the Dual oxidase (DUOX) gene family,

responsible for producing reactive oxygen species (ROS) (38) has

been a subject of interest in these investigations. DUOX2 has been

linked to very early onset IBD (39), and previous studies have

reported overexpression ofDUOX2 andDUOXA2 genes in UC (40).

Our differential gene expression analysis supports these findings,

highlighting DUOX2 and DUOXA2 among the top ten significantly

upregulated genes in samples from IBD patients. Additionally,

using ML algorithms, we showed that SAA1 and SAA2

discriminate between inflamed samples of UC, as well as IBD and

non-IBD controls. This finding has already been published

indicating that elevated levels of Serum Amyloid A (SAA)

proteins, specifically SAA1 and SAA2, were consistently observed

in IBD patients, particularly during active inflammation (41). We

also identified MMP3 (Matrix Metalloproteinase 3), REG1A

(Regenerating Islet-Derived Protein 1 Alpha), and CHI3L1

(Chitinase 3-Like 1) among the up-regulated genes in intestine

samples of IBD patients. These genes are also known as upregulated

in inflamed areas of colons of IBD patients compared to uninflamed

tissues (42). Since these genes are involved in tissue remodeling

(43–45), their aberrant expression may influence the extracellular

matrix and tissue damage observed in IBD inflammation. Finally, of

particular interest in our findings are the genes of the channels

proteins AQP (Aquaporin) family, namely AQP9 and AQP8. AQP9

belongs to the aquaglyceroporins subfamily facilitates the

membrane transport of water and glycerol and consistently

displayed upregulation across UC, CD and IBD patients

compared to non-IBD control subjects, demonstrating a

commonality that also emerged in all our ML analyses. The exact

mechanism of AQP9 in IBD remains unclear, but its increased

expression in IBD has been observed in previous studies (46, 47).

Recent research revealed that AQP9 is downregulated in

IBD patients’ responders to infliximab compared to non-

responders (48).

In contrast , AQP8 , a member of the AQP8-Type

Aquaammoniaporins, is associated with water absorption

regulation, particularly in the duodenum, jejunum, and colon. It

plays a role in water transport, however distinguishing itself with

permeability to NH3/NH4+ (49). This gene exhibited pronounced

downregulation across UC, CD and IBD patients compared to non-

IBD control subjects. The observed decrease in its expression in IBD

patients aligns with previous research findings (50, 51). However,

it’s important to note that discovering inhibitors for AQP proteins

poses a significant challenge due to their perceived ‘undruggable’

properties (52). Among other down regulated genes, CLDN8

(Claudin 8) a tight junction protein involved in maintaining the

integrity of the intestinal barrier known to be down-regulated in

both UC and CD (53). Additionally, CA1 (Carbonic Anhydrase 1)

involved in pH regulation and mucosal protection (54) and other

genes involved in transport (OTOP2 Otopetrin 2, SLC26A2 (Solute

Carrier Family 26 Member 2), in metabolic process HMGCS2 (3-
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Hydroxy-3-Methylglutaryl-CoA Synthase 2) and immune

regulation (DPP10 Dipeptidyl Peptidase 10) were also down-

regulated. One notable discovery is a novel transcript,

ENSG00000254645, which is downregulated in IBD patients

compared to non-IBD subjects. Recently, this transcript was

reported to be down regulated in CD (33). This transcript is a

long non-coding RNA (lncRNA) located on chromosome 11, with

the SOX6 (SRY-Box Transcription Factor 6) gene upstream and

INSC (Inscuteable Spindle Orientation Adaptor) and the calcitonin

genes (CALCa and CALCB) downstream (55–57).

Based on our DEGs analysis we also revealed pathways and

upstream regulators associated with bacterial response and the

activation of the NFkB transcription factor. These pathways

promote the production of pro-inflammatory molecules,

including tumor necrosis factor (TNF), interleukins (IL)-1, IL-6,

IL-1B, and interferon (IFN-g) (58). One significant pathway that

stood out was the S100 family signaling pathway. It was notably

activated in the UC vs. control comparison and ranked among the

top ten activated signaling pathways in the CD comparison (data

not shown). This pathway plays a crucial role in IBD, particularly

through the involvement of S100A8 and S100A9 proteins,

collectively known as calprotectin. These proteins are highly

expressed by neutrophils and immune cells during inflammation

and serve as a fecal calprotectin marker for inflammation and

disease activity in UC (59). Another pathway enriched in UC was

the IL-17 signaling. This pathway was also ranked in the top 20

pathways in CD and IBD comparisons (data not shown). Elevated

IL-17 levels in active IBD patients’ blood and inflamed mucosa

underline its role in disease inflammation (60, 61). However,

caution is warranted in targeting this pathway for treatment, as

observed in clinical studies using IL-17 inhibitors. These trials

revealed heightened risks, including increased Candida albicans

infections in IBD patients’ intestinal mucosa and severe adverse

events leading to the premature cessation of an anti-IL-17 treatment

trial for CD (60, 61). Clinical trials targeting the IL17 pathways

show improvement in other inflammatory conditions, such as

psoriasis, however, their administration has shown links to both

new-onset and exacerbation of IBD, emphasizing the complexity

and potential risks associated with manipulating this pathway in

IBD therapy (62, 63). It’s noteworthy that to date, there are no

ongoing clinical trials specifically targeting the IL-17 pathway for

inflammatory bowel disease, signifying the need for further research

to understand its role and develop safer, more effective treatments

tailored to these diseases.

The pathways undergoing downregulation, encompassing

metabolic, catabolic, and NR pathways, play a critical role in

immune cell functions (64). Among these pathways, the LXR/

RXR pathway has role in attenuating proinflammatory responses

by modulating NFkB activity (65). Notably, in CD and IBD, we

observed downregulation of this pathway alongside activation of the

upstream regulator NFkB complex. In UC, while NFkB activation

was also evident, the LXR/RXR pathway did not rank among the top

20 downregulated pathways. However, upon closer examination of

the downregulated pathways in UC, the LXR/RXR pathway fell just

slightly below the significance Z-score cutoff (data not shown).
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Furthermore, other immunometabolism pathways such as PXR/

RXR Activation and the xenobiotic metabolism PXR signaling

pathway, which also modulate NFkB activity (66), are

downregulated in UC. Notably, NR pathways are significantly

influenced by gut microbes (67) and can be a pharmacologically

target for autoimmune treatment (34, 68).

Our ML analysis revealed three long non-coding RNAs

(lncRNAs) including two novel transcripts, ENSG00000285744

and ENSG00000287626, along with MIR4435-2HG. These

lncRNAs effectively distinguish between inflamed samples of IBD

and non-IBD controls. The ENSG00000285744 transcript is located

on chromosome 8 in proximity to IL-7, a cytokine known to play a

role in the inflammatory response (69). The ENSG00000287626

transcript is located on chromosome 6 and overlaps with DTNBP1,

a gene associated with the genetic disorder Hermansky–Pudlak

syndrome (HPS), which has been reported to affect some patients

with IBD (70). Finally, it is worth noting that the lncRNAMIR4435-

2HG is already known to be associated with the immune system.

The suppression of MIR4435-2HG has been shown to inhibit

macrophage M1 polarization while promoting M2 polarization.

This effect contributes to the alleviation of intestinal inflammation

in mice with ulcerative colitis through the JAK1/STAT1 signaling

pathway (71). Notably, our IPA analysis revealed the activation of

both JAK1 and STAT1 upstream regulators in IBD. In addition,

MIR4435-2HG was found to directly bind to EZH2 (72), the

catalytic subunit of the polycomb repression complex 2 (PRC2).

Epithelial EZH2 serves as an epigenetic determinant in

experimental UC by inhibiting TNFa-mediated inflammation and

apoptosis (73). In addition, it was shown that EZH2 suppression

ameliorate intestinal inflammation and delay the onset of colitis

associated cancer, suggesting the feasibility of EZH2 inhibitor for

the control of IBD (74). Finally, the expression of MIR4435-2HG

has been found to correlate with the size of intestinal polyps in

Colorectal Cancer (CRC) (75) suggesting MIR4435-2HG to play a

role in colorectal health. Collectively, these observations suggest

that MIR4435-2HG may serve as a common molecular marker for

inflammation-mediated processes and intestinal health.

Given the absence of specific serum markers for the diagnosis

and management of IBD, it has become crucial to identify

significant differences in serum levels among genes showing

substantial expression in mucosal biopsies during severe

endoscopic activity, regardless of the state of clinical symptoms.

Notably, ADGRG3, KCNJ15, AQP9, MIR4435-2HG, S100A8, and

S100A9 have demonstrated such variations. While S100A8 and

S100A9 calprotectin have exhibited correlations with serum CRP,

suggesting systemic inflammation, their utility might be limited to

reflect intestinal inflammation (76). KCNJ15, identified as a

common marker for UC and ankylosing spondylitis, shows

promise as a potential diagnostic marker (77). Given the roles of

all genes mentioned in the immune system, further validation is

essential for their specific implications in IBD.

We performed data-driven analysis based on CMap for

identifying new candidate compounds for IBD therapy. As the

cell lines used to create the CMap reference database did not include

UC or CD cells, we used HT-29 cells, the only intestinal cells in this
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database. We identified several potential candidate compounds

from thousands of options for IBD therapy. Among them, one

standout candidate is Antimycin-A boasting the highest

connectivity score. This compound, an ATP synthase inhibitor, is

recognized for its influence on mitochondrial dysfunction, a

hallmark associated with IBD pathogenesis (78). Other

compounds identified are Histone deacetylase (HDAC) inhibitors,

like Pyroxamide, tacedinaline and trichostatin-a, as potential IBD

treatment options. Notably, these compounds are known for their

anti-inflammatory properties, offering promise in regulating

inflammation linked to IBD (79). Likewise, the Monoamine

oxidase inhibitor Procarbazine may have the potential to

modulate neurotransmitters and immune responses and BCR-

ABL kinase inhibitors such as Dasatinib and RAF inhibitors like

Vemurafenib, AZ-628, and PLX-4720 might indirectly impact

immune pathways, offering insights into IBD modulation (80,

81). Additionally, mTOR inhibitors, represented by WYE-354,

and SYK inhibitors like Fostamatinib are under investigation for

their anti-inflammatory effects (82, 83) and MEK inhibitors,

including PD-0325901 and MEK1-2-inhibitor, target pathways

associated with inflammation and immune responses (84). It’s

worth acknowledging the dichotomous findings regarding the

impact on IBD as certain reports suggested RAF/MEK inhibitors

to potentially promote IBD in humans and mice (85, 86), while

others have indicated that MEK inhibitors hold promise in

improving diarrhea and histological scores in a murine colitis

model (84), and RAF inhibition has induced clinical remission in

CD patients (87). Lastly, compounds such as the Cannabinoid

receptor antagonist O-1918, cyclooxygenase inhibitor Valdecoxib,

and Histamine receptor antagonist Loratadine are all associated

with anti-inflammatory pathways (88–90). These findings open new

treatment strategies for future studies in IBD management.

In conclusion, our observations of an association between IBD

and different candidate genes, specifically the novel transcripts

ENSG00000285744, ENSG00000287626, and the MIR4435-2HG,

needs to be further validated and interrogated functionally.

MIR4435-2HG shows promise as a diagnostic tool using a simple

blood test and may even serve as a therapeutic target. Finally, the

identification of new candidate compounds for IBD therapy shed

light on potential avenues for IBD treatment and warrant

further investigation.
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mRNA expression patterns of inflamed, benign, and Malignant colorectal biopsy
specimen and their correlation with peripheral blood results. Cancer Epidemiol
Biomarkers Prev. (2008) 17:2835–45. doi: 10.1158/1055-9965.EPI-08-0231

43. Mao H, Jia J, Sheng J, Zhang S, Huang K, Li H, et al. Protective and anti-
inflammatory role of REG1A in inflammatory bowel disease induced by JAK/STAT3
signaling axis. Int Immunopharmacol . (2021) 92:107304. doi: 10.1016/
j.intimp.2020.107304

44. Deutschmann C, Sowa M, Murugaiyan J, Roesler U, Röber N, Conrad K, et al.
Identification of chitinase-3-like protein 1 as a novel neutrophil antigenic target in
crohn’s disease. J Crohns Colitis. (2019) 13:894–904. doi: 10.1093/ecco-jcc/jjz012

45. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound
healing. Int J Biochem Cell Biol. (2008) 40:1334–47. doi: 10.1016/j.biocel.2007.10.024

46. Chen Z-A, Ma H-H, Wang Y, Tian H, Mi J-W, Yao D-M, et al. Integrated
multiple microarray studies by robust rank aggregation to identify immune-associated
biomarkers in Crohn’s disease based on three machine learning methods. Sci Rep.
(2023) 13:2694. doi: 10.1038/s41598-022-26345-1

47. Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH.
Transcriptomic landscape of treatment-naïve ulcerative colitis. J Crohns Colitis. (2018)
12:327–36. doi: 10.1093/ecco-jcc/jjx139

48. Kaddoura R, Ghelani H, Alqutami F, Altaher H, Hachim M, Jan RK.
Identification of specific biomarkers and pathways in the treatment response of
infliximab for inflammatory bowel disease: in-silico analysis. Life (Basel Switzerland).
(2023) 13. doi: 10.3390/life13030680

49. Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell
membrane. Prog Histochem Cytochem . (2004) 39:1–83. doi : 10.1016/
j.proghi.2004.03.001

50. Linggi B, Jairath V, Zou G, Shackelton LM, McGovern DPB, Salas A, et al. Meta-
analysis of gene expression disease signatures in colonic biopsy tissue from patients
with ulcerative colitis. Sci Rep. (2021) 11:18243. doi: 10.1038/s41598-021-97366-5

51. Zhao X-H, Zhao P, Deng Z, Yang T, Qi Y-X, An L-Y, et al. Integrative analysis
reveals marker genes for intestinal mucosa barrier repairing in clinical patients.
iScience. (2023) 26:106831. doi: 10.1016/j.isci.2023.106831

52. Wang S, Solenov EI, Yang B. Aquaporin inhibitors. Adv Exp Med Biol. (2023)
1398:317–30. doi: 10.1007/978-981-19-7415-1_22

53. Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J, et al. Pro-inflammatory miR-223
mediates the cross-talk between the IL23 pathway and the intestinal barrier in
inflammatory bowel disease. Genome Biol. (2016) 17:58. doi: 10.1186/s13059-016-
0901-8
frontiersin.org

https://doi.org/10.1093/ecco-jcc/jjy113
https://doi.org/10.2147/JIR.S268262
https://doi.org/10.1136/bmjopen-2022-065186
https://doi.org/10.1093/ecco-jcc/jjz065
https://doi.org/10.1093/ecco-jcc/jjz065
https://doi.org/10.1136/gutjnl-2021-324855
https://doi.org/10.1136/gutjnl-2021-326451
https://doi.org/10.2174/187221310791163071
https://doi.org/10.2174/187221310791163071
https://doi.org/10.3390/ph14090840
https://doi.org/10.1016/j.cca.2010.12.020
https://doi.org/10.1016/j.drudis.2021.12.004
https://doi.org/10.1080/14712598.2019.1652267
https://doi.org/10.1080/14712598.2019.1652267
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/nar/gkg091
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.12688/f1000research.8987.2
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1145/2939672
https://doi.org/10.1126/science.1132939
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/jnci/59.1.221
https://doi.org/10.1242/jcs.112.16.2657
https://doi.org/10.1186/1750-2187-6-7
https://doi.org/10.3390/ijms241713566
https://doi.org/10.3389/fimmu.2019.01070
https://doi.org/10.3390/ijms21103550
https://doi.org/10.1101/cshperspect.a028548
https://doi.org/10.1101/cshperspect.a028548
https://doi.org/10.1016/J.PHRS.2020.104892
https://doi.org/10.1152/physrev.00044.2005
https://doi.org/10.1152/physrev.00044.2005
https://doi.org/10.1016/j.clim.2022.109015
https://doi.org/10.1016/j.clim.2022.109015
https://doi.org/10.1097/01.MIB.0000442012.45038.0e
https://doi.org/10.1097/01.MIB.0000442012.45038.0e
https://doi.org/10.1038/s41420-023-01455-5
https://doi.org/10.1158/1055-9965.EPI-08-0231
https://doi.org/10.1016/j.intimp.2020.107304
https://doi.org/10.1016/j.intimp.2020.107304
https://doi.org/10.1093/ecco-jcc/jjz012
https://doi.org/10.1016/j.biocel.2007.10.024
https://doi.org/10.1038/s41598-022-26345-1
https://doi.org/10.1093/ecco-jcc/jjx139
https://doi.org/10.3390/life13030680
https://doi.org/10.1016/j.proghi.2004.03.001
https://doi.org/10.1016/j.proghi.2004.03.001
https://doi.org/10.1038/s41598-021-97366-5
https://doi.org/10.1016/j.isci.2023.106831
https://doi.org/10.1007/978-981-19-7415-1_22
https://doi.org/10.1186/s13059-016-0901-8
https://doi.org/10.1186/s13059-016-0901-8
https://doi.org/10.3389/fimmu.2024.1353402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stemmer et al. 10.3389/fimmu.2024.1353402
54. Schniers A, Goll R, Pasing Y, Sørbye SW, Florholmen J, Hansen T. Ulcerative
colitis: functional analysis of the in-depth proteome. Clin Proteomics. (2019) 16:4.
doi: 10.1186/s12014-019-9224-6

55. Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal
inflammation and bacterial host defence. J Intern Med. (2017) 282:5–23.
doi: 10.1111/joim.12591

56. Yu T, Li D, Zeng Z, Xu X, Zhang H, Wu J, et al. INSC is down-regulated in colon
cancer and correlated to immune infiltration. Front Genet. (2022) 13:821826.
doi: 10.3389/fgene.2022.821826

57. Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett
D, et al. Structural remodeling of the human colonic mesenchyme in inflammatory
bowel disease. Cell. (2018) 175:372–386.e17. doi: 10.1016/j.cell.2018.08.067

58. Tang X-D, Ji T-T, Dong J-R, Feng H, Chen F-Q, Chen X, et al. Pathogenesis and
treatment of cytokine storm induced by infectious diseases. Int J Mol Sci. (2021) 22.
doi: 10.3390/ijms222313009

59. Costa F, Mumolo MG, Ceccarelli L, Bellini M, Romano MR, Sterpi C, et al.
Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in
Crohn’s disease. Gut. (2005) 54:364–8. doi: 10.1136/gut.2004.043406

60. Targan SR, Feagan B, Vermeire S, Panaccione R, Melmed GY, Landers C, et al. A
randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients
with moderate-to-severe crohn’s disease. Am J Gastroenterol. (2016) 111:1599–607.
doi: 10.1038/ajg.2016.298

61. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins
PDR, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to
severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-
controlled trial. Gut. (2012) 61:1693–700. doi: 10.1136/gutjnl-2011-301668

62. Noviello D, Mager R, Roda G, Borroni RG, Fiorino G, Vetrano S. The IL23-IL17
immune axis in the treatment of ulcerative colitis: successes, defeats, and ongoing
challenges. Front Immunol. (2021) 12:611256. doi: 10.3389/fimmu.2021.611256

63. Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to
bedside. Signal Transduct Target Ther. (2023) 8:402. doi: 10.1038/s41392-023-01620-3

64. Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism
of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. (2022)
19:384–408. doi: 10.1038/s41423-021-00791-9
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