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Breast cancer (BC) stands out as the cancer with the highest incidence of

morbidity and mortality among women worldwide, and its incidence rate is

currently trending upwards. Improving the efficiency of breast cancer diagnosis

and treatment is crucial, as it can effectively reduce the disease burden.

Circulating tumor DNA (ctDNA) originates from the release of tumor cells and

plays a pivotal role in the occurrence, development, and metastasis of breast

cancer. In recent years, the widespread application of high-throughput analytical

technology has made ctDNA a promising biomarker for early cancer detection,

monitoring minimal residual disease, early recurrence monitoring, and predicting

treatment outcomes. ctDNA-based approaches can effectively compensate for

the shortcomings of traditional screening and monitoring methods, which fail to

provide real-time information and prospective guidance for breast cancer

diagnosis and treatment. This review summarizes the applications of ctDNA in

various aspects of breast cancer, including screening, diagnosis, prognosis,

treatment, and follow-up. It highlights the current research status in this field

and emphasizes the potential for future large-scale clinical applications of

ctDNA-based approaches.
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NAC, neoadjuvant chemotherapy; NAT, neoadjuvant therapy; NIPT, noninvasive prenatal testing; OS,

overall survival; pCR, pathologic clinical response; PFS, progression-free survival; RFS, relapse-free survival;

SNPs, single nucleotide polymorphisms; tDNA, tumor DNA; TF, tumor fraction; TME, tumor

microenvironment; TNBC, triple-negative breast cancer; TPS, tissue polypeptide-specific; WES, whole-

exome sequencing.
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1 Introduction

Breast cancer (BC) stands out as the cancer with the highest

incidence of morbidity and mortality among women worldwide,

and its incidence rate is currently trending upwards (1). While

advancements in surgical treatments, chemotherapy, radiotherapy,

immunotherapy, and other therapeutic modalities have exerted

some control over breast cancer mortality (2), a substantial

number of patients who have undergone well-regulated

systematic treatments still succumb to tumor progression (3).

Hence, there is a pressing need to enhance breast cancer

screening methods and bolster the efficacy of diagnosis and

treatment. Given the complex nature of drug development, we

find ourselves compelled to shift our focus toward revisiting

traditional perspectives on screening and treatment. It is

imperative that we explore new avenues to improve breast cancer

screening and diagnostic precision, as well as the effectiveness of

treatment, in order to reduce the toll this disease exacts on patients.

Traditional screening methods have predominantly relied on

imaging techniques. However, there is a prevailing perception that

organized screening of young, healthy women may be inefficient and

potentially harmful (4), despite the fact that breast cancer mortality

rates are notably higher in this demographic (5). It’s worth noting that

the decline in breast cancermortality owes itself more to changes in risk

factors and improved treatments than to advancements in imaging-

based screening approaches (6). Furthermore, the current diagnosis

and treatment of breast cancer heavily rely on invasive tissue biopsies

and immunohistochemistry (7). These procedures are commonly

performed by the operator under local anesthesia, using a coarse

needle puncture to obtain a small piece of the patient’s tumor tissue,

or through surgical excision of the mass. Immunohistochemical

staining of well-established markers is then conducted to classify the

type of breast cancer and develop an appropriate treatment plan.

Imaging studies of other parts of the body and individual characteristics

are also taken into consideration during this process (8). Nevertheless,

breast cancer exhibits significant heterogeneity as a malignant tumor,

evolving in various directions under the influence of diverse drivers.

This is especially pronounced in advanced breast cancers that have

metastasized to distant sites, where different tumor foci may exhibit

entirely distinct molecular features (9–11). Consequently, relying solely

on small tissue samples obtained through punctures or separate tissue

sections is grossly inadequate in capturing the full extent of this

heterogeneity (12). While some guidelines advocate for biopsying

distant metastases, practical difficulties often arise in implementation

(13, 14). Additionally, there is the inherent risk of misjudging the

assessment of distant metastases through imaging alone. Given these

challenges, many treatment options may warrant reconsideration from

the outset. Furthermore, in terms of prognostic evaluation, despite

numerous clinical studies offering survival statistics based on patients’

baseline characteristics, the inherent tumor heterogeneity and intrinsic

variations among patients can lead to starkly different survival

outcomes, even among those with early-stage breast cancer (15).

This underscores the pressing need for more precise prognostic

indicators that can better predict patients’ survival outcomes.

In addition to these aforementioned shortcomings, current

methods for monitoring breast cancer treatment have their own
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set of limitations. Presently, the monitoring and follow-up of breast

cancer treatment heavily rely on a series of computed tomography

(CT) scans (16), which are not without their issues. Firstly, there can

be a delay in the regularity of testing. If a drug-resistant clone is

present in a patient, it may have significantly progressed by the time

it becomes discernible through imaging (17). Secondly, the

phenomenon of pseudoprogression can further complicate

matters by leading to unnecessary additional treatments (18).

Most concerning of all, repeated exposure to radiation through

these scans not only elevates the radiation burden on the patient but

also poses challenges in assessing bone metastases (19).

To overcome these shortcomings, a portion of brand-new

markers have been partially validated. These new methods are

usually defined as multiparametric, multianalytical and multigene

assays. Some of these markers have been recommended by experts

for use in clinical practice. Oncotype DX, MammaPrint and uPA/

PAI-1 are some of the validated assays (20–22). Although the

clinical efficacy of these markers has been demonstrated, they are

expensive and, moreover, these methods require tumor tissue. Due

to the limitations of tumor tissue, some circulating biomarkers have

been explored, such as tissue polypeptide-specific antigen(TPS),

carcinoembryonic antigen(CEA) and carbohydrate antigen 15.3

(CA 15.3), which unfortunately are not sensitive enough to be

widely used in clinical practice (23–25). It is therefore particularly

important to find markers that are more minimally invasive and

reflect the full extent of the tumor landscape.

Circulating tumor DNA (ctDNA) emerges as a compelling

solution to address these critical questions. As a part of the

library of cell free DNA (cfDNA) released after apoptosis or

necrosis throughout the body (26), it can provide a more

comprehensive genetic map of tumors and heterogeneity

landscape at the molecular level (19). Remarkably, this can be

achieved with a nearly non-invasive approach, yielding substantial

benefits throughout the entire spectrum of breast cancer diagnosis

and treatment. In our comprehensive review, we begin with an

overview of the discovery of ctDNA and the way in which its

detection content is used in breast cancer. Subsequently, we delve

into an extensive examination of ctDNA’s pivotal role in the entire

breast cancer diagnosis and treatment continuum, spanning

screening, diagnosis, prognosis, treatment, and post-treatment

follow-up. We aim to shed light on the potential clinical

applicability and scalability of ctDNA, envisioning its widespread

adoption in clinical practice. We compared the advantages and

disadvantages of ctDNA with traditional diagnostic methods in

breast cancer examination and treatment, as shown in Table 1.
2 Discovery and content of
circular DNA

The existence of extracellular nucleic acids in the bloodstream

was initially uncovered as far back as 1948 by Mandel et al (27).

However, it wasn’t until three decades later, in 1977, that LEON

et al. made a pivotal breakthrough. They showed that

concentrations of circulating DNA were notably elevated in

patients with metastatic cancer compared to healthy individuals.
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This discovery was groundbreaking as it highlighted that tumor

cells, in their course of undergoing apoptosis or necrosis, release the

DNA fragments they contain into the circulatory system. This

release leads to a rise in circulating DNA levels, which is closely

linked to the effectiveness of anticancer treatments (28).

In healthy individuals, cfDNA (70-90%) is mainly derived from

neutrophils and lymphocytes (29). However, in cancer patients, the

principal contributors to cfDNA are the components of the tumor

microenvironment (TME), which include tumor cells and tumor-

infiltrating T lymphocytes (30) (Figure 1). Of these, only cfDNA

derived specifically from tumor cells is referred to as ctDNA (31).

Distinguishing ctDNA from cfDNA was historically quite

challenging, as ctDNA could account for as little as 0.01% of the

total cfDNA pool (32). Consequently, in the early stages of research,

the detection of ctDNA was relatively rare, with the primary focus
Frontiers in Immunology 03
centered on cfDNA. Accurate quantification of ctDNA under

various conditions has been achieved through diverse methods,

such as the deconvolution algorithm (33), solid-state nanopores

(34). However, widespread application remains hindered by cost

and technological constraints.

The results of multiple dimensions of the ctDNA test content

can be a key tool in the diagnosis and treatment of breast cancer. As

DNA fragments produced by cancer cells during necrosis and

apoptosis (26), the number of mutant ctDNA molecules in

plasma is mainly proportional to the tumor burden (7).

Moreover, the value/concentration of cfDNA/ctDNA can be

precisely measured, making it a major target for quantitative

studies. As detection technology continues to advance, including

methods like DNAmethylation (35), microsatellite instability (MSI)

(36–38), loss of heterozygosity (LOH) (39), DNA integrity (DI)

(40), and others based on epigenetic and global alterations in cancer

DNA, there is an expanding toolkit for detecting and quantifying

these modifications. These innovative techniques can play a crucial

role in the diagnosis and treatment of breast cancer, contributing as

quantitative parameters in research studies.

Tumor-specific mutations, as elucidated through comprehensive

ctDNA sequencing, wield significant influence over the diagnosis and

treatment of breast cancer. The specific genes, genomic loci, and

mutation types, encompassing single nucleotide polymorphisms

(SNPs) and copy number variations (CNVs), among others, along

with the diverse spectrum of DNA epigenetic modifications mentioned

earlier, exert a multifaceted impact on the behavior of breast cancer.

Consequently, they emerge as focal points in various qualitative studies.

Certain classic genes and pathways, such as TP53, PIK3CA, and ESR1

(41–43), have gained widespread recognition as pivotal prognostic and

therapeutic markers. It is anticipated that these markers will see

expanded adoption in clinical settings in the foreseeable future,

paving the way for broader clinical utilization (Figure 2).

Another avenue for leveraging ctDNA in the diagnosis and

treatment of breast cancer is through the development of models
FIGURE 1

Free DNA from the breast tumor microenvironment enters the circulation. Created with BioRender.com.
TABLE 1 Comparison of ctDNA with traditional methods.

Method Advantages Disadvantages

ctDNA Minimally invasive, no radioactive
contamination, new DNA no
preservative contamination
Early diagnosis or prediction of
recurrence
Real-time monitoring of treatment
response
Determining survival expectations
and risk of recurrence in
tumor patients

Cannot be detected in
some patients with early
or advanced cancers
Limited sensitivity and
specificity
Undiagnosed

Imaging Tumor location and size can be
localized
Minimally invasive

Difficulty in detecting
microscopic lesions
Possible false positives
and negatives

Tissue
biopsy

Tumor typing can be determined Invasive testing

Tumor
marker

Low cost of testing,
minimally invasive

Poor sensitivity
and specificity
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based on the factors mentioned above. These models often exhibit

enhanced efficiency and predictive quality. Some of the particularly

potent models are poised for further scrutiny and validation

in larger-scale clinical studies, promising to enhance our

understanding of their clinical utility.
3 ctDNA and breast cancer screening

Disease screening demands comprehensive coverage of the

population while maintaining a delicate balance between

accuracy, convenience, affordability, and minimal invasiveness.

Hence, non-compliant tests are typically unsuitable for screening

unless their efficacy significantly surpasses that of established

conventional tests. The prevailing standard for breast cancer

screening is mammography (44), known to reduce mortality rates

by up to 30% (45). However, mammography is not infallible, with a

sensitivity that falls short of 100%, resulting in approximately 13%

of breast cancer cases being missed (46). Moreover, false positives

can lead to unwarranted invasive procedures and the potential for

radiation-induced health issues (47). Additionally, the compression

of tumors during mammographic procedures can elevate central

venous blood ctDNA levels. Although this may not necessarily lead

to adverse clinical outcomes, it can introduce variability in the

standardization of circulating tumor marker sampling

procedures, rendering results less reliable (48). Furthermore, it’s

crucial to acknowledge that it takes a significant period for

cancer cells to evolve and coalesce into detectable solid
Frontiers in Immunology 04
tumors, which can contribute to delays in diagnosis and

subsequent treatment initiation.

cfDNA/ctDNA emerges as a potent complement to address the

aforementioned issues. In earlier investigations, Huang et al.

conducted a comparison of plasma cfDNA concentrations among

breast cancer patients, individuals with benign breast tumors, and a

normal control cohort. They unearthed a striking finding: the

median cfDNA concentration in breast cancer patients was

approximately fivefold higher than that in the healthy control

group (with medians of 65 ng/mL and 13 ng/mL, respectively).

Of note, within this study, the median cfDNA concentration in the

malignant tumor group was thrice as high as that in the benign

breast tumor group (with medians of 65 ng/mL and 22 ng/mL,

respectively). This suggests that there was a significant difference of

plasma DNA values among healthy individuals, NBC patients, and

BCa patients (p=0.001) (49). This result underscores the presence of

a discernible difference in cfDNA concentration between the two

groups, even among individuals generally regarded as healthy. This

seems to suggest that the tumor tissue itself, whether benign or

malignant, will have a higher metabolism and consequently release

more cfDNA into the circulation, whereas malignant tumors may

have a much higher rate of cfDNA release. This may be due to the

fact that malignant tumors have more active cell proliferation

activity, leading to more tumor cell death and DNA release. In

contrast, benign tumors usually grow at a slower rate and have less

cell proliferation activity, so the concentration of cfDNA may be

relatively low. Indeed, similar results have been demonstrated in

studies of other malignant tumors.
FIGURE 2

The detection process of ctDNA and different research directions within ctDNA can all play a role in breast cancer. Created with BioRender.com.
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A study by Xie et al. on ctDNA in non-small cell lung cancer

and benign lung tumors also showed that cfDNA concentrations

were significantly higher in lung cancer patients than in the benign

group, and that there was a positive correlation between cfDNA

levels and tumor size or maximal tumor diameter (r=0.430,

P=0.022) (50). In a similar study, median cfDNA concentrations

were significantly higher in patients with primary colorectal cancer

than in normal controls and patients with intestinal polyps) (51).

This pattern of elevated cfDNA levels has also been corroborated

across different stages of breast cancer. Leon et al. conducted a study

revealing that plasma cfDNA levels were markedly higher in

patients with advanced breast cancer compared to those with

early-stage breast cancer (28). Tangvarasittichai et al. conducted a

quantitative study, further reinforcing this correlation by

establishing that plasma DNA concentration positively correlates

with the stage of breast cancer (52). Moreover, advancements in

cfDNA detection methods hold the potential to redefine the future

of breast cancer screening. A meta-analysis study demonstrated that

six studies utilizing contemporary qualitative cfDNA detection

methods achieved superior mean sensitivity and specificity (0.88

and 0.98, respectively) compared to digital mammography (with

sensitivity and specificity values of 0.87 and 0.89, respectively).

Notably, digital mammography is currently the most widely

employed method for breast cancer screening (53).

Beyond direct utilization of cfDNA concentration, certain DNA

modificat ions , l ike DNA methylat ion, offer valuable

complementary tools for early breast cancer screening.

Investigations targeting DNA methylation typically employ two

primary strategies: (1) untargeted screening, which assesses global

DNA methylation, and (2) assays designed to examine methylation

patterns in specific genes. Moreover, these studies often differentiate

between samples obtained from whole blood and plasma. In a

previous systematic review, it was observed that BRCA1 and

RASSF1A were the most frequently investigated genes in whole

blood and plasma, respectively. Importantly, the frequency of

methylation in these genes was notably higher among breast

cancer patients (54). Nevertheless, it’s worth noting that some

studies have pointed to a positive correlation between whole-gene

hypomethylation and an increased risk of breast cancer (55, 56).

This discrepancy may arise from differences in the populations

studied, emphasizing the need for more extensive and rigorously

designed research to draw conclusive distinctions. More recently,

findings from Xu et al. have hinted that DNA methylation profiles

in blood begin to exhibit changes years before clinical detection of

breast cancer (57). However, further evidence is required before it

can be officially recognized as a breast cancer screening marker.

Nevertheless, risk stratification several years in advance offers

valuable insights into which populations may benefit from more

frequent screening protocols.

Qualitative analysis of cfDNA in healthy individuals offers

valuable insights into risk stratification for breast cancer. In a

prolonged follow-up investigation involving liquid biopsies

among healthy individuals, a noteworthy observation emerged:

four initially healthy blood donors with detectable oncogenic

mutations eventually developed benign tumors or invasive breast

cancers within the subsequent 1 to 10 years of follow-up (58). This
Frontiers in Immunology 05
intriguing finding suggests that if larger prospective studies were to

scrutinize the effectiveness of liquid biopsy as a clinical tool for

breast cancer screening, it might pave the way for more proactive

cancer management and improved prognoses within this seemingly

“healthy” population.

ctDNA also holds promise for breast cancer screening during

pregnancy, offering an alternative for expectant mothers who may

be hesitant to undergo imaging-related tests due to concerns about

fetal health. Lenaerts et al. conducted an investigation into the

sensitivity of the genome-wide routine noninvasive prenatal testing

(NIPT) pipeline in detecting cancer cell-specific copy number

alterations (CNAs) in ctDNA from breast cancer patients. To

mitigate the influence of fetal cfDNA, they organized different

study groups. The results revealed that the sensitivity to detect

specific CNAs was 36% in the pregnant group, significantly higher

than the 16% sensitivity observed in the non-pregnant group.

Remarkably, 15% of the tested cases were asymptomatic at the

time of blood collection (59). While it’s important to note that the

sensitivity achieved is not exceptionally high, the marked difference

between the two groups provides evidence supporting the use of

ctDNA for breast cancer screening during pregnancy.
4 ctDNA and breast cancer diagnosis

The current diagnosis of breast cancer heavily relies on

pathology, and our focus here centers on the pivotal role of cf/

ctDNA in the diagnostic landscape of breast cancer. Pathological

diagnosis necessitates invasive procedures, guided by medical

imaging equipment, and it stands as the established “gold

standard” for diagnosing breast cancer (60). Consequently, when

evaluating the worth of cf/ctDNA in breast cancer diagnosis, the

first consideration is its unique capacity to address challenges that

pathology currently cannot overcome. Although pathology appears

to be all-encompassing, there exists a subset of cases known as

occult breast cancer—instances where no lesion is detectable

through imaging. In these perplexing scenarios, biopsy-based

pathologic diagnosis proves inadequate. Typically, patients with

occult breast cancer present with an axillary mass as their initial

complaint, often accompanied by lymph node metastases that

signify an locally advanced stage of the disease (61). In patients

with occult malignant tumors whose primary site is unknown, cf/

ctDNA can identify the presence of cancer (62), which will greatly

improve the prognosis of such patients.

To expand the application of ctDNA in breast cancer (BC)

diagnosis on a larger scale, it’s essential to scrutinize its diagnostic

capabilities. A meta-analysis conducted by Lin et al. offers valuable

insights, revealing that, in the 24 studies included, the mean

sensitivity and specificity of cfDNA as a diagnostic tool were 0.7

and 0.87, respectively. However, in a more recent and extensive

meta-analysis encompassing 29 studies on breast cancer diagnosis,

the sensitivity and specificity demonstrated remarkable

improvement, reaching 80% and 88%, respectively (53). This

notable enhancement could be attributed to advancements in

assay technology and underscores the considerable potential of

cfDNA/ctDNA as a standalone marker for breast cancer diagnosis.
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The outcomes of qualitative studies are amenable to

quantification, with a predominant focus on DNA modifications

and aberrant gene expression. In the previously mentioned study by

LIN et al., which incorporated 10 qualitative analyses (including

methylation PCR, microsatellite analysis, and sequencing), the

sensitivities and specificities for breast cancer diagnosis were 0.50

and 0.98, respectively (53). This trend persisted in the follow-up

study, underlining the significance of qualitative cfDNA testing,

particularly in evaluating gene-specific methylation status as a

supplementary tool to enhance the specificity of breast cancer

diagnosis (63). Notably, the parameter cfDI, formulated based on

cfDNA integrity, exhibited superior diagnostic efficacy for early-

stage breast cancer compared to other liquid biopsy results,

including CTCs, cfDNA concentration, or CA153 (64). Another

study showed that the incidence of LOH was significantly correlated

with lymph node status in terms of the relative concentration of

DNA in preoperative serum in patients with breast cancer, in

patients with benign breast disease, and in healthy women (36).

In addition, a study of the differences in MSI and LOH between

breast cancer and healthy women showed significant differences in

some alleles (65). These collective findings underscore the value of

comprehensive ctDNA studies in the early diagnosis of

breast cancer.

The diagnosis of advanced breast cancer assumes equal

importance. A noteworthy ctDNA investigation pertaining to

breast cancer leptomeningeal metastasis (BCLM) showcased

compelling results. Specifically, quantifying cerebrospinal fluid

(CSF) ctDNA in the study’s participants achieved a remarkable

100% sensitivity and specificity in diagnosing BCLM, surpassing the

traditional “gold standard” CSF cytology (66). Furthermore, the

inclusion of measurements for cfDNA aneuploidy mutations in CSF

contributed to enhanced diagnostic efficiency (67). In another

study, it was observed that the ctDNA fraction exhibited a

notable elevation up to 12 weeks prior to the clinical progression

of BCLM (68). These findings highlight the critical role of ctDNA in

the diagnosis of advanced breast cancer, especially in cases where

meningeal metastases occur.
5 ctDNA and breast cancer prognosis

In conventional perception, the prognosis of breast cancer

primarily revolves around its classification and tumor staging. BC

patients with similar typing and staging have highly variable

prognoses, which may be mainly related to tumor heterogeneity.

Tumor heterogeneity prevents a single tumor sample obtained by

biopsy from being fully used to identify genomic alterations (10,

69). This highlights the need for additional biomarkers to more

accurately stratify recurrence risk (70). On the other hand, the

identification of minimal residual disease (MRD) is important

because MRD is highly associated with a high risk of recurrence

of BC (71–73). ctDNA is theorized to be a collection of exfoliated

DNA from the entirety of tumor cells, and thus in can compensate

for the shortcomings of traditional tissue biopsies; and because of its

molecular properties, it can also be used as a tool for early detection

of MRD. In the subsequent sections, we delve into a comprehensive
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exploration of studies involving ctDNA as a prognostic marker for

breast cancer, highlighting its diverse applications in

various contexts.

In a study involving patients with early-stage breast cancer who

had undergone immediate surgical intervention, Olsson et al. made

a significant observation. They found that ctDNA testing

demonstrated exceptional accuracy in identifying post-surgical

recurrence, boasting a sensitivity of 93% and a specificity of

100%. Furthermore, the median lead time for clinical detection of

recurrence was 7.9 months (71). These findings underscore the

potential of ctDNA as a highly effective tool for early detection of

recurrent breast cancer in patients who have undergone

surgical treatment.

Results in BC patients undergoing neoadjuvant therapy (NAT)

have been notably diverse and revealing. In a study conducted by

Garcia-Murillas et al., involving 55 breast cancer patients receiving

neoadjuvant chemotherapy (NAC), plasma ctDNA testing yielded

remarkable insights. It accurately predicted metastatic recurrence,

both at specific time points and during continuous follow-up,

showcasing its potential as a valuable prognostic tool (74).

Furthermore, a comprehensive meta-analysis examining the

correlation between baseline ctDNA and survival outcomes in

early-stage breast cancer unveiled compelling findings. Notably,

the presence of ctDNA at baseline, preceding NAT, was linked to a

significant decline in both relapse-free survival (RFS) and overall

survival (OS) (75). These findings underscore the valuable role of

ctDNA in assessing treatment response and prognosis in breast

cancer patients undergoing neoadjuvant therapy.

Enhancing the ability to predict treatment response during

neoadjuvant therapy represents a valuable complement to current

treatment approaches. The conventional measure of pathologic

clinical remission (pCR) based on imaging assessment is often

regarded as the gold standard for prognosis in breast cancer

patients undergoing neoadjuvant therapy (76). However, it is

prone to inaccuracies. In this context, ctDNA emerges as a novel

and promising marker for monitoring neoadjuvant therapy.

Multiple studies have highlighted that continuous monitoring of

ctDNA during neoadjuvant therapy offers valuable insights.

Specifically, when ctDNA is cleared during the course of

neoadjuvant therapy, it is associated with improved RFS in these

patients (77, 78). Conversely, individuals in whom ctDNA remains

detectable after the completion of neoadjuvant therapy or surgery

are at a higher risk of recurrence and tend to exhibit poorer OS

outcomes (73, 74, 79). This underscores the potential of ctDNA as a

dynamic and responsive marker for tracking treatment response

during neoadjuvant therapy in breast cancer cases.

Additional targeted studies have delved into the use of ctDNA

as a prognostic marker for BC across different molecular subtypes.

In one such investigation, which focused on the relationship

between ctDNA and prognostic indicators in triple-negative

breast cancer (TNBC) patients who had undergone neoadjuvant

chemotherapy as part of the BRE12-158 clinical trial

(ClinicalTrials.gov Identifier: NCT02101385), compelling findings

emerged. It was observed that the detection of ctDNA significantly

correlated with poorer distant disease-free survival (DDFS), disease-

free survival (DFS), and OS outcomes (80). A similar study of
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patients with hormone receptor (HR)-positive/HER2-negative

breast cancer and TNBC receiving neoadjuvant chemotherapy in

the I-SPY2 (ClinicalTrials.gov Identifier: NCT01042379) trial noted

that early clearance of ctDNA 3 weeks after the start of therapy

predicted the degree of sensitivity to NAC in patients with TNBC

and that ctDNA positivity was associated with reduced distant

recurrence-free survival in both subtypes sensitivity to NAC in

TNBC patients, and that ctDNA positivity was associated with

reduced distant recurrence-free survival in both subtypes. As this

was a longitudinal surveillance study, results after NAC treatment

showed that ctDNA negativity was associated with improved

prognosis (81). These consistent findings across different

molecular subtypes underscore the broad applicability and

potential of ctDNA as a robust prognostic marker for breast

cancer patients.

ctDNA also demonstrates a robust association with prognosis in

advanced breast cancer. Insights from a real-world study focused on

advanced breast cancer revealed a substantial correlation between a

circulating tumor fraction (TF) of ≥10%, calculated using single-

nucleotide polymorphism aneuploidy across the ctDNA genome,

and OS (82). Notably, specific mutated genes play pivotal roles in

this context. Among the genomic alterations present in cfDNA and

tumor DNA (tDNA) in high-risk stage 3 and 4 breast cancer

patients, TP53 and PIK3CA mutations, along with epidermal

growth factor receptor (EGFR) and ERBB2 amplifications,

emerged as the most common. TP53 mutations (p = 0.0004) and

PIK3CA mutation allele frequency [p = 0.01, HR 1.074 (95% CI

1.018-1.134)] were particularly strong predictors of progression-

free survival (PFS) (83). In another extensive retrospective study

involving patients with locally advanced breast cancer and

metastatic breast cancer (MBC), the mean percentage of ctDNA

was found to be 4.5% (ranging from 0 to 88.2%), with the number of

variants averaging 3 (ranging from 0 to 27). TP53 (52%), PIK3CA

(40%), and ERBB2 (20%) were the most frequently affected genes.

Significantly, differences in PFS and OS were statistically significant

when comparing patients with baseline ctDNA percentages <0.5%

and ≥0.5% (P=0.003 and P=0.012, respectively) (84). These findings

underscore the substantial prognostic value of ctDNA in advanced

breast cancer cases.

Several biomarker-specific studies have brought attention to

this phenomenon. One noteworthy example is the TBCRC 005

study, a prospective investigation focused on biomarkers. This

study employed an innovative quantitative multiplex assay known

as cMethDNA to identify a novel set of cfDNAmethylation markers

in the plasma of metastatic breast cancer (MBC) patients. It then

generated a cumulative methylation index (CMI) based on six out of

the ten genes detected. Remarkably, high CMI levels in patients

exhibited a significant correlation with both shorter median survival

and OS (85). Recently, the study published an update in which a

novel liquid biopsy-breast cancer methylation combination marker

was collected from 144 MBC patients at baseline, week 4, and week

8, and the median PFS and OS were significantly shorter in MBC

patients with high cumulative methylation (CM) compared to those

with low cumulative methylation. Based on the circulating CM

levels at week 4, an effective model was developed that allows for the

prediction of disease progression after three months, as early as
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week 4 after the start of a new treatment in MBC patients (86). This

will greatly advance the timing of patients changing treatment

regimens and provides evidence for the large-scale application of

ctDNA as a prognostic marker.
6 ctDNA and breast cancer treatment

Typically, the treatment plans for BC patients are carefully

crafted by considering the gene expression patterns, molecular

characteristics of the tumor specimen, as well as Supplementary

Information such as imaging results from other sites and individual

patient attributes (8). These attributes encompass factors like TNM

staging, tumor grade, and receptor expression status. Breast cancer

itself is classified into four intrinsic subtypes: luminal A, luminal B,

HER2-enriched, and TNBC. These subtypes exhibit markedly

distinct treatment regimens, molecular features, and biological

characteristics (87, 88).

Some patients do not have satisfactory treatment results, which

may be due to (1) the fact that some molecular information is not

available because of the heterogeneity within the tumor, and (2) the

emergence of new resistant clones with new driver mutations due to

tumor evolution, leading to the fact that new targeted therapies

against a particular locus may only be efficacious for a short period

of time (89). Indeed, cancers accumulate somatic mutations as they

evolve (90). Some of these mutations act as drivers that lead to

clonal expansion (91, 92). Mutations, in combination with factors

such as spatial segregation, lead to the formation of genetically

distinct cell populations that express different oncological

characteristics, termed intra-tumor heterogeneity (ITH) (93). The

existence of ITH has been widely accepted (94, 95). Studies have

shown that sequencing of both breast cancer and metastases across

time and space reflects great heterogeneity (96). In fact, ITH is a key

factor contributing to mortality, treatment failure and drug

resistance in breast cancer (97). This has led to confusion about

the current way of diagnosing breast cancer: is focal, single

histologic examination the optimal solution to reflect molecular

information about breast cancer?

Furthermore, de novo mutations that arise during the clinical

progression of tumors frequently result in resistance to targeted

therapies (98). A study conducted by Kim et al., which focused on

the driver genes associated with chemoresistance in TNBC,

demonstrated that resistance genes are already present at an early

stage and undergo adaptive selection throughout the course of

chemotherapy (99). This is in contrast to de novo mutations

emerging midway through chemotherapy. Consequently, there is a

pressing need for the rapid and reliable identification of these novel

driver mutations to enable more timely and precise treatment strategies.
6.1 Tracking heterogeneity among breast
cancers and tumor clonal evolution
using ctDNA

There is unquestionably significant value in employing ctDNA

testing as a complement to traditional pathology-based diagnostic
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methods. ctDNA has the capacity to provide a comprehensive

molecular profile of breast cancer, playing a pivotal role in

unraveling the mechanisms governing tumorigenesis, progression,

metastasis, and the development of drug resistance. ctDNA serves

various crucial functions in the detection and analysis of breast

tumors, spanning their development and progression (100). Firstly,

ctDNA has the remarkable capability to capture the heterogeneity

within breast cancer and monitor the real-time evolution of tumor

clones. This was vividly illustrated by Murtaza et al., who

demonstrated that all mutations present in primary tumors and

metastatic lesions could be identified in ctDNA (101). In addition,

They followed multiple tumor and plasma DNA samples from a

patient with MBC for 3 years and found that all metastatic-grade

mutations that initially appeared in biopsy samples from the

primary tumor were detected in plasma samples, and that

backbone and metastatic mutations were identified by looking at

the category of samples in which they appeared (metastatic foci or

all samples) (102). This insight provides invaluable insights into the

evolutionary trajectory of cancer clones. This means that the

detection of ctDNA is able to reflect a comprehensive genetic

map of cancer, including the clonal hierarchy identified by

multiregional tumor sequencing, and allows the tracking of

different treatment responses in different metastases. This is

important for the timely detection, quantification and tracking of

cancer progression and recurrence processes in order to adopt the

most accurate and timely means of responding to events during

cancer treatment and follow-up. In addition, the identification of

mutational priorities could update the understanding of targets and

perhaps allow the design of new models to reclassify subgroups of

patients to achieve “accurate and on-time” therapeutic outcomes.
6.2 Therapeutic guidance for ctDNA in
breast cancer

Exome sequencing does have its limitations, particularly in

patients with a low tumor burden and reduced plasma ctDNA

levels, primarily due to its lower coverage compared to targeted

depth sequencing. In contrast, targeted depth sequencing exhibits

superior performance in identifying low-frequency variants within

the specified target region, making it better suited for analyzing low-

quality samples in clinical settings (103). However, it’s important to

acknowledge that targeted sequencing, by its very nature, focuses on

a selected subset of genes with established clinical relevance,

potentially omitting crucial information. Therefore, careful

consideration is essential when deciding on the appropriate

sequencing approach. Certain genes and mutations exert a

significant influence on breast cancer behavior, and we present

findings from specific clinical studies to underscore the role of

ctDNA testing in guiding breast cancer treatment.

Estrogen receptor (ER)-positive, HER2-negative breast cancer

subtypes are the most prevalent among patients with advanced

breast cancer (104). ESR1, the gene encoding the estrogen receptor,

is expressed in roughly 70% of breast cancer cases (105). Resistance
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to aromatase inhibitors (AI) is often associated with activating

mutations in ESR1 (the gene encoding estrogen receptor a, the
major isoform of the estrogen receptor) in cancer subclones (106).

Through cfDNA analysis, it has been revealed that ESR1 mutations

can be identified in the blood of approximately 40% of patients with

ER-positive, HER2-negative advanced breast cancer subsequent to

the administration of aromatase inhibitors (referred to as

bESR1mut) (107). Therefore, the question arises: can we predict

in advance whether patients with detectable bESR1mut will develop

resistance to AIs and intervene proactively?

The PADA-1 study (Cl inica lTr ia l s .gov ident ifier :

NCT03079011) represents a randomized, open-label, multicenter

phase III trial involving patients receiving AI and palbociclib as

first-line therapy for metastatic ER+/HER2- breast cancer. In this

study, patients will undergo periodic testing for circulating ESR1

gene mutations. Those who detect elevated circulating ESR1

mutations but do not experience tumor progression will be

randomly assigned equally to one of two groups: (1) Group A,

where there is no change in the original therapy, and (2) Group B,

where palbociclib is combined with the selective ER downregulator

fulvestrant. Recent results from this study suggest that early targeted

therapy for bESR1 mutations can yield significant clinical benefits

(43, 106). Another study involving estrogen receptor-positive

advanced breast cancer resistant to AI treatment explored the

effects of such treatment. This study, known as SoFEA (Study of

Faslodex versus Exemestane with or without Arimidex,

ClinicalTrials.gov identifier: NCT00253422), and PALOMA3

(Palbociclib Combined with Fulvestrant in HR-Positive/HER2-

Negative Metastatic Breast Cancer after Endocrine Failure,

ClinicalTrials.gov identifier: NCT01942135), involved two phase

III randomized trials that assessed the impact of plasma ESR1

mutations on the sensitivity of standard therapies. These trials

demonstrated that therapeutic interventions targeting patients

with ESR1 mutations effectively improved PFS (108). These

studies have provided evidence for the involvement of specific

mutations in ctDNA in the treatment of breast cancer and have

led to looking at more genes that have not been studied on a large

scale, with a view to obtaining entirely new therapeutic targets.

It’s time for whole-exome sequencing(WES) to make its mark.

O’Leary et al. performed WES and targeted sequencing of day 1 and

end-of-treatment paired ctDNAs obtained from patients in the

PALOMA-3 study and found that, in addition to the ESR1

mutation, several mutations may be associated with the

development of endocrine drug resistance, and these mutations

may also be involved in mechanisms related to resistance to

palbociclib and fulvestrant (109). Understanding these genes is

important to intervene in therapeutic regimens, but more

rigorous clinical trials must be designed, and perhaps some of

these genes will be the star targets of the future. We list some of the

clinical trials with results in Table 2.

In addition to the effects of mutations on phenotype in classical

genetics, epigenetic alterations is equally crucial in life activities.

DNA methylation is the most intensively studied type of

epigenetics, and in general, if methylation occurs at the promoter,
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it may silence the gene and thus render it non-functional (110).

Therefore, methylation analysis of key genes against ctDNA may

have critical guidance for the treatment of breast cancer. Harvey-

Jones et al. performed ctDNA longitudinal mutation and

methylation analyses on homologous recombination-deficient

treatment-resistant breast cancer patients and found that BRCA1

promoter methylation was detected in all plasma samples available

for testing, suggesting a possible silencing mechanism for the non-

rearranged BRCA1 allele in the tumors of this patient. Moreover,

significant differences in BRCA1 promoter methylation were found

not only in different surveillance nodes, but also in ctDNA and

corresponding solid tumors (111). This suggests that BRCA1

expression is restored by an unknown mechanism, explaining the

mechanism by which drug resistance arises in some breast cancers.

Another study found that ESR1 epigenetic status, as assessed by

methylation-specific ddPCR, can be used as an indicator of

resistance to endocrine therapy in breast cancer (112). These

studies highlight the role of the epigenetic status of ctDNA in

guiding breast cancer treatment and have important implications

for clinical management and trial design in breast cancer.
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6.3 ctDNA can be used as a marker for
immunotherapy in breast cancer

Immunotherapy has a clear role in the treatment of both early

and advanced breast cancer, but it is not suitable for all patients.

This is due to the high cost of immunotherapy and the equally wide

variation in efficacy between individuals. ctDNA’s role in

immunotherapy for breast cancer is equally diverse, and the

evidence covers a wide range of types and stages. Several studies

have examined ctDNA as a prognostic marker in breast cancer

treated with immunotherapy. In the aforementioned I-SPY2 trial,

ctDNA detection rates declined over time in both the

pembrolizumab-added-to-standard neoadjuvant chemotherapy

group and in the control group, and the probability of obtaining

preoperative ctDNA clearance in all patients with a pCR was 100

percent (113). CtDNA can also predict prognosis in advanced

breast cancer INSPIRE (ClinicalTrials . gov Identifier:

NCT02644369) is a prospective phase 2 clinical study designed to

evaluate the performance of a customized amplicon based ctDNA

assay in predicting response in patients with advanced solid tumors
TABLE 2 Clinical trial studies with results related to ctDNA in breast cancer patients.

ClinicalTrials.gov
Identifier

Clinical trial title Participants
Results
First

Posted

Last
Update
Posted

Acronym/
Other IDs

NCT00253422
Fulvestrant With or Without Anastrozole or Exemestane
Alone in Treating Postmenopausal Women With Locally
Advanced or Metastatic Breast Cancer

750 2011/5/17 SoFEA

NCT02181101
Simultaneous Study of Gemcitabine-Docetaxel Combination
Adjuvant Treatment, as Well as Extended Bisphosphonate and
Surveillance-Trial

3754 2014/7/3 SUCCESS

NCT01923168
Study of Letrozole With or Without BYL719 or Buparlisib, for
the Neoadjuvant Treatment of Postmenopausal Women

340 2018/7/4 2018/9/14 NEO-ORB

NCT01633060
A Phase III Study of BKM120 With Fulvestrant in Patients
With HR+,HER2-, AI Treated, Locally Advanced or
Metastatic Breast Cancer Who Progressed on or After mTORi

432 2018/9/20 2019/1/30 BELLE-3

NCT02379247
BYL719 and Nab-Paclitaxel in Locally Recurrent or Metastatic
HER-2 Negative Breast Cancer

43 2021/5/7 2022/6/7 CBYL719XUS06T

NCT01942135
Palbociclib (PD-0332991) Combined With Fulvestrant In
Hormone Receptor+ HER2-Negative Metastatic Breast Cancer
After Endocrine Failure (PALOMA-3)

521 2015/12/3 2023/4/27 PALOMA3

NCT01042379
I-SPY TRIAL: Neoadjuvant and Personalized Adaptive Novel
Agents to Treat Breast Cancer

5000 2023/7/27 I-SPY2

NCT02101385
Randomized Controlled Trial of Genomically Directed
Therapy in Patients With Triple Negative Breast Cancer

193 2022/10/17 2023/9/28 BRE12-158

NCT04576455

A Study Evaluating the Efficacy and Safety of Giredestrant
Compared With Physician’s Choice of Endocrine
Monotherapy in Participants With Previously Treated
Estrogen Receptor-Positive, HER2-Negative Locally Advanced
or Metastatic Breast Cancer (acelERA Breast Cancer)

303 2023/2/13 2023/11/7 acelERA BC

NCT02437318

Study Assessing the Efficacy and Safety of Alpelisib Plus
Fulvestrant in Men and Postmenopausal Women With
Advanced Breast Cancer Which Progressed on or After
Aromatase Inhibitor Treatment.

572 2019/6/17 2023/11/18 SOLAR-1

NCT03079011
PAlbociclib and Circulating Tumor DNA for ESR1
Mutation Detection

1017 2017/3/14 PADA-1
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1355887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1355887
treated with pembrolizumab. After analyzing ctDNA levels at

baseline and at the start of cycle 3 of pembrolizumab treatment,

the researchers found that in 106 patients with advanced solid

tumors, including 18 patients with TNBC, lower ctDNA levels after

treatment were directly associated with better OS and PFS (114).
7 ctDNA and breast cancer follow-up

The follow-up strategies for breast cancer patients at different

stages vary. In the case of early-stage breast cancer, the primary goal

is the early detection of locoregional recurrence in the affected or

contralateral breast, and it typically doesn’t involve the detection of

asymptomatic distant metastases. Traditional diagnostic methods,

such as imaging (e.g., chest X-rays, abdominal ultrasounds, bone

scans) and the use of circulating tumor markers (like

carcinoembryonic antigen 15.3 and carcinoembryonic antigen),

have not shown significant benefits in terms of overall survival or

quality of life in this context (115). Therefore, there’s a need for the

development of new tools to enhance surveillance and detect early

recurrences in asymptomatic early-stage breast cancer. In a real-

world study focused on the time to postoperative recurrence in

early-stage TNBC patients who underwent neoadjuvant therapy

and surgery, Rocca et al. made an interesting discovery. They found

that in nearly all evaluated cases (with the exception of a few cases

involving bone or liver metastases), ctDNA became detectable

before any signs of disease spread. Moreover, the average time

from ctDNA detection to the identification of suspicious findings

on follow-up imaging was approximately 3.81 months, with a mean

time to a definitive recurrence diagnosis of 8 months (116).

Similarly, another study involving serial ctDNA testing in patients

with early-stage breast cancer who had undergone neoadjuvant

chemotherapy (post/preoperative) showed that the detection of

ctDNA during follow-up was strongly associated with disease

recurrence. Moreover, 22 of 23 patients (96%) with distant

extracranial metastatic relapse could be detected by ctDNA

testing (72). These studies emphasize that ctDNA is sufficiently

sensitive to be of value in early-stage breast cancer follow-up.

Studies targeting ctDNA content can similarly predict

recurrence. In a study of ctDNA methylation patterns in 419

cases of breast cancer in the SUCCESS study (simultaneous study

of gemcitabine-Docetaxel combination adjuvant treatment,

ClinicalTrials.gov identifier: NCT02181101), the serum DNAme

region called EFC#93 was found to have 88% specificity in the

diagnosis of metastatic breast cancer (117). It provides a new tool

for predicting metastatic breast cancer in advance.

In advanced breast cancer, ctDNA can play an equally

important function. The genetic map of breast cancer that has

evolved through clonal selection and evolution is quite different,

and continuous ctDNA concentrations and details can predict

which patients should continue to be followed up, and even

identify specific treatment options (118). A longitudinal ctDNA

monitoring study of ER+/HER2- MBC patients was performed in

which ESR1, PIK3CA, ERBB2, PTEN, TP53, KRAS, HRAS, NRAS,

and AR were sequenced and analyzed. In this study, the number of

ctDNA mutations was significantly associated with worsening of
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PFS and OS. In addition, mutation status against single genes ESR1

and TP53 predicted PFS (p = 0.024 and p = 0.035, respectively) and

OS (p < 0.001 and p = 0.035, respectively) (119). These results

emphasize the value of ctDNAmutation analysis in the follow-up of

advanced breast cancer.

Assessing tumor heterogeneity is crucial for follow-up as higher

heterogeneity in breast cancer is linked to poorer survival outcomes

(120). A method called PyClone, a Bayesian clustering approach

enabling the grouping of deep-sequenced somatic mutations into

putative clonal clusters, can quantify tumor heterogeneity reflected

by ctDNA (121). Samples with more clusters are associated with

higher heterogeneity. Ma et al. collected consecutive plasma

ctDNAs from 37 HER2-positive patients with metastatic breast

cancer over the course of disease progression and analyzed their

clonal population structure with PyClone and defined that the

cluster with the highest cellular prevalence at baseline was

referred to as the trunk cluster, and the rest as the branch cluster.

The results showed that patients with higher heterogeneity had

significantly poorer survival data compared to those with lower

heterogeneity, with a median PFS of 30.0 weeks, compared to 60.0

weeks for patients with low tumor heterogeneity (HR, 2.9; P = 0.02).

In addition, the TP53/PIK3CA/MTORmutation appeared to have a

significantly shorter median PFS in patients with a trunk cluster

mutation (7.8 weeks, 95% CI, 7.4-26.8 weeks) than in patients with a

branch cluster mutation (27.4 weeks, 95% CI, 11.8-63.5 weeks) and

in patients without any mutation (HR, 4.5, 95% CI 1.2 to 17.6;

P = 0.03) (17). These studies highlight the important role of ctDNA

in breast cancer follow-up.
8 Conclusions and perspectives

Despite rapid advances in detection technology, we have not yet

obtained a comprehensive understanding of breast cancer. ctDNA

offers a direct window into breast cancer’s onset, progression, and

metastasis, allowing us to overcome temporal and spatial

heterogeneity and observe the complete evolution of a cancer

clone. As a result, ctDNA has the potential to make significant

contributions in various aspects of breast cancer management,

including screening, diagnosis, prognosis, treatment, and follow-

up (Figure 3). In the area of screening, we need to recognize its

improved accuracy, but we also need to be concerned about whether

it is too refined and leads to overtreatment. For patient follow-up, it

is a key to identify the most appropriate targets and combinations

among a large number of predictors in order to reflect as much

information as possible while still balancing accuracy. In the area of

diagnosis and prognosis, ctDNA has excelled, and although it is still

rash to utilize it directly to determine whether breast cancer is

diseased or not, new star genes continue to emerge that bring new

directions to breast cancer diagnosis and treatment. For example,

PIK3CA, preliminary results from the SOLAR-1 trial

(ClinicalTrials.gov identifier: NCT02437318) presented at the

2018 San Antonio Breast Cancer Symposium suggest that

ctDNA-based assessment of PIK3CA mutation status is a better

indicator of PFS than tissue biopsy analysis (122). Subsequently, the

FDA approved a companion diagnostic test based on the detection
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of PIK3CA mutations in the plasma of patients with advanced ER

+/HER2- breast cancer. This is an important milestone in the

movement of ctDNA towards large-scale clinical use.

Above, we have shown the role of ctDNA in breast cancer

immunotherapy. So can the results of ctDNA testing guide breast

cancer immunotherapy? Artemis (ClinicalTrials.gov identifier:

NCT04803539) is a prospective phase II trial that is recruiting to

see if ctDNA can be used to indicate intensification of therapy after

adjuvant chemotherapy for non-metastatic TNBC. In this study, the

results of ctDNA testing will be used to divide patients into an

experimental group with carilizumab in combination with apatinib

and capecitabine, and a control group with capecitabine only.

Another similar study, Apollo (ClinicalTrials.gov identifier:

NCT04501523), is looking to use the results of ctDNA testing, to

see how it provides an answer to the question of whether patients

with non-metastatic TNBC who have received NAC should receive

capecitabine with or without tirilizumab as intensive therapy. It is

hoped that the findings of these clinical trials will be as promising as

their names suggest.

In addition, during the course of the review, we found that trying

to evaluate many of the existing studies together was actually difficult

because of the difficulty in harmonizing conditions for specimen

processing and amplification prior to analysis across studies. A first
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large-scale external quality assessment of the impact of cfDNA

quality, quantity and integrity showed that different extraction kits

produced a wide range of cfDNA yields, which could vary by up to

100-fold. In fact, European organizations (CEN, SPIDIA4P) and

international networks (CANCER-ID/European Union, BloodPAC/

USA) are working on the development of standardized protocols for

liquid biopsy methods in order to provide recommendations on

technical specifications for the recommended handling,

documentation and processing of blood specimens for ctDNA

analysis (123). In addition, the characteristics of ctDNA, including

the high degree of fragmentation and short half-life of the DNAmass

itself, the detection limitations of low variant allele frequency in the

background noise range, and the expensive cost of the assay are all

issues that need to be resolved before ctDNA can be used in large-

scale clinical applications.

Evidence for ctDNA as a valuable stand-alone assay rather than

an optional one is growing, however, more evidence strong enough

to support its feasibility for large-scale clinical use is still needed.

Especially in early-stage breast cancer, although larger free DNA

fragments are more frequently found in EBCs than in MBCs (124),

the lack of quantity limits their ability to be detected as valuable.

Perhaps with advances in detection technology, or perhaps with the

advent of more rigorous large-scale clinical trials, the use of ctDNA
FIGURE 3

Heterogeneity is a major cause of prognostic differences in breast cancers with similar clinical profiles and ctDNA plays an important role at multiple
stages in the breast cancer development curve. Created with BioRender.com.
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testing in breast cancer can be taken to new heights, and we look

forward to that day.
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