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CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell

interaction, cell adhesion, migration, homing and differentiation. CD44 can

mediate the interaction between leukemic stem cells and the surrounding

extracellular matrix, thereby inducing a cascade of signaling pathways to

regulate their various behaviors. In this review, we focus on the impact of

CD44s/CD44v as biomarkers in leukemia development and discuss the current

research and prospects for CD44-related interventions in clinical application.
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1 CD44 introduction

1.1 Structural basis of CD44

CD44 is not just a single molecule localized on chromosome 11, but a transmembrane

glycoprotein with molecular diversity produced by alternative splicing of multiple exons of

a single gene and different post-translational modifications in different cell types (1). Exons

located at both ends (1-5 and 16-20) are constitutive exons shared by all members of the

CD44 family. In humans, the selective combination of various middle 9 exons during

transcription give rise to different isoforms of CD44 precursors, thereby designating these

middle 9 exons as variant exons (Figure 1A) (2). In addition to transcriptional shearing to

generate different isoforms, CD44 also undergoes post-translational modifications. The

most prevalent forms of glycosylation include N-linked and O-linked glycosylation (3).

These post-translational modifications of CD44 isoforms have led to a more diverse ability

to regulate cellular activities. For instance, following post-translational modification,

different CD44 variants (CD44v) exhibit distinct modes of binding with its ligand

Hyaluronic acid (HA) (4).
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Regarding the molecular size, CD44 consists of 363 amino acids

(37 kDa). However, due to glycosylation modifications and coding

of mutant exons in the CD44 molecule, its actual molecular weight

exceeds 37kDa and has been measured to be around 80-90 kDa (5).

The extracellular region, transmembrane region, and short

intracellular/cytoplasmic region at the C-terminus comprise the

key characteristics of CD44 protein (Figure 1B) (6). Specifically, the

extracellular domain can be subdivided into a globular structural

domain consisting of six cysteine residues and a stem-like region in

the extracellular near-membrane portion of the cell (7). As for the

transmembrane and intracellular regions, both of them exhibit

remarkable conservation in terms of their structure. The

transmembrane region facilitates the oligomerization of CD44 at

the cell membrane, thereby contributing to its localization in

glycolipid-rich micromembrane compartments, as well as serving

as a structural basis for interaction with lipid rafts (8).
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1.2 CD44 receptor-ligand interaction

The biological characteristics initiated by CD44 are based on its

ligand binding specificity and affinity. Commonly utilized ligands

include HA, osteopontin (OPN), chondroitin, filaggrin/sulfated

proteoglycans, fibronectin, and other compounds (9). Among

these ligands, HA and OPN serve as the primary triggers for the

majority of CD44-mediated activities.
1.3 Hyaluronic acid

CD44 interacts with HA, a common component of the

extracellular matrix (ECM), in two ways (10). Firstly, cell

membrane localized CD44 anchors soluble HA to the cell

membrane through specific interactions. Secondly, immune or
FIGURE 1

Structural basis of CD44. (A) CD44 is encoded by 20 exons in mice but 19 exons in humans. Exon 6 coding for CD44 variant 1 (CD44v1) is lacking in
humans. Except for orange color exons, the rest of exons always expressed as a standard form of CD44 (CD44s), and up to ten exon variants can be
inserted by alternative splicing. Full-length CD44, CD44s, CD44v3, CD44v6, and CD44v8-10 are shown schematically. (B) Four domains of CD44
glycoprotein are six cysteine residues (located at the amino acid termini), a stem-like region, transmembrane domain, and cytoplasmic tail. And the
variable domain is between six cysteine residues and stem -like region.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1354992
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1354992
cancer cells expressing CD44 interacts with other cell membrane-

expressed or anchored HA to mediate cell adhesion. The CD44

exists in three different states: (1) the resting state, where CD44 is

unable to bind to its ligand HA; (2) the inducible and activated state,

wherein CD44 requires specific activation by an activator to interact

with HA; (3) the activated state, which does not necessitate an

activator for interaction with HA (4). The majority of CD44

molecules present on the surface of hematopoietic cells are found

in an inducible and activated state. Microstructurally, CD44

interacts with the ligand HA in a 160 amino acid fragment. In the

specific subunit CD44 HA-binding domain (HABD) of CD44-

bound HA and its corresponding amino acid sequence (The

redox environment in cells affects the binding of HA through the

disulfide bond formed by Cys77 and Cys97 in CD44), HA binds to

CD44 primarily through hydrogen bonding and van der Waals

forces rather than electrostatic and aromatic stacking interactions

(11). The existence of two primary conformations, A and B, has

been established for HABD (12). Notably, the B conformation

exhibits a higher affinity compared to the other conformation.

These distinct mechanisms can elucidate the varying degrees of

conformational effects observed in CD44-HABD. Specifically, upon

HA-binding stigmata, a C-terminal fragment undergoes a transition

from an ordered state to a disordered state, consequently enhancing

flexibility. The other observation is that HA binding causes an

orientation change in the loop region of HABD near the arginine

site at R41, consequently altering its affinity for HA. In addition, the

affinity of CD44 for HA is influenced by the molecular weight of

HA (13). Within a specific range, the binding capacity of CD44 to

high molecular weight HA surpasses its interaction with low

molecular weight HA, potentially due to an abundance of binding

sites between high molecular weight HA and CD44. However, the

binding affinity between these two molecules decreases as the

molecular weight of HA increases, rather than intensifying (13).

In addition, numerous other factors can influence the binding

ability of CD44 to HA. For instance, the extent of glycosylation in

the extracellular domain of CD44 and phosphorylation of specific

serine residues at the cytoplasmic end regulates its HA-binding

capacity. The regulation also involves cytokines and matrix

metalloproteins. Furthermore, TNF-a can also induce HA

binding to CD44 on peripheral blood monocytes.
1.4 Osteopontin

The primary roles of OPN encompass serving as an integral

constituent of the extracellular matrix and functioning as a cytokine

(14). In the C-terminal sequence of OPN, there is also a non-RGD

cell adhesion site segment, and OPN acts as a signaling molecule by

binding to CD44 on the cell surface in an RGD-independent

manner (15). Phosphorylation is an important self-regulatory

mechanism for OPN; phosphorylated OPN specifically interacts

with cell surface integrin receptors, while the dephosphorylated

form selectively binds to the CD44 receptor and elicits distinct

functional outcomes (16). The accessibility of the extracellular

domain to the compressed core region of OPN is also a pivotal

determinant for effective interaction with CD44. Furthermore,
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glycosylation of OPN may prevent its interaction with CD44. In

addition to the extensive diversity of OPN and CD44 proteins

resulting from shearing, glycosylation, phosphorylation, etc., their

potential co-interacting partners such as heparin, hyaluronan and

integrin aVb3 also give rise to numerous interaction possibilities.

Specifically, research evidence suggests that heparin binding on

OPN plays a paramount role in its interaction with CD44 (17),

which facilitates its interaction with homologous receptors, such as

variant exon 3 on CD44 (CD44v3), thereby forming a molecular

bridge. The distinct combinations need further investigation to

understand how they produce different signals on receptor cells.
2 CD44 related
molecular mechanisms

2.1 Molecular mechanisms involved
in migration

CD44 is involved in the regulation of cell motility through

intracellular structural domains, which constitutes a pivotal

mechanism. There are three prevailing mechanisms involved:

firstly, phosphorylation of the intracellular terminus of CD44

occurs following its interaction with HA and subsequent

activation by protein kinase c (PKC) (18), and then ezrin, radixin,

moesin (ERM) proteins serves as a link connecting CD44 and

filamentous actin (F-actin) and ultimately influence cellular motility

(19). Secondly, c-Src kinase is recruited to the CD44 site and

activated through CD44-HA interaction (20). Activated c-Src

increases tyrosine phosphorylation of a cytoskeletal protein called

Cortactin (21). Consequently, its ability to cross-link F-actin

decreases, which regulates cell migration capacity and promotes

cell recruitment. Lastly, RhoGTPase triggers two different signaling

pathways: firstly, it regulates F-actin via CDC42, thereby

modulating the cytoskeleton and facilitating cell recruitment (22,

23). Secondly, it activates Rac1 to modulate the fold structure of the

cell membrane in order to regulate cells (24). For example, CD44v3

has been discovered to promote Rac1 signaling by interacting with

Tiam1, resulting in the cytoskeleton-mediated breast tumor cell

migration (25). CD44-HA binding induces the aggregation of CD44

at the leading edge of cells, where it interacts with the actin

cytoskeleton and its cytoplasmic tail (26). Activation of Rac1

through RhoA signaling has been proven to promote a shift

towards a migratory phenotype once cells have attached to the

endothelium. Rac1 activation plays a pivotal role in CD44-mediated

cytoskeletal reorganization. When CD44 binds to c-Src, activated c-

Src kinases phosphorylate Vav (mostly Vav1 and Vav2, two guanine

exchange factors regulated by Rho GTPases) and consequently

increase Rac1 expression (27). Under the help of F-actin, CD44

translocates from the rear end to the leading edge in this process.

HA-CD44 binding promotes the combination of RhoA-specific

p115RhoGEF with CD44 and further activates the RhoA-ROK

signaling pathway. Finally, ROK phosphorylates ankyrin and

enhances F-actin linkage (Figure 2) (28).

CD44 can synergistically interact with VLA-4 integrins through

intracellular signaling pathways, aside from its significant adhesion
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role (29). VLA-4 is a heterodimer formed by CD49d and CD29 (30).

Moreover, as a key coordinator of the interaction between leukemia

cells and the bone marrow microenvironment, CD44 plays an

important role in mediating cellular homing. In general, VLA-4

often interacts with VCAM-1, and its thermosensitivity and affinity

for the corresponding ligands often undergo alterations upon

exposure to external stimuli (31). CD44 can act as a regulatory

factor in the above process. Specifically speaking, CD44 enhances

VLA-4 activity by inducing intracellular molecular pathways

through binding to HA or other extracellular matrices, which in

turn enhances the adhesion of leukemia cells to VCAM-1. VLA-4

interacts with VCAM-1 to promote Akt, MAPK, NF-kB, and
mTOR signaling, while reduce apoptosis in acute myeloid

leukemia (AML) cells. Overall, CD44 modulates the affinity of

VLA-4 in AML cells for VCAM-1 in peripheral blood and retains

AML cells in the bone marrow microenvironment. In contrast to

integrin VLA-4, CD44 can interact with integrin a6b4 to form a

complex, which activate intracellular cytoskeletal proteins and their

signaling pathways, thereby modulating the c-Src and Ras signaling

cascade and promoting tumor cell migration (32). Notably, CD44-

a6b4 can be delivered to the target region through the paracrine

action of exosomes. Moreover, hepatocytes used in the experiments

can selectively uptake tumor exosomes with high expression of

CD44. Ultimately, this process supports tumor metastasis by

stimulating cytokine production, pro-inflammatory factors

release, and growth factor secretion for pre-metastatic niche

formation. Although the mechanism of action regarding CD44
Frontiers in Immunology 04
exosomes on leukemia cells still needs further research, it

undoubtedly provides a new approach for targeting CD44

on leukemia.

Lipid rafts are cholesterol- and sphingolipid-rich microstructural

domains in the plasma membrane (33). CD44 is predominantly

localized in lipid raft clusters. Co-localization of CD44 in specific

membrane environments is essential for cell adhesion and migration.

The aggregation of CD44 by lipid rafts occurs through two main

pathways (34). One type of palmitoylation retains CD44 in the lipid

raft structural domain and partially inhibits its interaction with

intracellular signaling molecules. However, another lipid knows as

phosphatidylinositol-4,5-bisphosphate (PIP2) can expedite the

process of CD44-junction complex formation (35). Several factors

have been identified to influence lipid rafts. For example, methyl-b-
cyclodextrin can deplete cholesterol and reduce CD44 aggregation on

lipid rafts, thereby enhancing CD44 binding to HA on T cells. In

addition, high levels of cholesterol can promote the entry of CD44

into lipid rafts, resulting in decreased binding between CD44 and

Ezrin and subsequently inhibiting the migration and invasion of

tumor cells (36).

Paxillin, an adhesive patch adaptor protein, is mainly localized

at focal adhesions (FAs) (37). Cell movement and migration require

the accumulation of paxillin at nascent FAs at the leading edge to

recruit adhesion complexes, including the tyrosine kinases FAK,

and elimination of FAs at the rear edge (38). The engagement of

CD44 involves promoting tyrosine phosphorylation and activation

of FAK under the premise of combination with HA. In the acidic
FIGURE 2

Mechanisms by which CD44 regulates the motility and adhesion. Binding of CD44 to HA can affect the intracellular system of backbone proteins
and thus mediate cellular movement. CD44 connects to actin via the ERM as a bridge, and this process requires PKC activation as a prerequisite. It
also recruits and activates c-Src, and regulates cell migration capacity by phosphorylating the actin Cortactin cytoskeletal protein tyrosine. After
activation of Rho GTPase, two downstream factors, CDC42, and Rac1, regulate the cytoskeleton and cell membrane fold structure, respectively,
thereby altering cell motility.
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milieu, hyaluronidase-2 and cathepsin B are activated to support

ECM degradation and activate ROK, and subsequently induce the

phosphorylation of Na+/H+ exchanger 1 (39).
2.2 Mechanisms involved in growth and
proliferation survival

CD44 is capable of binding to ligands to activate a range of

intracellular signaling pathways that regulate cellular growth,

proliferation, survival and various other activities. Specifically, the

interaction between CD44 and HA triggers the activation of Rho,

which in turn stimulates the PI3K pathway and activates the

downstream serine/threonine kinase Akt. Notably, HA establishes

a positive feedback loop with Akt by inducing continuous activation
Frontiers in Immunology 05
of Akt signaling to counteract apoptosis and maintain cellular

survival (40). CD44 also enhances cell proliferation by activating

the p38 mitogen-activated protein (MAP) kinase (41). Furthermore,

extracellular kinases can be involved in regulation, such as

extracellular-associated kinases 1 and 2 (ERK1/2), which regulate

the activation and proliferation of endothelial cells. Activated ERK2

can promote cell migration and proliferation by phosphorylating

EIK-1 (23). CD44v6, as a tumor marker in the CD44 family, forms a

trimeric complex with MET and HGF to promote MET activation

and activate three downstream pathways: RAS-MAPK activation,

PI3K/Akt promotion, and MET transcription enhancement

(Figure 3A) (42). Among signaling molecules, ERM and Merlin

are commonly recognized as pivotal regulators of cell proliferation,

and Merlin and ERM engaging in competitive binding for the CD44

intracellular site (43). Upon activation, Merlin facilitates
FIGURE 3

Involvement of CD44 in proliferation. (A) Binding of CD44 to HA can activate the PI3K-Akt pathway through RHO, and the activation of the Akt
pathway can promote the increase of HAS2 synthase, which in turn can enhance the effect of CD44 and HA to form a positive cycle, overcoming
apoptosis and maintaining cell survival. CD44 also binds to HA and activates the P38-MAPK pathway to enhance cell proliferation. Activation of the
extracellular kinase ERK2 phosphorylates EIK-1 and ultimately promotes cell migration and proliferation. (B) CD44v6 forms a trimeric complex with
Met and HGF and promotes Met activation. Furthermore, the interaction of the CD44 cytoplasmic tail with ERM proteins is required to activate the
Ras-MAPK pathway. CD44v6-ECM binding also promotes PI3K/Akt pathway activation and Met transcription. Another protein, Merlin, competes with
ERM at the intracellular end of CD44, and Merlin activation occurs after ERM protein inactivation. Merlin activation causes reorganization of the
cortical actin cytoskeleton, prevents Ras activation and Ras-dependent signaling, and inhibits signaling by various receptor tyrosine kinases. The
serine/threonine protein kinase PAK2 phosphorylates Merlin, but also leads to Merlin inactivation and inhibits its binding to CD44. The addition of
high cell density or high molecular weight HA triggers the dephosphorylation of Merlin, leading to the formation of growth inhibitory complexes that
limit cell proliferation. Therefore, ERM and Merlin proteins act as “switches” to control cell proliferation.
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cytoskeletal reorganization while concurrently suppressing RAS

activation and downstream tyrosine kinase signaling. Conversely,

phosphorylation-induced inactivation of Merlin impedes its

interaction with CD44 (Figure 3B) (44).
2.3 CD44 cleavage

Proteolytic cleavage of CD44 is a key regulatory event

dependent on CD44 cell-matrix interactions and signaling

pathways. The process of matrix metalloproteinase (MMP)-

mediated shearing of the CD44 extracellular structural domain to

cleavage of the intracellular structural domain to the final release of

intracellular structural domain fragments (ICDs) to act as signaling

transcription molecules is strictly sequential (45). After cleavage of

the exo-structural domain, the presenilin-dependent-g-secretase-
dependent shearing within the membrane is initiated. Finally, the

intramembrane cleavage product CD44-ICD can act as a signal

transduction molecule that is translocated to the nucleus and

activates transcription. Exo-structural domain cleavage of CD44

correlates with malignancy in human tumors (46). Extracellular

soluble CD44 (sCD44) is a competitive inhibitor of endogenous

HA-CD44 interaction (47). The main MMPs involved in exon

cleavage are MT1-MMP, ADAM10 and ADAM17. Specifically,

MT-1-MMP binds to CD44 through the PEX (C-terminal

hemopexin-like domain) structural domain and localizes to the

ciliary membrane (48). CD44 acts as a linker between MT1-MMP

and the actin cytoskeleton in inactive cancer cells. Co-activation of

the molecules PKC and RAC induces the aggregation of ADAM17

and CD44 at the leading edge of migrating cells, and accumulation

of ADAM17 is activated and undergoes cleavage of the CD44 ecto-

structural domains allowing the cells to crawl efficiently on the
Frontiers in Immunology 06
ECM, with the extended lamellae also inducing mechanical

stretching of the cells (49). Extracellular calcium ions flow into

the cell through stretch-activated calcium channels. With the

accumulation of intracellular calcium ions, ADAM10 is rapidly

activated to aid CD44 cleavage. CD44 cleavage promotes

attachment of newly synthesized CD44 to the ECM. The release

of sCD44 from the C-terminus triggers the intramembrane cleavage

of CD44 ectodomain cleavage, a process dependent on presenilin-

dependent-g-secretase. Finally, CD44-ICD translocates to the

nucleus and activates the transcription of various genes including

CD44. The activation of CD44-associated proteases can facilitate

the movement of cells (50). Therefore, profound understanding the

underlying mechanisms of CD44 cleavage could develop new

therapeutic approaches for cancer cell invasion and metastasis.

Elevated levels of sCD44 in plasma are correlated with malignant

diseases and immune activation. Additionally, competition between

the ectodomain released by the receptor and cell surface CD44 can

antagonize the effect of membrane-bound CD44, which might also

shed light on CD44-related treatments (Figure 4) (51).
2.4 Molecular mechanisms involved in the
metabolism of CD44

CD44 is capable of binding to copper and facilitating its

internalization into the cellular interior (52). Cu(II) can exert

influence on cellular metabolism and function through diverse

pathways, such as involvement in macrophage activation and

inflammatory responses. During macrophage activation,

upregulation of CD44 leads to an elevation in Cu(II) levels.

Additionally, Cu(II) also catalyzes the NAD(H) redox cycle,

which promotes metabolic changes and subsequent epigenetic
FIGURE 4

The cleavage of CD44. The ectodomain of CD44 is mainly cleaved by MMP (membrane-associated metalloproteases) to generate CD44 ECD. On
the premise of previous process, CD44 ICD can be generated by intramembranous cleavage, which mediated by presenilin (PS)-dependent-g-
secretase. CD44 ICD can act as a signal transduction molecule to activate transcription.
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alterations leading to an inflammatory state. This mechanism has

been more extensively studied in Wilson and Menkes disease,

characterized by impaired copper transporters leading to potential

copper accumulation and toxic effects, along with other chronic

metabolic diseases (53), further verification is required regarding its

precise mode of action on leukemia cells. Moreover, CD44 plays a

crucial role in regulating adipogenesis and adipocyte function

through PPAR-g and cell cycle-related pathways. The elimination

of CD44 improves adipose tissue inflammation and insulin

resistance in obesity. CD44 also regulates glucose metabolism in

various cancer cells (such as PC-3 cell line and small cell

neuroendocrine carcinoma cells), while also modulating ROS

levels and cellular proliferation within neoplastic cells (54).

Finally, CD44 is implicated in the regulation of cellular autophagy

by downregulating PIK3R4 and PIK3C3 levels through CD44-ICD

and disrupting the STAT3-dependent PtdIns3k complex to exert

negatively modulate on autophagy (55).
3 The role of CD44 in leukemia

3.1 Expression of CD44 and its variants in
leukemia cells

Leukemia is a hematological disorder characterized by

diminished levels of normal blood cells and impaired bone

marrow function due to uncontrolled proliferation of leukemia

cells within the bone marrow. The expression of CD44v is

exclusively detected in leukemia cells, while being absent in bone

marrow, peripheral blood, and CD34+ hematopoietic stem cells

(HSCs). The complexity of CD44v expression in leukemia cells has

been associated with low remission rates and high relapse rates

during treatment, indicating an unfavorable prognosis. In addition,

CD44v expression in leukemia cells is influenced by numerous

factors, including inherent individual variations that are common

and unavoidable, as well as the specific type of leukemia (e.g. the

CD44v7 expression level is lower on lymphocytes than monocytes

and granulocytes) (56). Additionally, some leukemia FAB subtypes,

specifically AML M3 and M5 subtypes, exhibit elevated levels of

CD44v expression in conjunction with genotype variations. For

instance, individuals carrying the rs13347 TT and CT genotypes

demonstrate higher CD44v expression level compared to those with

the rs13347 CC genotype (57). The presence of various complex

patterns of CD44 variant exons, particularly exon v6, has been

observed in the majority of leukemia samples (58). The

combination of CD44v6 and HA enhances cell resistance to

apoptosis and activates the PI3K/Akt signaling pathway (42).

Upregulation of CD44v6 can also elevate the expression of HA

synthase gene. Due to its widespread presence and varying

expression levels at each stage of leukemia development and

across diverse subtypes of leukemia, CD44 has been considered as

a valuable biomarker (Table 1). In the field of leukemia treatment,

CD44 can also be applied for universal minimal residual disease

(MRD) monitoring, as its high expression levels are always

associated with poor prognosis (91). This phenomenon may be
Frontiers in Immunology
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TABLE 1 The expression of CD44 subtypes and their clinical significance
in leukemia.

Reference
type of
leukemia

CD44
type

Clinical
significance

(59)
ALL,
AML, MDS

sCD44
prognosis,
disease progression

(60) ALL CD44 differentiation, metastasis

(61) ALL CD44 prognosis

(62) ALL CD44
disease
progression, homing

(63) ALL
CD44,
CD44 v6

prognosis, relapse

(64) ALL CD44 prognosis

(65) ALL CD44 MRD detection

(66)
B-
precursor
ALL

CD44
stages of B-
precursor development

(67) CLL sCD44 prognosis

(68) CLL
CD44
v3,4,5,6,7,9,10

prognosis

(69) CLL CD44 prognosis

(70) CLL CD44
aggressive forms,
chemotaxis, autophagy

(71) CLL sCD44 disease progression

(72) CLL CD44 disease progression

(73) AML, MM CD44 v6 engraftment

(74) AML CD44 prognosis

(75) AML CD44 v6
survival, leukocyte
activation,
malignant transformation

(76) AML CD44 prognosis

(77) AML CD44 v6 prognosis

(78) AML CD44 disease progression

(79) AML CD44 relapse

(80) AML CD44 risk

(81) AML CD44 disease progression

(82) AML CD44 relapse

(83) AML CD44 adhesion, drug resistance

(84) AML CD44 survival

(85) AML CD44 disease progression

(86) AML CD44 adhesion, drug resistance

(87) AML, ALL CD44 homing, adhesion

(88)
refractory
AML

CD44 survival

(89) MDS CD44 prognosis

(90) CML CD44 drug resistance
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related to the reciprocal interaction between CD44 protein

expression and oncogenes (92).
3.2 CD44 mediates the rolling of
blood cells

Different types of selectins typically act at different stages of cell

rolling as important molecules located in endothelial cells for

interaction with CD44. For example, P-selectin is known to affect

the fast roll of the prophase, while E-selectin mediates CD44

engagement during the slow rolling of neutrophils (93, 94).

Furthermore, in various T cell conditions, CD44 collaborates with

other ligands like HA and integrins to facilitate the rolling and

adhesion of T cells. Moreover, CD44 plays a pivotal role in

promoting the recruitment of neutrophils and macrophages to

inflammatory sites.
3.3 CD44 correlates with chemoresistance

As an important prognostic indicator, the upregulation of CD44

exhibits statistically significant implications in the cell fate of many

cancer cells, including leukemia cells. Moreover, it has been

observed that drug-resistant cells tend to display elevated levels of

CD44 expression (95). Functionally, CD44 interacts with the

extracellular matrix, particularly HA, to activate Nanog through

some key signaling pathways, such as theWnt/b-catenin, and PI3K/
Akt (96), the targeted Nanog has been utilized as a mediator to

enhance the expression of drug resistance genes. CD44v6 is

considered a premetastatic niche of tumor cells and correlates

with drug resistance (97). CD44v3 has been implicated in the

regulation of chemotherapy resistance through the Oct-Sox2-

Nanog signaling pathway (98). It is noteworthy that HA of

different sizes has diverse effects on CD44-mediated drug

resistance. Low molecular weight HA binding to CD44 tends to

induce the internalization of MDR, while high molecular weight HA

binding to CD44 promotes the expression of MDR on cell

membrane (99).
3.4 CD44 is involved in proliferation and
anti-apoptosis of leukemia cells

The prognosis is inversely correlated with the expression levels

of CD44 in leukemia cells and their rate of increase; however,

further evidence is needed to fully support the underlying

mechanism. It has been discovered that CD44 promotes the

proliferation of leukemia cells through upregulating expression of

anti-apoptotic protein myeloid cell leukaemia-1 (MCL-1) (100).

Chang et al. found that the downregulation of CD44 led to a

decrease in b-catenin expression, thereby inducing leukemia cell

cycle to arrest in the G0/G1 phase, where gene transcription is

blocked, and cell proliferation is inhibited (101). Consequently, it

can be inferred that CD44 exerts regulatory control over leukemia

cells through the Wnt/b-catenin pathway.
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4 CD44-related measures applied in
clinical treatment

CD44 is frequently overexpressed in the tumor stroma across

various malignancies, and both neoplastic cells associated CD44

and HA within the stromal microenvironment have been targeted

for anti-cancer therapy. Current perspectives on the treatment of

CD44 can be broadly categorized into two domains. One approach

focuses on directly targeting CD44 itself (Figure 5A), considering its

involved in the self-regulatory activities of tumor cells such as

proliferation, anti-apoptosis, drug resistance and other

mechanisms. Targeting CD44 hinders relevant signaling pathways

associated with these activities. Moreover, as an adhesion molecule,

CD44 is involved in cell adhesion and chronic rolling to retain

tumor cells in the appropriate microenvironment. By blocking

CD44 binding to ligands, it facilitates tumor cells evading the

tumor microenvironment for better exposure to drugs and

immune cellular strikes - particularly crucial for eliminating

residual leukemia stem cells (LSCs) after HSC transplantation to

reduce postoperative recurrence (1). The other category involves the

utilization of CD44 as a more accurate drug delivery channel and

tumor cell localizer, considering its robust affinity for HA and the

properties of the HA molecule itself (102). Even in passive

immunotherapies including CAR-T cell therapy, CD44v6 is

considered a viable T-cell localization molecule due to its high

expressivity in AML cells. Specifically, for the first approach to

CD44 itself, it is common to develop monoclonal antibodies about

CD44 or chemotherapeutic agents that inhibit the binding of CD44

to HA by utilizing sCD44 and specific molecular sizes of HA as

inhibitors. Alternatively, drug delivery via CD44-HA has gained

significant attention in recent years, particularly regarding the

utilization of HA as a special material for nanoparticle

modification and its application as an intermediary bridge

facilitating communication between the drug and CD44-

overexpressing tumor cells (Figure 5B).
4.1 CD44-targeted drugs

Depending on their chemical structure, CD44-targeted drugs

can be classified as monoclonal antibodies (mAbs) or small

molecule compounds. The overexpression of CD44 variant

isoforms on the surface of tumor cells, coupled with the ability of

cellular overexpression of CD44 to increase the secretion of

cytosolic HA and create a favorable microenvironment for the

tumor cells, positions CD44 as a promising target molecule.

CD44 antibodies have two distinct mechanisms of action:

alteration of LSC fate, including inhibition of LSC differentiation

blockade and disruption of LSC adhesion. The anti-CD44 mAbs

H90 and A3D8 not only inhibit the proliferation and self-renewal of

LSCs, but also promote leukemia cell differentiation and induce

apoptosis. A3D8 mAb induces apoptosis via the engagement of the

serine protease-regulated pathway (103). Notably, despite these two

antibodies share a common target protein, they exhibit distinct

mechanisms of action (104). Furthermore, the combination of

A3D8 and H90 effectively induces terminal differentiation of
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leukemic blasts in AML-M1 to AML-M5 subtypes, which are the

most prevalent variants (105). A3D8 inhibited the proliferation of

HL-60 cells, and its differentiation mechanism was associated with

the up-regulation of p21 cip1 expression and downregulation of

cyclin D1 and CDK4 expression (106). The proliferation inhibitory

effect of A3D8 on HL-60 cells related to the downregulation of

amino acid terminal kinase expression. Another familiar antibody

called RG7356 (a recombinant anti-CD44 IgG1 humanized mAb)

elicits caspase-dependent apoptosis in leukemic cells (107). In most

practical clinical applications, antibodies are utilized in

combination with drugs to potentiate their effects. The combined

treatment with cyclopamine (a plant-derived steroidal alkaloid) and

CD44 antibody effectively enhances the therapeutic effects of

inducing the differentiation of leukemia by hindering the
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Hedgehog signaling pathway (108). The addition of anti-CD44

mAbs provides benefit to “ATRA-FICZ” (FICZ: 6-Formylindolo

(3, 2-b) carbazole) enhances ATRA-induced differentiation therapy,

especially in APL patients (109). Nonetheless, careful consideration

should be given to the sequential administration of antibodies and

chemotherapeutics. For example, A3D8mAb entirely eliminates the

ceramide, a lipid second messenger participating in the apoptotic

signaling pathway triggered by daunorubicin. Therefore,

administering anti-CD44 mAbs after apoptosis-inducing drugs

can avoid interfering with their original effects.

Undoubtedly, the development of targeted drugs encounters

numerous challenges. The meticulous identification and validation

of novel drug targets and their precursors, along with the arduous

process of developing targeted drugs with extensive research and
FIGURE 5

Therapeutic measures concerning CD44. (A) Because of the high expression of CD44 molecules in target cells and their involvement in mechanisms
such as anti-apoptosis of tumor cell proliferation, blocking the signaling pathways of relevant cellular activities by combating CD44 is a feasible
therapeutic strategy. Primary treatments are the development of CD44-targeted drugs, immune-representative therapies such as the elimination of
AML cells through CAR-T cells which associated with CD44v6 and the enhancement of therapeutic efficacy through the screening of drugs that can
reduce the transcriptional expression of CD44 in combination with conventional chemotherapeutic agents. Finally, the binding of CD44 to HA can
be interfered with by sCD44 and HA oligomers. (B) The high affinity between CD44 and HA can also be an important channel for drug delivery into
the cell. Through the HA linkage, CD44 antibodies can be combined with drugs to form antibody-drug conjugates (ADCs), which can more
efficiently target and attack highly CD44-expressing tumor cells.
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development cycles, have contributed to the issue of exorbitant

pricing. Furthermore, while targeted drugs are exhibiting efficacy

against tumors with high specific expression of certain oncogenes,

they demonstrate limited effectiveness against other tumor types.

Although the precise mechanisms underlying drug resistance remain

incompletely elucidated, it is widely acknowledged that mutations in

genes or prolonged drug exposure may cause drug resistance;

additionally, epigenetic or cytokine abnormalities might also

induce such resistance (110). Furthermore, targeting CD44 will

inevitably have some cytotoxicity due to its expression on immune

cells, such as NK cells, and CD8+T cells (111). A commonly

employed approach to address the aforementioned challenges is

protein-targeted chimerism (PROTAC) (112), a method that can

transform most non-druggable protein targets into druggable ones.

In addition to PROTAC, subsequent advancements have been made

in autophagosome-targeted complexes using lysosome-targeted

technology and autophagosome-targeted degradation by

autophagosome-bound compounds since 2019 (113). In addition,

progress has been made in the development of dual-targeted or

multi-targeted drugs. Malignant tumors are intricate network

regulated by multiple factors with diverse etiologies, merely

intervening in one target or inhibiting a pathway following the

strategy of a single-target drug triggers activation of another related

pathway, leading to suboptimal efficacy of the single target and rapid

development of resistance. Therefore, apart from solely targeting

CD44, attempts should be made to simultaneously target another

highly characterized molecule overexpressed in tumor cells to

mitigate the rate of resistance and improve targeting precision.

Given the vast number of compounds and target molecules,

relying solely on traditional manual screening techniques to ensure

efficiency and accuracy becomes challenging. Therefore, leveraging

artificial intelligence and big data technologies have proven to be

beneficial in this regard. Secondly, regarding the issue of CD44

toxicity, it has been previously mentioned in section 3.1 that distinct

subtypes of CD44 are highly expressed by different leukocyte species

and different leukemia subtypes. Although NK cells possess the

capability to exhibit elevated levels of CD44 expression, and it has

been demonstrated that signaling through CD44 enhances

cytotoxicity in NK cells. Additionally, expression of CD44-positive

liver-resident CD8+ T cells was also found to be critical for immune

clearance of hepatitis B virus. However, resting NK cells

constitutively express inactive forms of CD44 which do not bind

to HA. In addition, pro-inflammatory cytokines play an important

role in activating CD44 on NK cells. Although stimulation of resting

NK cells with interleukin-12 (IL-12) or IL-18 resulted in increased

CD44 expression, only IL-2 or IL-15 led to upregulation and

activation of CD44 (111). Cytokine-induced upregulation and

activation of CD44 is not associated with NK cell proliferation.

That is, HA alone exerts minimal impact on IFN-g production,

whereas low molecular weight HA effectively enhances of IFN-g
production when combined with IL-2, IL-12, or IL-18. Exploiting the

unique properties of HA and its association with CD44 holds

promise for modifying NK cells and subsequently activating their

recognition mechanism to expedite solid tumor treatment, offering a

prospective avenue for NK cell-mediated immunotherapy.
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4.2 Pharmacological inhibition of CD44

Except for directly targeting the interaction of HA and CD44,

several natural compounds or chemotherapeutic drugs have been

discovered to indirectly inhibit LSCs through reducing CD44

expression. ATRA and hexamethylene bisacetamide have been

proven to induce differentiation while simultaneously

downregulate the expression of CD44 (114), suggesting that the

decrease of CD44 may participate in the therapeutic effect of

chemotherapeutic drugs. Furthermore, it has been observed that

certain drugs with similar functions may exert their effects through

different mechanisms. The regulation of CD44v6 expression by

ATRA differs from that of As2O3 (115). Specifically, in the process

of ATRA-induced differentiation, CD44v6 transcript levels are

downregulated, while maintain CD44v6 translation levels at their

original levels; concurrently, the PI3K/Akt signaling axis is

strengthened. Conversely, during As2O3-initiated differentiation,

both transcriptional and translational levels of CD44v6 are

strikingly downregulated and the PI3K/Akt pathway is blocked.

The other natural compounds and chemotherapeutic drugs have

been listed in the Table 2.
4.3 The exploration of sCD44 and
HA oligomers

The sCD44 present in body fluids functions as a competitive

inhibitor, counteracting the effect of membrane-bound CD44 and

providing valuable insights for CD44-relevant treatments.

Previously, sCD44 was primarily utilized for disease monitoring,

especially as a prognostic indicator in AML patients. However,

recent studies have implicated that sCD44 is involved in the

pathogenesis of B-CLL, and propose inhibition of sCD44 as a

potential therapeutic strategy (67).

The use of HA oligomers is an alternative approach to inhibit

HA-CD44 interaction. It has been demonstrated that monovalent

interaction with small oligomers of HA (6–18 saccharide units of

HA) effectively reverse the function exerted by high molecular

weight HA. Furthermore, this mechanism efficiently inhibits the

CXCL12-regulated CXCR4 signaling pathway (129).
4.4 Effects of CD44 on the
hematopoietic niche

The eradication of residual LSCs following chemotherapy or HSC

transplantation is pivotal in preventing leukemia relapse, while the

protective role of the hematopoietic niche shields leukemia cells from

the cytotoxic effects of chemotherapy drugs. Adhesion is a critical

part of normal hematopoiesis and helps LSCs to remain sheltered in

the bone marrow microenvironment (130). Its involvement in

chemotherapy resistance or relapse after remission poses a

significant challenge for treatment. Downregulation of cell-surface

adhesion molecules can liberate LSCs from the hematopoietic niche

and augment the efficacy of chemotherapeutic interventions. The
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initiation of HA-CD44 binding is responsible for the involvement of

CD44 in the increase of additional adhesion molecules (mostly

integrins) and the enhanced adhesion of a4b1 (an integrin) to

fibronectin and laminin. An in-depth study of the mechanism of

action of adhesion molecules would facilitate the identification of a

therapeutic agent that impedes aberrant adhesion between LSCs and

the hematopoietic niche, thereby promoting their differentiation,

proliferation, and migration outwards. Although LSCs and HSCs

share the similar adhesion molecules and signaling pathways in most

cases, further research reveal that the adhesion mechanisms of HSCs

and LSCs do not completely overlap. Several studies have suggested

that BCR-ABL1+ LSCs exhibit a greater reliance on selectins and their

ligands for homing compared to HSCs (131). Selectin blockade may

therefore be a beneficial strategy in the leukemia treatment. CD44

interacts with E- and L- selectin when it is sialo-fucosylated and bears

the SleX glycan (132). In vivo administration of H90, an activating

mAb directed to CD44, has demonstrated the ability to enhance the

adhesion of normal HSCs to HA, while concurrently inhibiting the

binding of LSCs to HA, and thereby significantly reduce leukemia

repopulation (103).

Abnormal glycosylation is a characteristic of cancer cells, and

several changes in glycan structure are associated with cancer
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progression. Selectin-ligand interactions are involved in cancer

cell interactions with platelets, leukocytes, and endothelial cells,

and as well as promoting tumor cell dissemination through signal

transduction pathways. Moreover, selectin-mediated specific

interactions between host cells expressing selectins and ligands on

tumor cells can block the microvascular system. Inflammatory

cytokines produced by cancer cells have been shown to stimulate

high expression of E-selectin during early stages of cancer

progression (133). CD44v4 is an E-selectin ligand expressed in

metastatic breast cancer, playing a crucial role regulating the

interaction between cancer cells and endothelial cells through E-

selectin. This regulatory mechanism promotes the trans-endothelial

migration of cancer cells. In addition, the loose microenvironment

and formation of pre-metastatic niches are reported to be critical for

the establishment of metastasis and are the reason why circulating

cancer cells can colonize distant organs. Selectins and their

respective ligands also help maintain the structural integrity of

the pre-metastatic niches.

Relevant methods have been explored, encompassingmodulation

of selectin-ligand interaction, alteration of selectin expression to

modify the biosynthesis or cleavage of selectin ligands. Other

strategies can also be considered in conjunction with selectin
TABLE 2 The clinical application of CD44 antibodies and their mechanism of action.

Method drug
type
of

leukemia
Reference Mechanism

HA-directed targeting of
cancer cells

curcumin liposome modified with HA AML (116)
Akt/ERK pathways inhibition and reactivation of tumor
suppressor genes

doxorubicin encapsulated in lipoic acid-
crosslinked HA nanoparticles

AML-2, MM (117) Enhanced intake concentration

lipid-substituted polyethylenimine/
siRNA complexes

AML (118) Reduced adhesion, induction of apoptosis

poly lactide co-glycolide nanoparticles
conjugated with anti-CD44 and
encapsulating parthenolide

AML (119) Inhibition of NF-kB signaling

CD44-targeted glutathione-sensitive
HA-mercaptopurine 6-Mercaptopurine

AML (120) Enhanced growth inhibition, better survival rate

Pharmacological
inhibition of CD44

Ampelopsin APL, CML (121)
Downregulation of AKT and NF-kB signaling, induction
of apoptosis, and inhibition of CD44 expression

Cyclopamine AML (108) Hedgehog signaling pathway inhibition

Shikonin CML (122) Upregulation of PTEN and BAX

nonsteroidal anti-inflammatory drugs
cancer stem-
like cells

(123) Upregulation of LC3-II and downregulation of p62

Trametinib AML (124) Upregulation of PD-L1

ATRA/hexamethylene bisacetamide AML (114)
Downregulation of cyclin E mRNA, and upregulation of
p27 and p21

Astilbin Jurkat cells (125) Inhibition of TNF-a production and MMP-9 secretion

Ibrutinib B-ALL (126) PI3K/Akt signaling inhibition

Sotrastaurin CLL (127)
Downregulation of transcriptional genes and BCR-
mediated survival pathways

ATRA, arsenic trioxide AML (128) Downregulation of PI3K/Akt pathway
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blockade for targeted attack on cancer cells while minimizing

interference with normal HSCs, such as immunophenotype

transformation, alteration of cell metabolism, epigenetic regulation,

and modification of the cellular microenvironment.

Regarding the potential side effects of such interventions, when

selectins mediate metastasis through the activation of the

inflammatory cascade and participating in shaping the tumor

microenvironment, they also help identifying and eliminating

tumor cells. The dual functionality of selectins poses challenges

for developing effective inhibitors targeting selectin-ligand

interactions in vivo. On one hand, excessively potent inhibitors

may exert detrimental effects on the healing process. On the other

hand, weak inhibitors may fail to sufficiently intervene in the

pathological processes of serious diseases. Thus, an effective

therapeutic agent necessitates a delicate balance in selectin-ligand

interactions. Furthermore, structural features of the calcium-

dependent carbohydrate recognition domain with a relatively

shallow surface pose a challenge to the rational design of selectin

inhibitors. Numerous sugar-like or non-carbohydrate and

polysaccharide inhibitors have been developed to inhibit selectin-

ligand interactions, but despite considerable effort, only a few

compounds have shown promising results in clinical trials.

Finally, implementing treatment at different stages of

treatment can also significantly influences the outcome, with

particular emphasis on targeting LSCs during the initial complete

remission (CR) phase when they exhibit greater homogeneity.

The limited efficacy of LSC-targeted therapy against a vast

population of leukemia cells renders it more advantageous in

scenarios characterized by lower tumor burden and reduced

tumor heterogeneity.
4.5 Precise immunotherapeutic potential
of CD44

Immunotherapy refers to the enhancement of therapeutic

effects by boosting the anti-tumor immune response and

overcoming immune tolerance towards tumor. Moreover,

Immunotherapy encompasses not only the manipulation of the

tumor microenvironment but also entails regulation of peripheral

immune cells. Broadly categorized, immunotherapy can be

classified into three types: active immunotherapy, which involves

administering low-toxicity tumor vaccines to patients; passive

immunotherapy encompassing CAR-T cell therapy or passive

delivery of immunosuppressants or anti-tumor cells to patients;

and the third type is immunomodulatory site therapy,

specifically inhibitors of immune checkpoints or inhibitors of

immunomodulatory sites. PD-1 serves as an important immune

locus, and inhibition of the PD-1-PD-L1 axis not only blocks

immunosuppressive response within tumor cells, but also induces

an anti-tumor response in peripheral immune cells (134). CD44 has

been proven to promote immune escape in various types of tumor

cells, with its high expression being associated with the upregulation

of immune escape-related marker proteins (135). In lung cancer,
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binding of CD44 to Secreted Phosphoprotein1 (SPP1) blocks T-cell

proliferation (136). CD44 binds more readily to acetyl HA on

antigen-activated T lymphocytes and inflammation-stimulated

monocytes (137). Due to its ability to induce immune escape,

PD-L1 is targeted by multiple anti-tumor drugs; furthermore,

CD44 is positively correlated with the expression of PD-L1 (138).

In addition, CD44 may serve as an independent prognostic factor

for immune invasion (139). CD44v6 is expressed in a variety of

AML cells and is an essential molecule for the proliferation of

leukemia cells, while in healthy individuals, HSCs and lymphocytes

express minimal levels of CD44v6, which is exclusively found in

monocytes. Ex vivo and in vivo experiments have demonstrated that

CD44v6 CAR-T cells selectively eliminate AML cells while sparing

HSCs but targeting monocytes (140).
4.6 HA-directed targeting of cancer cells

The development of drugs centered on HA is predicated upon

its high affinity for CD44, excellent biocompatibility, and

biodegradability (141). HA-mediated targeted therapy can be

conceptualized as a therapeutic method that capitalizes on the

specific binding between HA and CD44. In this strategy, CD44

serves as the target receptor for interaction while drug-conjugated

HA acts as the carrier to transport drugs. By exploiting the specific

binding capability, the drug-loaded HA facilitates targeted delivery

to cancer cells expressing high levels of CD44. Common

applications include HA-modified nanoparticles, HA-linked drug

conjugates, and HA-liposomes.

The HA-modified nanocarriers based on HA exhibit non-toxic,

non-immunogenic and water-soluble attributed to the inherent

characteristics of HA itself. Additionally, nanoparticles possess

advantages such as small particle size, high drug loading capacity,

controlled drug release, efficient tumor targeting ability, and

prolonged in vivo circulation time (142). The CD44 receptor

specifically binds with high affinity to its natural ligand HA. By

considering the chemical structure of the drug itself alone with the

specificity of the target site and the affinity towards cell surface

molecules, a combination approach is often employed for treating

malignancies with overexpression of CD44. The modification of

nanoparticles, such as liposomes, carbon nanotubes, and dendritic

macromolecules with HA as a surface modification material, can

improve the targeting efficiency of nano formulations and relatively

prolong the in vivo circulation time of drugs (143).

Furthermore, ongoing research is being conducted on the

advancement of nanocell and nanogel technologies. The principle

of HA nanomicelles is based on the existence of multiple active

functional groups in the chemical structure of HA enabling

modification of various hydrophobic chains onto or at the end of

the HA skeleton to obtain amphiphilic HA derivatives. These

derivatives can self-assembled into solution-phase micelles with a

core-shell structure in solution, facilitating encapsulation of

poorly water-soluble anti-tumor drugs within the hydrophobic

core. This approach significantly enhances drug solubility
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and stability. Nanogels are prepared by cross-linking sulfhydryl

groups in HA-SH to form disulfide bonds. Small interfering

RNAs (siRNAs) can be physically encapsulated into the nanogels

formed by HA-SH under ultrasonic conditions using the reverse

water-in-oil emulsion method. In addition, owing to the presence of

disulfide bonds inside the nanogel structure, it enables rapid release

of encapsulated siRNAs under high GSH concentration

conditions (intra-tumor cell GSH concentration) improving gene

silencing efficiency.

HA-drug couplers are synthesized as prodrugs through the

formation of cleavable chemical bonds between a drug and HA,

which improve the solubility and pharmacokinetic properties of the

drug, as well as facilitating its cellular uptake by CD44 receptor

mediated endocytosis. The interaction of CD44 and HA can be

exploited as a promising therapeutic target for targeted drug

delivery due to its high affinity. The typical composition of

antibody-drug conjugates (ADCs) include three main

components: (1) a mAb with the function of accurately selective

location; (2) an effective cytotoxic small molecule; and (3) a linker

responsible for the connection between two substances (mainly

liposomes, hydrogels, and nanoparticles) which has been proven to

promote the therapeutic effects under the same amount of the

chemotherapeutic drugs and minimize the systemic toxicities to

some extent. The results may be related to the mechanism by which

the high affinity between HA-decorated liposomes and specific

receptors leads to fully internalization of drugs. Besides,

compared with other normal ADCs, HA can be exploited to

entrap and transport drugs to CD44-expressing tumors without

the requirement of chemical conjugation due to its enormous

hydrodynamic domain. The drug-antibody ratio, or the amount

of drug molecules attached to a single ADC, is an important

indicator for assessing the function and toxicity risk of ADC

drugs. High drug loads affect toxicities and pharmacokinetics

while low drug loads may diminish potency. In addition, the

systemic stability of ADCs after administration encompasses

metabolic stability and integrity, which are another important

factor determining their efficacy. Consequently, targeted research

has focused on stabilizing ADCs through conjugate site selection

and joint modification. The selection of attachment sites with larger

steric hindrance has been proven to be an effective approach for

providing the desired spatial shielding for antibodies. Conversely,

introducing proximal steric hindrance around the splice or

instability sites of the joint can also effectively improve stability.

Other novel ADCs include immunostimulants, such as toll-like

receptor agonists, STING agonists or chemokines, which better

attract immune cells to tumor cells and further enhance immune

cell activities. However, it should be noted that the distribution of

cytotoxic drugs is mostly determined by the level of target antigen

expression, which can occasionally result in unexpectedly severe

“targeted, detumorable” toxicity that is not strictly proportional to

the payload. Furthermore, similar to other pharmaceutical agents,

the active cytotoxic components carried by ADCs undergo

metabolic changes. Thus, the risk of drug interaction and other

allergies should be considered, and necessary measures should be

taken to eliminate relevant side effects.
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5 Conclusion

CD44, a significant biomarker, serves as a platform for

intercellular communication and intracellular signaling pathways

that play a crucial role in regulating cellular behavior. It is also an

established component of the LSC niche, which represents a

promising target for anti-cancer therapy. Several strategies have

been applied to inhibit CD44 for cancer therapy, including HA

nanoparticles, small-molecule inhibitors, and anti-CD44 mAbs.

These approaches are showing promising results in preclinical

research. Among the various mechanisms reversed by anti-CD44

antibody, the inhibition of LSC differentiation has attracted more

interests due to its crucial role in mediating HSC engraftment into

the bone marrow niche. As LSCs share most of the same

mechanisms as HSCs, finding ways to selectively target LSCs

without disrupting HSC function has become a pressing issue. In

conclusion, targeting CD44 represents a promising therapeutic

strategy for controlling the progression of AML. Therefore, it is

imperative to comprehensively elucidate the mechanisms

underlying HA-CD44 interaction and signaling in order to

identify rational treatments that specifically target CD44 and

enhance therapeutic efficacy.
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118. Gul-Uludağ H, Valencia-Serna J, Kucharski C, Marquez-Curtis LA, Jiang X,
Larratt L, et al. Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+
acute myeloid leukemia cells. Leuk Res. (2014) 38:1299–308. doi: 10.1016/
j.leukres.2014.08.008
Frontiers in Immunology 16
119. Darwish NHE, Sudha T, Godugu K, Bharali DJ, Elbaz O, El-Ghaffar HAA, et al.
Novel targeted nano-parthenolide molecule against NF-kB in acute myeloid leukemia.
Molecules. (2019) 24:2103. doi: 10.3390/molecules24112103

120. Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, et al. Glutathione-sensitive
hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust
and CD44-targeted nanomedicine for leukemia. Biomacromolecules. (2017) 18:3207–
14. doi: 10.1021/acs.biomac.7b00846

121. Han JM, Kim HL, Jung HJ. Ampelopsin inhibits cell proliferation and induces
apoptosis in HL60 and K562 leukemia cells by downregulating AKT and NF-kB
signaling pathways. Int J Mol Sci. (2021) 22:4265. doi: 10.3390/ijms22084265

122. Chen Y, Wang T, Du J, Li Y, Wang X, Zhou Y, et al. The critical role of PTEN/
PI3K/AKT signaling pathway in shikonin-induced apoptosis and proliferation
inhibition of chronic myeloid leukemia. Cell Physiol Biochem. (2018) 47:981–93.
doi: 10.1159/000490142

123. Moon HJ, Park SY, Lee SH, Kang CD, Kim SH. Nonsteroidal anti-inflammatory
drugs sensitize CD44-overexpressing cancer cells to hsp90 inhibitor through autophagy
activation. Oncol Res. (2019) 27:835–47. doi: 10.3727/096504019x15517850319579

124. Moshofsky KB, Cho HJ, Wu G, Romine KA, Newman MT, Kosaka Y, et al. Acute
myeloid leukemia-induced T-cell suppression can be reversed by inhibition of the MAPK
pathway. Blood Adv. (2019) 3:3038–51. doi: 10.1182/bloodadvances.2019000574

125. Yi HW, Lu XM, Fang F, Wang J, Xu Q. Astilbin inhibits the adhesion of T
lymphocytes via decreasing TNF-alpha and its associated MMP-9 activity and CD44
expression. Int Immunopharmacol. (2008) 8:1467–74. doi: 10.1016/j.intimp.2008.06.006

126. Kim E, Hurtz C, Koehrer S, Wang Z, Balasubramanian S, Chang BY, et al.
Ibrutinib inhibits pre-BCR(+) B-cell acute lymphoblastic leukemia progression by
targeting BTK and BLK. Blood. (2017) 129:1155–65. doi: 10.1182/blood-2016-06-
722900

127. El-Gamal D, Williams K, LaFollette TD, Cannon M, Blachly JS, Zhong Y, et al.
PKC-b as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical
activity in CLL. Blood. (2014) 124:1481–91. doi: 10.1182/blood-2014-05-574830

128. Zhang S, Wu CC, Fecteau JF, Cui B, Chen L, Zhang L, et al. Targeting chronic
lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44.
Proc Natl Acad Sci USA. (2013) 110:6127–32. doi: 10.1073/pnas.1221841110

129. Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V. Opposing
effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling
depend on CD44. Cell Death Dis. (2013) 4:e819. doi: 10.1038/cddis.2013.364

130. Heath JL, Cohn GM, Zaidi SK, Stein GS. The role of cell adhesion in
hematopoiesis and leukemogenesis. J Cell Physiol. (2019) 234:19189–98. doi: 10.1002/
jcp.28636

131. Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA. Selectins
and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic
stem cells in the bone marrow niche. Blood. (2014) 123:1361–71. doi: 10.1182/blood-
2013-11-538694

132. Li L, Ding Q, Zhou J, Wu Y, Zhang M, Guo X, et al. Distinct binding kinetics of
E-, P- and L-selectins to CD44. FEBS J. (2022) 289:2877–94. doi: 10.1111/febs.16303
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