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Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial

protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic

reticulum through the structural endoplasmic reticulum retention signal

(KDEL), is a member of the PDI protein family and is highly expressed in the

hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation,

isomerization and degradation of target proteins through its function as a

protein disulfide isomerase (PDI), thereby altering protein conformation,

activity and improving protein stability. Several studies have shown that there is

a significant correlation between TXNDC5 gene polymorphisms and genetic

susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors.

In this paper, we detail the expression characteristics of TXNDC5 in a variety of

diseases, summarize the mechanisms by which TXNDC5 promotes malignant

disease progression, and summarize potential therapeutic strategies to target

TXNDC5 for disease treatment.
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1 Introduction

The thioredoxin domain containing protein-5 (TXNDC5), also known as ERP46 (1),

HCC-2, STRF8, PDIA15, UNQ364, endo PDI, is a member of the PDI family that is located

on chromosome 6p24.3. Full-length cDNA analysis indicated that TXNDC5 is a 48 kDa

protein measuring 845.2 kbp. It can encode five splice variants, of which TXNDC5-001 and

TXNDC5-003 can be translated into proteins (2). TXNDC5 is widely distributed across

tissues, mainly in the brain, spleen, lung, liver, kidney, pancreas, testis and others. TXNDC5

is highly expressed in endothelial cells and in the endothelium of tumors and

atherosclerotic plaques, and TXNDC5 is upregulated in hypoxic conditions (1, 3–5). It is

also upregulated in autoimmune diseases such as rheumatoid arthritis and highly expressed
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in various organ fibrosis diseases. Previous studies have shown that

TXNDC5, like other PDI family members, regulates disulfide bond

formation and rearrangement through the CxxC motif and assists

in the proper folding of oxidized residue disulfide bonds (5–7).

TXNDC5 functions as a stress survival factor and is required for

endothelial cell survival under hypoxic conditions (3). TXNDC5

can mediate tumor necrosis factor-a (TNF-a) induced angiogenesis
(8). TXNDC5 can bind to lipocalin receptor 1 as a cellular adapter

and participate in cellular metabolism and inflammatory responses

by activating downstream inflammatory factors (9). TXNDC5 can

bind to alpha -mannosidase–like protein 3 (EDEM3) and trigger the

mannose trimming activity of ER degradation to correct misfolded

proteins (10). In addition, TXNDC5 also plays a molecular

chaperone role and act synergistically with HSC70 to promote

inflammation through NF-kB signal transduction (11). The

association between TXNDC5 and disease susceptibility has been

extensively reported, and multiple SNP across the TXNDC5 locus

are closely associated with disease development (Table 1). In this

review, we focus on the role of TXNDC5 in various diseases and

discuss possible TXNDC5 applications for “TXNDC5-related

diseases” particularly cancer, rheumatoid and fibrotic diseases.
2 Structure of the TXNDC5 protein

TXNDC5 is a special member of the PDI family. 40 years ago, it

was the first-discovered dithiol-disulfide oxidoreductase, and it is

capable of reducing, oxidizing and isomerizing disulfide bonds (17).

PDI family proteins consist of four Trx-like structural domains (a,

b, b′ and a′) located at the N-terminus and an additional a-helix c

structural domain at the C-terminus (18). Together, they form a

highly conserved U-shaped structure (19), with each domain

connected by an unusually long flexible loop (20). The a and a′
structural domains are redox active due to the Cys-Gly-His-Cys

motif and can act synergistically to promote the formation of

natural disulfide bonds through the two oxidation sites (20). The

b and b′ structural domains lack the Cys-Gly-His-Cys motif,

leading to loss of redox activity. However, they are the main

substrate binding sites (21–23) and can bind to different

substrates through conformational changes (22, 24, 25)

(Figures 1A, B). Unlike a prototypical PDI protein, TXNDC5 is a

rare PDI containing the conserved APWCGHC thioredoxin

domain but no b-structural domain (2, 18, 26). The C-terminus

of TXNDC5 protein has an endoplasmic reticulum retention signal

(KDEL), which is responsible for protein localization to the

endoplasmic reticulum. TXNDC5 consists of three redox-like Trx

domains (Trx1, Trx2 and Trx3), which form a clover-like structure

(25). Each isolated Trx-like structural domain can rapidly import

disulfide bonds independently and in a disorderly manner at the

same rate as native TXNDC5 without selectivity (18, 27)

(Figures 1C, D). Each Trx domain contains a CGHC motif as the

catalytic domain for PDI activity. In contrast, PDI introduces

natural disulfide bonds in an orderly manner through the

synergistic action of two redox active sites and selectively

proofreads unnatural disulfide bonds. TXNDC5 promote the

formation and folding of disulfide bonds through the CxxC motif
Frontiers in Immunology 02
to enhance protein stability (6, 28). Moreover, TXNDC5 generates

H2O2 through interaction with PDI endoplasmic reticulum

oxidoreductase 1a (Ero1a) to participate in the catalytic

oxidation reaction between peroxisomal protein 4 (prx4) and

TXNDC5, thereby accelerating protein folding (29). Prx4 is

typical of the 2-Cys Prx family (30, 31) and forms a

homodecamer within which each dimer constitutes a key

functional unit (32, 33). Sato Y et al. also demonstrated that

TXNDC5 and other PDI family members can collaborate in

peroxiredoxin 4-driven oxidative protein folding to increase the

rate and fidelity of oxidized protein folding (27).
3 TXNDC5 is involved in the
inflammatory response

Sepsis is a fatal immune disorder (34, 35), excessive immune

responses often result in systemic hypoperfusion, tissue hypoxia,

and ultimately organ dysfunction (36, 37). Sepsis triggers the

production of multiple pro-inflammatory and anti-inflammatory

factors (38). Increased release of pro-inflammatory cytokines leads

to dysregulated immune responses (39). Multiple pro- and anti-

inflammatory factors including TNF-a, IL-1, IL-6 IL-8, IL-12,

interferon (INF)-g, granulocyte colony-stimulating factor (G-

CSF), and the anti-inflammatory cytokine IL-10. Among them,

TNF-a and IL-1 are considered to be the main pro-inflammatory

factors (40–42). TNF-a activates inflammatory cytokines encoded

by the NF-kB signaling pathway, adhesion molecules, gene

expression of prostaglandin-synthesizing pathway enzymes, and

induction of nitric oxide synthase (iNOS), which activates

endothelial cells and leukocytes and exacerbates inflammatory

responses (43–47). TXNDC5 was found to be upregulated in

lipopolysaccharide (LPS) induced sepsis. Further research has

found that inhibition of TXNDC5 attenuated-induced sepsis by

suppressing the NF-kB signaling pathway. Moreover, knockdown

of TXNDC5 effectively inhibited LPS-induced upregulation of pro-

inflammatory cytokines (TNFa, IFN-g, IL-12, IL-6, and MCP-1)

and facilitated the production of the anti-inflammatory cytokine IL-

10 (48).

In the development of rheumatoid arthritis (RA), TNF-a, IL-1,
IL-6, IL-2 and many other inflammatory factors mediate the

inflammatory response (49–52). TXNDC5 can also regulate a

variety of cytokines to promote the development of the disease.

Wang et al. found that in the presence of LPS, the NF-kB signaling

pathway was activated by various pro-inflammatory factors such as

IL-6, IL-8 and TNF-a, then induced the expression of TXNDC5, in

turn, high expression of TXNDC5 can promote the production of

pro-inflammatory factors such as IL-6, IL-8 and TNF-a (11); miR-

573 can alleviate inflammation by enhancing the expression of

TXNDC5, which in turn inhibits the expression of factors such as

toll like receptor 2 (TLR2) and epidermal growth factor receptor

(EGFR) (53). Highly expressed TXNDC5 can promote RA by

inhibiting C-X-C motif chemokine ligand 10 (CXCL10) (54).

Inflammation often induces fibroblast recruitment and fibrosis,

and several inflammatory factors, including TGF-b, IL-13, CD4,
have been identified as triggers of fibrosis (55). For example, the
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pro-inflammatory cytokine interleukin 17A (IL-17A) induces

fibrosis in the lungs, liver, kidneys, heart, and skin (56–61). IL-13

selectively induces and activates TGF-b in macrophages to promote

fibrosis and promotes fibrosis independently of TGF-b by directly

targeting stromal and parenchymal cells (62–64). TXNDC5 plays a

critical role of endoplasmic reticulum protein disulfide isomerase

(PDI) activity in TGFb- mediated tissue fibrosis. TGFb upregulates

TXNDC5 by increasing ER stress levels and activating transcription

factor 6 (ATF6)-mediated transcriptional regulation. Increased

TXNDC5 lead to organ fibrosis by promoting myofibroblasts

activation and excessive accumulation of extracellular matrix

(ECM) proteins. Highly expressed TXNDC5 contributes to

cardiac fibrosis (CF) by promoting ECM protein folding (65).
TABLE 1 TXNDC5 SNPs and disease susceptibility.

Disease
susceptibility

SNPs Gene:
Consequence

Ref

Cervical carcinoma rs408014, rs7771314 BLOC1S5-TXNDC5:
Intron Variant,

TXNDC5:
Intron Variant

(12,
13)

Liver cancer rs13210097 BLOC1S5-TXNDC5:
Intron Variant,
PIP5K1P1: Non

Coding
Transcript Variant

(13)

rs11754300 BLOC1S5-TXNDC5:
Intron Variant,
PIP5K1P1: Non

Coding
Transcript Variant

rs9392182 BLOC1S5-TXNDC5:
Intron Variant

rs2815128 BLOC1S5: Intron
Variant, BLOC1S5-
TXNDC5: Intron
Variant, EEF1E1-

BLOC1S5:
Intron Variant

Oesophageal
cancer

rs1632346, rs9505309 BLOC1S5-TXNDC5:
Intron Variant

(13)

rs2815128, rs2815142 BLOC1S5: Intron
Variant, BLOC1S5-
TXNDC5: Intron
Varian, EEF1E1-

BLOC1S5:
Intron Variant

Rheumatoid
arthritis(RA)

rs1225936, rs1225938,
rs2743992,

rs372578, rs408014

BLOC1S5-TXNDC5:
Intron Variant,

TXNDC5:
Intron Variant

(14)

rs2743992 BLOC1S5: Intron
Variant, BLOC1S5-
TXNDC5: Intron
Varian, EEF1E1-

BLOC1S5:
Intron Variant

rs41302895 BLOC1S5-TXNDC5:
Non Coding

Transcript Variant,
BMP6: 3 Prime UTR
Variant, TXNDC5: 3
Prime UTR Variant

rs9392189 BLOC1S5: Intron
Variant, BLOC1S5-
TXNDC5: Intron
Variant, EEF1E1-

BLOC1S5:
Intron Variant

rs9505298 BLOC1S5-TXNDC5:
500B Downstream
Variant, BMP6: 3

Prime UTR Variant,
TXNDC5: 500B

Downstream Variant

(Continued)
TABLE 1 Continued

Disease
susceptibility

SNPs Gene:
Consequence

Ref

Ankylosing
spondylitis (AS)

rs1225937, rs1225938,
rs372578, rs89715,
rs378963, rs1225944
rs1225947, rs1238994,
rs69086, rs408014,
rs368074, rs1225954
rs1225955, rs13209404

BLOC1S5-TXNDC5:
Intron Variant,

TXNDC5:
Intron Variant

(14)

rs1044104 BLOC1S5-TXNDC5:
500B Downstream
Variant, BMP6: 3

Prime UTR Variant,
TXNDC5: 500B

Downstream Variant

rs3812162 BLOC1S5-TXNDC5:
Intron Variant,
TXNDC5: 2KB

Upstream Variant

Non-segmental
vitiligo (NSV)

rs1043784 BLOC1S5-TXNDC5:
Non Coding

Transcript Variant,
BMP6: 3 Prime UTR
Variant, TXNDC5: 3
Prime UTR Variant

(15)

rs7764128 BLOC1S5-
TXNDC5: Non
Coding Transcript
Variant, TXNDC5:
3 Prime UTR
Variant, BMP6:
500B
Downstream
Variant

rs8643 BLOC1S5-TXNDC5:
Non Coding

Transcript Variant,
TXNDC5: 3 Prime

UTR Variant

Schizophrenia rs1225934 BMP6:
Intron Variant

(16)

rs13873 BLOC1S5-TXNDC5:
Intron Variant,

TXNDC5:
Intron Variant
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Upregulated TXNDC5 can enhance TGFb1 signaling by promoting

the folding and stabilization of TGFBR1 in lung, leads to pulmonary

fibrosis (PF) (66). TXNDC5 triggers renal fibrosis (RF) through

enhancing TGF-b signaling pathway in renal fibroblasts (67).

TXNDC5 promotes hepatic stellate cell activity and ECM through

JNK and STAT3 signaling, thereby causing liver fibrosis (LF) (68).

In conclusion, the TGFb-ATF6-TXNDC5 signaling axis highlights

the role of TXNDC5 in fiber formation during the development of

fibrosis in heart, lung, kidney and liver organs (69).

TXNDC5 is involved in the tumorigenesis and progression by

participating in inflammatory response. Multiple studies

demonstrates that inflammation is closely relevant to the onset and

progression of cancers (70–73). Specifically, chronic inflammation is

involved in immunosuppression, acute inflammation induces cancer

cell death via antitumor immunity, and the inflammatory response is

also involved in anticancer therapies (74–76). For instance, TNF-a
and IL-1b can play an important role in the occurrence of colorectal

cancer through increasing the Toll-IL-1 receptor signaling (77). IL-17

produced by gd T cells plays a key role in breast cancer metastasis

(78). Additionally, TXNDC5 promotes cancer progression by

regulating various inflammatory factors. TXNDC5 induces

rhabdomyosarcoma proliferation survival and migration by

regulating interleukin-24 (IL-24) (79), which has a wide range of

anticancer activities and gradually be used in clinical therapy (80–82).

TXNDC5 can also contributes to abnormal angiogenesis in cervical

cancer by regulating inflammatory factor receptor expression of

SERPINF1 and TRAF1, which can activate the NF-kB signaling in
Frontiers in Immunology 04
inflammatory environments (12, 83, 84). In conclusion, the insights

have the potential to open new avenues in cancer treatment by

targeting TXNDC5 to control aberrant inflammatory responses.

In conclusion, TXNDC5 directly or indirectly regulates

inflammatory factors and promotes inflammatory responses (Figure 2).
4 The role of TXNDC5 in rheumatoid
arthritis pathogenesis

RA is a systemic autoimmune disease characterized by the

proliferation of synovial fibroblasts (SFs), which produce a variety

of proteases and inflammatory factors that destroy bone and

cartilage (85). In the early stages of RA, the immune system is

activated and immune cells (Dendritic cells, T cells and B cells) (86,

87) infiltrate joint tissues, leading to intra-articular hyperplasia and

thus inducing synovial hypoxia and hypoperfusion (88).

Furthermore, hypoxia induces the overexpression of TXNDC5.

Chang et al. found that the expression of TXNDC5 is high in the

synovial tissue and blood of RA patients by immunohistochemistry

and western blotting (13, 89). Nine SNPs located in the TXNDC5

gene (rs1225936, rs1225938, rs2743992, rs372578, rs408014,

rs41302895, rs443861, rs9392189, rs9505298) were found to be

closely associated with RA susceptibility (14). Subsequently, Wang

et al. found that hypoxia induced TXNDC5 overexpression in the

synovial tissues of RA patients, which stimulated synovial

fibroblasts to produce adiponectin (ADP). ADP subsequently
B

C

D

A

FIGURE 1

Schematic diagram of the PDI and TXNDC5 structures. (A) Prototypical PDI secondary structure domains were analyzed using SMART. PDI consists of
four Trx-like domain (a, b, b', a') and a C-terminal domain(c). (B) Prototypical PDI three-tier structure was built using SWISS-MODEL. (C) TXNDC5
secondary structure domains were analyzed using SMART. TXNDC5 contains there Trx-like domain(a). (D) TXNDC5 three-tier structure was built using
SWISS-MODEL.
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stimulated synovial fibroblasts secrete cytokines and chemokines to

promote inflammation, leading to RA (90). Through further

studies, Wang et al. found that increased expression of TXNDC5,

toll like receptor 2 (TLR2) and epidermal growth factor receptor

(EGFR) could be suppressed by enhancing miR-573 expression

during TXNDC5-induced RA, thereby alleviating inflammation

(53). Meanwhile, Wang et al. revealed that the expression of

TXNDC5 can be upregulated in response to inflammatory factors

(LPS, TNF-a and IL-6) and under the control of NF-kB signaling.

They found that heat shock cognate 70 protein (HSC70) forms a

complex with TXNDC5 in the cytoplasm and their directly

interaction can be strengthened in the presence of LPS, TNF-a
and IL-6. Further research indicated that LPS stimulation is a key

point in IkBb nuclear translocation and subsequent NF-kB
activation. HSC70 activates NF-kB signaling by destabilizing IkBb
protein in the absence of LPS or promoting its nuclear translocation

in the presence of LPS. In the nucleus, newly synthesized IkBb is in

a quiescent statement and the NF-kB signaling is activated. Thus,

TXNDC5 plays a pro-inflammatory role in RASFs by potentiating

the effects of HSC70/IkBb-mediated NF-kB signaling (11). Thus,

the TXNDC5/HSC70-mediated inflammatory pathway forms a

vicious circle in the progression of RA, and the two complement

each other to play an important role in the RA process. Wang et al.

also found that TXNDC5 could promote RA by upregulating TNF-

a, IL-1a, IL-1b, and IL-17 (90). Xu et al. found that TXNDC5

overexpression inhibited CXCL10 and tumor necrosis factor-

related apoptosis-inducing ligand TNF superfamily member 10

(TRAIL) expression, further contributing to the abnormal

proliferation, apoptosis and angiogenesis of RASFs (54). Li et al.

asserted that TXNDC5 induces insulin resistance and increases the

risk of diabetes mellitus (DM) by inhibiting the expression of

insulin-like growth factor binding protein-1 (IGFBP1) (91). The

onset and progression of DM are closely related to systemic

inflammation and insulin resistance, which is a state of impaired
Frontiers in Immunology 05
glucose metabolism and insulin dysfunction (92). It was reported

that most patients with RA are insulin resistant (93–97). These

studies suggested that there is a close connection between RA and

DM. The study conducted by Alexander et al. revealed that the

levels of fasting glucose are increased in 9 individuals with loss-of-

function (LOF) variation in TXNDC5, indicating TXNDC5 can be

identified as a potential determinant of type 1 diabetes risk (98).

In conclusion, the above studies regarding RA revealed the

important facilitating role of TXNDC5 in RA progression and

provide a new therapeutic target for the future treatment of

RA (Figure 3).
5 The role of TXNDC5 in the
pathogenesis of organ fibrosis
diseases and its
underlying mechanism

A growing body of data suggests a strong link between

TXNDC5 and fibrotic diseases. TXNDC5 was found to be highly

expressed in multiple fibrotic diseases, and TXNDC5 is a key

pathogenic factor in multiple organ fibrotic diseases. In 2018,

Shih et al. used RNA sequencing and gene co-expression network

analysis to analyze data from failing human hearts, and found that

TXNDC5 was highly upregulated in failing human left ventricular

(LVs) (65). Highly expressed TXNDC5 can promote ECM

enrichment to induce myocardial fibrosis by increasing NOX4-

derived ROS and activating redox-sensitive JNK signaling. CF can

lead to cardiac structural and functional remodeling, triggering

diastolic dysfunction (99, 100) and consequently heart failure (HF).

Increased levels of TXNDC5 expression further enhance the

excessive accumulation of myofibroblasts and ECM proteins,

leading to CF (65). Suppress the expression of TXNDC5 therefore
FIGURE 2

TXNDC5-mediated inflammatory response. TXNDC5 involves in multiple disease by regulating multiple inflammatory factors and inflammatory factor
receptors. In sepsis, highly expressed TXNDC5 upregulates pro-inflammatory factors (TNF-a, IFN-g, IL-12, IL-6, MCP-1) via LPS and downregulates
the production of anti-inflammatory factors (IL-10). In RA, TXNDC5 exacerbates RA through LPS-mediated induction of pro-inflammatory factors
(IL-6, IL-8, NF-kB); Highly expressed TXNDC5 can upregulate pro-inflammatory factors (TNF-a,IL-1a, IL-1b,IL-17) to promote RA development;
Increased TXNDC5 can promote the occurrence of RA by inhibiting CXCL10. In the progress of organ fibrosis, TXNDC5 can mediate the TGFb-
ATF6-TXNDC5 signaling axis to induce multiorgan fibrosis. In tumors, TXNDC5 promotes proliferation of rhabdomyosarcoma (RMS) by inducing IL-
24; TXNDC5 contributes to cervical carcinoma (CC) progression by decreasing the expression of SERPINF1 and TRAF1.
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provides a new therapeutic target for the treatment of CF, in

contrast to traditional therapeutic modalities, including

angiotensin-converting enzyme inhibitors (ACEI), angiotensin

receptor blockers (ARBs) and mineralocorticoid receptor

antagonist (MRA) (101–103). Targeting TXNDC5 does not limit

the slowing of CF due to lower blood pressure. Moreover, inhibiting

TXNDC5 expression can limit CF progression by silencing TGF-b1,
thus attenuating fibroblast activation, ECM enrichment (65, 104,

105) and evading hepatotoxicity (106). In summary, silencing

TXNDC5 provides new therapeutic strategies to alleviate CF and

prevent HF.

In 2020, Lee et al. found that TXNDC5 was highly upregulated

in lung tissue from patients with idiopathic pulmonary fibrosis and

a bleomycin (BLM)-induced PF mouse models (66). TGF-b and

TGFBR2 binding activates the TGFBR1/ER stress/ATF6

transcriptional pathway to drive TXNDC5 enrichment in lung

fibroblasts, which in turn induces fibroblast hyperactivation,

proliferation, and ECM enrichment through activation of TGF-b
classical (SMAD3) (107) and nonclassical (JNK, ERK, PI3K, p38,

MAPK) signaling (108), leading to PF. Suppress the TGF-b pathway
represents an attractive approach to treat pulmonary fibrosis, but
Frontiers in Immunology 06
extensive inhibition of TGF-b leads to hepatotoxicity (109) and

cardiotoxicity (110, 111); targeting knockdown of TGF-b1 causes

interstitial pneumonia and systemic perivascular inflammation

(112, 113); and targeting inhibition of TGFBR1 promotes

impaired alveolar and epithelial cell production (114). TGF-b
expression is necessary for lung organogenesis and homeostasis in

vivo (115), therefore, direct down regulation of TGF-b rarely

reaches the early clinical trial stage (109). However, compared

with TGF-b, inhibit the expression of TXNDC5 showed no

significant adverse effects.

Chen et al. Microarray data from renal biopsy specimens from

CKD patients were analyzed and increased renal TXNDC5

expression was verified using gene knockout, flow cytometry, and

immunohistochemistry. This study experimentally hypothesized to

be under the control of the TGF-b1/ATF6/TXNDC5/TGFBR1
signaling axis, resulting in the enhancement of the folding and

stability of TGFBR1. The signaling pathway leads to the

amplification of TGF-b1 signaling and a series of renal fibrotic

responses (67). Studies have shown that inflammation, tubular

injury and other factors increase pro-fibrotic and inflammatory

factors, inflammatory cells in large amounts, including TGF-b and
FIGURE 3

The molecular mechanisms of TXNDC5 promotes RA. (A) Inflammation can activate the body’s immune system and contribute to hyperplasia of the
joint lining. Hypoxia and hypoperfusion are induced by arthro intimal hyperplasia and increase TXNDC5 expression subsequently. By upregulating
ADP, TXNDC5 secretes cytokines, chemokines and growth factors to promote inflammation and RA progression (white arrow). (B) TXNDC5 lead to
insulin resistance and increase the risk of developing diabetes mellitus by inhibiting the expression of IGFBP1 (green arrow). (C) TXNDC5 can inhibit
the expression of CXCL10 and TRAIL, leading to abnormal proliferation, apoptosis, and angiogenesis in RASFs (pink arrow). (D) Inhibit the expression
of miR-573 in RA increased the expression of TXNDC5 and TLR2, which then exacerbates inflammation and induces RA (red arrow). (E) The
expression of TXNDC5 can be upregulated in response to inflammatory factors (LPS, TNF-a and IL-6) and under the control of NF-kB signaling. In
the absence of LPS, HSC70 forms a complex with TXNDC5 in the cytoplasm, and then activates NF-kB signaling by destabilizing IkBb protein to
induce RA; In the presence of LPS, IkBb can translocate into the nucleus and facilitate the activity of p65, promoting transcription of TXNDC5 and RA
progression (orange arrow).
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macrophages (116). TGF-b is a key factor in the development of RF

(117). Increasing expression of TGF-b drives fibroblast activation

into collagen-secreting myofibroblasts (118–120), characterized by

a-smooth muscle actin (aSMA) expression and excessive ECM

deposition, leading to abnormal renal structure (121). In the process

of treating RF, Chen et al. found that TXNDC5 deletion effectively

ameliorated the development and progression of RF induced by

various injuries in mice (67), providing a new and effective method

for treating RF.

Hung et al. studied liver fibrosis (LF) and validated that the TGFb/
ATF6/TXNDC5/JNK/STAT3 signaling axis, suggesting that TXNDC5

plays a key role in the formation of LF (68). LF is generally caused by

chronic liver injury (122), such as viral infections, nonalcoholic

steatohepatitis (NASH), alcohol consumption (AC) and biliary

obstructive disease (123, 124). Chronic hepatocellular injury could

lead to epithelial/endothelial barrier damage, the release of

inflammatory cytokines and the agglomeration of inflammatory cells

followed by the secretion of profibrotic cytokines. Hepatic stellate cells

(HSC) are activated and transformed into myofibroblasts, which

leading to ECM enrichment, fibrous septa formation and

regenerative nodules (124, 125). The activation of hepatic stellate

cells into myofibroblast-like cells is the central link in the

development of LF (126). Therefore, therapies that reduce HSC

activation and ECM accumulation have become the mainstay of

treatment for LF. TXNDC5 activates HSC through reactive oxygen

species (ROS)-dependent JNK signaling; TXNDC5 also enables HSCs

to avoid apoptosis via STAT3 signaling, leading to the enrichment of

activated HSCs and excessive fibrotic in the liver. Inhibition of the

catalytic function of TXNDC5 abrogates JNK and STAT3 activation,

leading to downstream fibrotic responses (68). Silencing TXNDC5

reduces liver fibrosis in mice (127). Targeting TXNDC5 in HSCs

reduces LF through limiting HSC cell activation by inhibition of

noncanonical TGF-b signaling.

In summary, TXNDC5 is associated with key factors that

promote the development of organ fibrosis. Targeting TXNDC5

deletion may be a potential new therapeutic strategy to improve

fibrotic disease (Figure 4, Table 2).
6 TXNDC5 and tumor tissues

6.1 TXNDC5 is highly expressed in a variety
of tumor tissues

Increasing evidence has revealed that TXNDC5 and tumors

progression are closely related (128). Several studies found that

TXNDC5 showed significantly increased expression in a variety of

cancer tissues. Chang et al. found that TXNDC5 was significantly

expressed in tumor tissues, including invasive ductal carcinoma of the

breast, squamous cell carcinoma of the cervix, squamous cell

carcinoma of the esophagus, papillary plasmacytoma of the ovary,

and prostate cancer (13). It was reported that TXNDC5 was also found

to have procarcinogenic effects in tissues of several cancers, including

prostate cancer (PCa) (129), colorectal cancer (CRC) (130) (127), lung

cancer (LCA) (131), non-small cell lung cancer (NSCLC) (132),

ovarian cancer (OC), gastric cancer (GC) (133, 134), cervical cancer
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(CC) (12), esophageal squamous cell carcinoma (ESCC) (135), and

hepatocellular carcinoma (HCC) (136). In samples from patients with

LCA, TXNDC5 protein expression was upregulated in more than 60%

of NSCLC tissues (137). Batool et al. found that the increased

expression of TXNDC5 was mostly due to increased levels of

transcription and translation of the TXNDC5, especially the

increased transcription of the TXNDC5, which was also found in

tissues obtained from patients in the early stages of colorectal cancer

(130). In addition, several experiments have demonstrated that

TXNDC5 is overexpressed in colorectal cancer tissues, revealing that

TXNDC5 is a tumor-enhancing gene that promotes the proliferation

and migration of a variety of tumor cells. By immunohistochemical

studies, Wu et al. found that TXNDC5 was highly expressed in gastric

cancer cells, particularly in hypofractionated adenocarcinoma (133).

Regarding hepatocellular carcinoma tissue, TXNDC5 expression is

increased in poorly differentiated hepatocellular carcinomas but not

in highly differentiated tumors. In Pca, TXNDC5 was significantly

overexpressed in androgen-intrinsic prostate cancer and desmoplastic-

resistant prostate cancer (129). In ESCC, Wang et al. found that

TXNDC5 showed highly expression, indicating that ESCC with high

TXNDC5 expression had a poor prognosis (135). By using in silico

analysis, Kocatürk et al. found that the expression pattern of TXNDC5

family members is different between tumor tissues and healthy tissues,

and the expression of TXNDC5 is proportional to the grades of diffuse

glioma tumors (138). In summary, TXNDC5 is a typical cancer-

enhancing gene that is highly expressed and overexpressed in tumor

tissues of several cancers and plays an important role in the

development of cancer.
6.2 The regulatory mechanism of TXNDC5
in cancer development

6.2.1 Hypoxia induces high expression
of TXNDC5

TXNDC5, like most members of the PDI family, is involved in the

correct folding and formation of disulfide bonds in newly synthesized

proteins through disulfide isomerase and chaperone protein activity,

and plays an important role in prevention of endoplasmic reticulum

stress (5–7). Sullivan et al. found that PDI was needed for endothelial

cell survival under both normoxic and hypoxic conditions, but

TXNDC5 was only highly expressed and exerted a protective effect

on endothelial cells under hypoxic conditions. Tan et al. found that

hypoxia could induce upregulation of TXNDC5 in colorectal cancer

tissues by elevating the expression of hypoxia-inducible factor-1a
(HIF-1a), leading to reduced ROS production (130). It was

previously reported that ROS is directly or indirectly involved in

endoplasmic reticulum homeostasis and protein folding, thereby

triggering endoplasmic reticulum stress and possibly inducing

apoptosis in response to excessive endoplasmic reticulum stress

(139). Hypoxia can inhibit hypoxia-induced ROS/ER stress signaling

and promote proliferation and clone formation in colorectal cancer

cells by inducing TXNDC5 overexpression through the upregulation of

HIF-1a (130). Wang et al. observed that TXNDC5 was upregulated in

prostate cancer cells after prolonged androgen deprivation therapy

(ADT) due to ADT-induced hypoxia upregulating TXNDC5
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expression through androgen receptor (AR) protein signaling, thereby

enhancing their interaction, stability and transcriptional activity. This

mechanism further regulates TXNDC5 expression through HIF-1a
and miR-200b-dependent pathways (129). The above results suggest

that TXNDC5 may play a role as a hypoxia-induced stress survival

factor in tumor cells, contributing to tumor cell growth and

proliferation under hypoxic conditions.

6.2.2 The diverse oncogenic mechanism of
TXNDC5 in various cancers

Numerous studies have shown that increased TXNDC5

expression is regulated by multiple factors. In 2017, Xu et al.

demonstrated that TXNDC5 is a susceptibility gene in cervical

cancer using Taqman genotype. They point out that TXNDC5 is

highly expressed in cervical squamous cancer tissues. TXNDC5 can

promote angiogenesis, angiogenic mimicry and cell metastasis in

cervical cancer (12). Du et al. identified TXNDC5 as a target of

MELLT3 mediated m6A modification by MeRIP-seq, and
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confirmed the positive correlation between TXNDC5 and

METTL3 at the protein and RNA levels. Their further study

found that the m6A readers (YTHDF2 and IGF2BP2/3) could

interact with TXNDC5 mRNA. Mechanically, IGF2BP2/3

enhanced TXNDC5 mRNA stability, whereas YTHDF2 may

promote TXNDC5 mRNA degradation. Thus, METTL3 promotes

proliferation and metastasis of CC cells by upregulating TXNDC5

expression via m6A-reader-dependent way (140). Yu et al.

demonstrated that circRNA-104718 acts as a competitive

endogenous RNA for miR-218-5p to regulate TXNDC5 in HCC,

and thus promote HCC (141). The next year, Zang et al. detected

significantly elevated protein levels of TXNDC5 in HCC tissues and

cells by western blotting, and found that circ_0000517 could

promote TXNDC5 overexpression by inhibiting miR-1296-5p.

Further research shown that TXNDC5 overexpression could

enhance HCC cell viability, promote HCC cell colony formation,

shorten cell cycle, and promote cell proliferation and migration

(136). Wang et al. confirmed that HERG1 induces to poor prognosis
FIGURE 4

Model depicting the role of TXNDC5 promote multiorgan fibrosis. Stimulation of endoplasmic reticulum stress by TGFb activates ATF6-mediated
transcriptional branching, contributing to the upregulation of TXNDC5 expression, which mediates downstream effector molecules to induce organ
fibrosis. Increased TXNDC5 expression induces CF by increasing NOX4-derived ROS and activating redox-sensitive JNK signaling (green arrow);
leads to PF by activating SMAD3 phosphorylation and inducing other signaling molecules (JNK, PI3K, ERK, p38 and MAPK) (blue arrow); leads to RF
by activating SMAD3 signaling (red arrow); and leads to LF by activating JNK signaling and STAT3 signaling (orange arrow).
TABLE 2 TXNDC5 promotes the organ fibrosis signaling pathway.

Organ
Fibrosis

Disease
Abbreviation

TXNDC5 Upstream
adjustment pathway

Downstream
effectors

Results Reference

Cardiac
fibrosis

CF TGFb/ER stress/ATF6
mediates transcription

1.NOX4-derived ROS
2. Phosphorylated
JNK signaling

Fibroblast activation and excessive
accumulation of ECM proteins contribute
to CF

(65)

Pulmonary
fibrosis

PF TGFb binding to TGFBR2
activates
TGFBR1/ER stress/ATF6-
mediated transcription

1. SMAD signal
2. Other signaling molecules
(JNK, ERK, PI3K, p38, MAPK)

Fibroblast activation and excessive
accumulation of ECM proteins contribute
to PE

(66)

Renal
fibrosis

RF TGFb binding to TGFBR2
activates
TGFBR1/ER stress/ATF6-
mediated transcription

1. Redox-sensitive
SMAD3 signaling

Fibroblast activation and excessive
accumulation of ECM proteins contribute
to RF

(67)

Liver
Fibrosis

LF TGFb/ER stress/ATF6
mediates transcription

1. Redox-sensitive JNK
signaling and STAT3 signaling

Fibroblast activation and excessive
accumulation of ECM proteins contribute
to LF

(68)
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in esophageal squamous cell carcinoma (ESCC) patients by

promoting cell proliferation, migration, and invasion, while these

effects can be reversed by altering the expression of TXNDC5 and

its downstream PI3K/AKT pathway. The study suggested that

TXNDC5 is a key point in the pathway of HERG1 promotes

tumor progression (135). Ge et al. revealed that the TBX15/

TXNDC5 axis play a crucial role in the genesis and progression

of glioma; TBX15 exerts its oncogenic roles by regulating

transcriptional activation of TXDNC5 (142). Overall, these results

indicate that TXNDC5 is affected by different regulators in various

cancers and that TXNDC5 plays an important role in promoting

cancer proliferation, invasion and metastasis.

TXNDC5 also influenced by other factors that promote the

development of cancer. For example, TXNDC5 expression is

induced by three endoplasmic reticulum stress conditions,

including glucose deprivation, serum deprivation and the

presence of tunicamycin (TM) (143, 144), endoplasmic reticulum

stress is a key factor in tumor-promoting mechanisms (144), which

affect protein glycosylation and ATP production, leading to

endoplasmic reticulum stress and the accumulation of unfolded

or misfolded proteins. In clear cell renal cell carcinoma (ccRCC),

ccRCC cells adapt to this stressful environment and escape

apoptosis (143). In pancreatic cancer, NR4A1 (Nur77, TR3)

regulates TXNDC5 expression, maintains low levels of stress by

ROS in cancer cells, and promotes pancreatic cancer cell

proliferation (145). Chawsheen et al. demonstrated that TXNDC5

interacts with sulfiredoxin (Srx) through IP experiments and that

the two together maintain endoplasmic reticulum homeostasis in

human lung cancer cells, thereby promoting cell colony formation

and migration (131). Charlton et al. found that TXNDC5 inhibited

the lipocalin signal pathway by interacting with AdipoR1 in HeLa

cells (9). Regarding to renal cell carcinoma (RCC), the ratio of

TXNDC5/AdipoR1 expression was significantly higher in

metastatic renal cell carcinoma tissues than in nonmetastatic

controls (146). The presence of TXNDC5 in metastatic renal cell

carcinoma promotes cell growth, migration, invasion and increases

resistance of cancer cells to chemotherapeutic agents (143).

However, there is not sufficient evidence for a stable interaction

between AdipoR1 and TXNDC5 (146). Moreover, it is possible that

the interaction between AdipoR1 and TXNDC5 is regulated by

various interaction factors and therefore varies due to the

characteristics of the interaction factors. It is debatable whether

the tumorigenic properties of TXNDC5 expression in RCC cells are

related to the inhibitory regulation of lipocalin tumor

suppressor signaling.

In summary, TXNDC5 has different oncogenic mechanisms in

different cancers, and the complex mechanisms of TXNDC5 in

cancer tissues deserve further exploration (Figure 5).
6.3 TXNDC5: a promising potential tumor
diagnostic marker or therapeutic target

TXNDC5 can be used as a diagnostic marker and a therapeutic

target in cancer. Decrease the expression of TXNDC5 in cancer

tissues can attenuate cell viability, inhibit cell colony formation,
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induce cell cycle arrest and apoptosis. In ccRCC, TXNDC5 can be

used as a prognostic criterion for patients (143). Ren et al. also found

that the expression of TXNDC5 was negatively correlated with the

chemosensitivity of ccRCC, and inhibit the expression of TXNDC5

increased the resistance of ccRCC to chemotherapeutic drugs,

reduced the killing of cancer cells by chemotherapeutic drugs, and

promoted the development of cancer (143). These results indicated

that TXNDC5 probably can be used as a diagnostic and prognostic

biomarker, indicating that TXNDC5 is a promising therapeutic

target for ccRCC. In gastric adenocarcinoma tissues Wu et al.

found that TXNDC5 is highly expressed in gastric cancer cells by

immunohistochemistry and its expression is significantly increased in

poorly differentiated adenocarcinomas, suggesting that the expression

of TXNDC5 is significantly associated with the prognosis of gastric

adenocarcinomas at the cardia (133). Nissom et al. identified that

TXNDC5 was expressed in HCC but not in highly differentiated

HCC, indicated that the expression of TXNDC5 could be used to

predict the progression of HCC. In CRC (130) and NSCLC (137),

TXNDC5 is highly expressed in the early stages of cancer, so

TXNDC5 can be used as a means to diagnose early cancer.

Chawsheen et al. revealed that inhibiting the expression of

TXNDC5 may reduce the incidence of lung cancer. Further

research indicated that the Srx-TXNDC5 complex may be used to

predict the survival probability for lung cancer patients and as a

therapeutic target or molecular diagnostic tool in human lung cancer

pathogenesis (147). In brief, TXNDC5 is a promising prognostic

marker for cancer progression, a therapeutic target and a molecular

diagnostic indicator for cancer pathogenesis. In conclusion, TXNDC5

plays an essential role in cancer diagnosis and therapy.
7 The role of TXNDC5 in
other diseases

It is well known that TXNDC5 is regulated by hypoxia (3), which

induces vasoconstriction and coronary arteriosclerosis. Camargo et al.

reported that TXNDC5 promotes the expression of proangiogenic

proteases by regulating AP-1-dependent gene expression and induces

angiogenesis in response to TNF-a (8). Yeh et al. revealed that

TXNDC5 promotes atherosclerosis in vivo. Mechanically, TXNDC5

induces ubiquitination and proteasome-mediated degradation of

HSF1, destabilizes eNOS protein by inhibiting HSP90 (148). Their

further studies found that TXNDC5 deletion in vascular endothelium

result in increased eNOS protein and reduced atherosclerosis in apoE
−/− mice. Meanwhile, Kuhlencordt et al. found that atherosclerosis,

aortic aneurysm formation and ischemic heart disease are accelerated

in apoE/eNOS double knockout mice (149). These above findings

indicates that TXNDC5 may lead to vascular diseases through

regulating apoE and eNOS.

Holmgren et al. recently found that loss-of-function mutations

in TXNDC5 may prevent key peptides from functioning properly,

thus causing insulin hypersecretion (150). This resulted in

insufficient insulin secretion. Subsequently, Alexander et al.

showed that TXNDC5 could catalyze the reduction of insulin

disulfide bonds and weaken the binding activity of insulin to the

insulin receptor, thus causing abnormalities in glucose tolerance in
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the body, revealing an important role for TXNDC5 in promoting

the development of diabetes (98). Recently, Li et al. found that high

expression of TXNDC5 inhibited the expression of IGFBP1 to

induce insulin resistance, increasing the risk of developing DM (91).

Ramıŕez et al. found that the severity of fatty liver induced by

apolipoprotein E (ApoE) knockout was negatively correlated with

the levels of TXNDC5 protein and mRNA. Their further study

revealed that the expression of TXNDC5 reflected squalene’s anti-

lipotropic properties and sensitivity to lipid accumulation (151).

Karatas et al. found that four members of the PDI family (TXNDC5,

PDIA4, PDIA3 and P4HB) were specifically upregulated in adult

ZZ-AATD-mediated liver disease by studying hepatocyte function

in patients with ZZ-type a1-antitrypsin deficiency (152). In the

mechanism of interferon-stimulated gene 15 (ISG15)-induced

hepatitis C virus (HCV) infection, ISG15 may promote HCV

replication by regulating TXNDC5 (153–155).

Kim et al. found a correlation between TXNDC5 and skin aging

by immunohistochemical assay and qRT−PCR in the skin tissues of

20 patients (156). In addition, TXNDC5 expression was higher in

peripheral blood mononuclear cells in young adults than in older

adults, suggesting that altered TXNDC5 expression may be

associated with endothelial cell apoptosis (157).

In addition, certain SNP loci of TXNDC5 are closely associated

with disease susceptibility. In a Korean population, three exonic

SNPs (rs1043784, rs7764128 and rs8643) in TXNDC5 were found

to be positively associated with nonsegmental vitiligo (NSV) (15). A

SNP (rs13873) in the TXNDC5 gene and haplotype rs1225934-

rs13873 in BMP6-TXNDC5 play a role in the selective impairment

of persistent attention disorder in schizophrenia (16). The

TXNDC5-related SNP (rs13196892: TXNDC5 | MUTED) that

may be associated with human age was first identified in a study

exploring female menopause/age-related factors (158).

In addition, TXNDC5 may be a predictive marker for histone

deacetylase inhibitor (HDACI) resistance in cutaneous T-cell
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lymphoma during drug treatment of the disease (159), a predictive

marker for resistance to bortezomib in refractory/relapsed multiple

myeloma (160), a regulatory target of simvastatin to enhance

docetaxel-induced cytotoxicity in human prostate cancer cells (161)

and may be a key factor in the antioxidant effect of statins.

Atorvastatin inhibits ROS production and Nox2 activity by

promoting the membrane translocation of TXNDC5 in lipid rafts

and enhancing the colocalization of TXNDC5 and Nox2, thus

exerting antioxidant effects (162). Moreover, direct B lymphocyte

LS-TA of TXNDC5 is an early biomarker of vaccine response in novel

coronavirus pneumonia (COVID-19) (163).

In summary, TXNDC5 is expected to serve as a target for gene

or drug therapy in an effort to change the trajectories of the

aforementioned diseases.
8 Summary

TXNDC5, a member of the PDI protein family, is mainly found

in tissues such as the brain, spleen, lung, liver, kidney, pancreas and

testis. TXNDC5 consists of three redox-like Trx structural domains,

each of them contains a CGHC motif that acts as an active catalytic

structural domain for PDI activity, thereby regulating the rate of

disulfide bond formation, isomerization and degradation of target

proteins, thus altering the protein conformation and activity to

improve protein stability. High expression of TXNDC5 is a key

factor in the development of inflammation, cancer, rheumatoid

arthritis, organ fibrosis, diabetes and other diseases.

In sepsis, RA and many other inflammatory diseases, TXNDC5

mediates the expression of a variety of inflammatory factors and

receptors, which promotes the inflammatory response that leads

to disease.

In fibrotic diseases, TXNDC5 acts as a mediator of TGF-ß

signaling and amplifies TGF-ß induced fibrotic responses through
FIGURE 5

Schematic diagram showing the mechanism by which TXNDC5 promotes cancer. (A) TXNDC5 can be upregulated under hypoxia and play a crucial
role in anti-apoptosis by regulating hypoxia-induced ROS/ER stress signaling; Hypoxia induce the expression of TXNDC5 through HIF-1a in an miR-
200b-dependent manner, and strengthen the interaction between TXNDC5 and AR to promote proliferation and migration (white arrow).
(B) Circ_0000517 and circRNA-104718 acted as miR-1296-5p and miR-218-5p competitive endogenous RNAs, respectively, upregulating TXNDC5
expression to promote HCC proliferation and metastasis (blue arrow). (C) HERG1 leads to ESCC proliferation, migration and invasion through
TXNDC5 by mediating the PI3K/AKT signaling pathway (green arrow). (D) METTL3 promotes proliferation and metastasis of cervical cancer (CC) cells
by upregulating TXNDC5 expression via m6A-reader-dependent way (orange arrow). (E) Highly expressed TXNDC5 can promote angiogenesis by
inhibiting the expression of SERPINF1 and TRAF1 (red arrow).
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its PDI activity to induce fibroblast activation, proliferation, and

ECM production, inducing fibrosis in multiple organs such as the

heart, lungs, kidneys, and liver.

In cancer, the SNPs in TXNDC5 gene are significantly

associated with genetic susceptibility to a variety of cancers,

including cervical cancer, hepatocellular carcinoma, liver cancer

and esophageal cancer. Increased TXNDC5 expression can mediate

neovascularization and promote cancer cell proliferation, invasion

and metastasis.

In addition, TXNDC5 is strongly associated with a variety of

diseases, such as diabetes, fatty liver, schizophrenia, and NSV.

Therefore, targeting TXNDC5 provides a powerful new tool for

disease diagnosis and treatment. However, the specific roles and

mechanisms of TXNDC5 in different diseases are not yet fully

understood, and large-scale clinical trials are needed to validate the

mechanism of TXNDC5 in different diseases as well as targeted

therapies in the future.
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AC alcohol consumption

ACEI angiotensin-converting enzyme inhibitors

ADP adiponectin

ADT androgen deprivation therapy

ApoE apolipoprotein E

AR androgen receptor

ARBs angiotensin receptor blockers

ATF6 activating transcription factor 6

CC cervical cancer

ccRCC clear cell renal cell carcinoma

CF cardiac fibrosis

CRC colorectal cancer

CXCL10 C-X-C motif chemokine ligand 10

DM diabetes mellitus

ECM extracellular matrix

EDEM3 alpha -mannosidase–like protein 3

EGFR epidermal growth factor receptor

Endo-PD endothelial protein-disulfide isomerase

Ero1a endoplasmic reticulum oxidoreductase1a

ESCC esophageal squamous cell carcinoma

G-CSF granulocyte colony-stimulating factor

GC gastric cancer

HCC hepatocellular carcinoma

HCV hepatitis C virus

HF heart failure

HDACI histone deacetylase inhibitor

HERG1 human ether a-go-go-related gene 1

HIF-1a hypoxia-inducible factor-1a

HSC Hepatic stellate cells

HSC70 heat shock cognate 70 protein

HSF1 heat shock factor 1

HSPs heat shock proteins

IGFBP1 insulin-like growth factor binding protein-1

IL-17A interleukin 17A

Inos induction of nitric oxide synthase

ISG15 interferon-stimulated gene 15

LCA lung cancer

LF liver fibrosis

(Continued)
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LOF loss-of-function

LPS lipopolysaccharide

LVs left ventricular

MRA mineralocorticoid receptor antagonist

NSCLC non-small cell lung cancer

NSV nonsegmental vitiligo

OC ovarian cancer

PCa prostate cancer

PDI protein disulfide isomerase

PF pulmonary fibrosis

prx4 peroxisomal protein 4

RA rheumatoid arthritis

RCC renal cell carcinoma

RF renal fibrosis

SFs synovial fibroblasts

Srx sulfiredoxin

TLR2 toll like receptor 2

TM tunicamycin

TRAIL TNF superfamily member 10

TNF-a tumor necrosis factor-a

TXNDC5 Thioredoxin domain containing protein-5.
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