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Autophagy is an intracellular process that targets various cargos for degradation,

including members of the cGAS-STING signaling cascade. cGAS-STING senses

cytosolic double-stranded DNA and triggers an innate immune response through

type I interferons. Emerging evidence suggests that autophagy plays a crucial role

in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING

pathway members can actively induce canonical as well as various non-

canonical forms of autophagy, establishing a regulatory network of feedback

mechanisms that alter both the cGAS-STING and the autophagic pathway. The

crosstalk between autophagy and the cGAS-STING pathway impacts a wide

variety of cellular processes such as protection against pathogenic infections as

well as signaling in neurodegenerative disease, autoinflammatory disease and

cancer. Here we provide a comprehensive overview of the mechanisms involved

in autophagy and cGAS-STING signaling, with a specific focus on the interactions

between the two pathways and their importance for cancer.
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1 Autophagy

Autophagy is an adaptive, highly conserved cellular process that acts as a recycling

mechanism to maintain cellular homeostasis. It has long been thought of as an unspecific

degradation system to regenerate nutrients. However, in recent years autophagy emerged as a

selective process that degrades potentially dangerous cellular materials ranging from

misfolded proteins and protein aggregates to damaged mitochondria and intracellular

bacteria (1–3). Autophagy can also be used to secrete cytosolic proteins (termed secretory
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autophagy) and can regulate immune responses by secreting damage-

associated molecular patterns (DAMPs) or cytokines (4–7). There are

three main types of digestive autophagy in mammalian cells:

macroautophagy, microautophagy and chaperon-mediated

autophagy. They employ different mechanisms to converge at the

same final step of cargo delivery to lysosomes followed by its

proteolytic degradation. In this review we will only focus on

macroautophagy and will, for simplicity, refer to it as “autophagy”.

In brief, the process of macroautophagy involves the formation of

double membrane vesicles called autophagosomes that form around

cellular cargo and travel to lysosomes where they subsequently fuse

with them to induce cargo degradation (1, 8, 9). Autophagy is

induced by different forms of cellular stress and is thereby

connected to the main stress signaling pathways of the cell:

nutrient availability [mTOR (10, 11)], energy status [AMPK (12,

13)], hypoxia [HIF (14)] and infection [inflammation (15)]. As a

consequence, autophagy is also implicated in major pathologies like

neurodegenerative disease, pathogenic infections and cancer, where it

can either act in a cytoprotective or cytotoxic fashion and can even

accelerate the course of the disease (1, 2, 16–19). Targeting autophagy

therefore represents a promising strategy against these pathologies.
1.1 The mechanism of autophagy

Generally, autophagy consists of four distinct phases: (1)

initiation, (2) nucleation, (3) elongation, (4) fusion and

degradation, which involve many protein complexes required for

autophagosome biogenesis, trafficking, fusion with lysosomes, and

cargo degradation (1, 20–22).

1.1.1 Initiation
During the initiation of autophagy, the Unc-51-like kinase

(ULK) complex, consisting of either ULK1 or ULK2 (a serine/

threonine kinase), RB1-inducible coiled-coil protein 1 (FIP200),

autophagy related protein 13 (ATG13) and autophagy related

protein 101 (ATG101), induces the formation of autophagosomes

by acting as a scaffold to recruit autophagic machinery (1, 20, 22).

ULK1 directly interacts with the mammalian target of rapamycin

complex I (mTORC1) and AMP-activated protein kinase (AMPK)

via phosphorylation (23, 24). While autophagy inhibition by

mTORC1 and induction by AMPK are the most common

routes, there are many more pathways that can activate

autophagy. These range from endoplasmic reticulum (ER) stress

to hypoxia, microbial infection, DNA damage and mechanical

stress (14, 25–32). Some of these will be mentioned in more detail

in later parts of this review.

Under high nutrient availability, mTORC1 is activated and

negatively regulates the ULK complex by directly binding and

inactivating ULK1 and ATG13 by phosphorylation. Upon

starvation, however, mTORC1 is deactivated and ULK1 is

dephosphorylated, causing it to dissociate from mTORC1

(Figure 1, panel 1). Simultaneously, ULK1 is activated by

autophosphorylation, which triggers phosphorylation of its

substrates ATG13 and FIP200 (24, 33, 34). ULK1 then forms
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downstream autophagy proteins such as the phosphoinositol 3-

kinase (PI3K) complex I as well as multiple adaptor proteins that

are essential for autophagosome biogenesis (35–37).

Another regulator of autophagy is the energy-sensing protein kinase

AMPK. Cellular starvation caused by, for example, low levels of glucose

results in an increased AMP/ATP ratio, which activates AMPK.

Activated AMPK can initiate autophagy indirectly by inactivating

mTORC1 or directly by phosphorylating ULK1 (24, 38, 39).

Autophagy regulation by both mTORC1 and AMPK is, however,

generally very unspecific and only responds to certain nutrient

conditions such as glucose or amino acid starvation (24). Selective

autophagy follows a similar initiation procedure that relies on the

assembly of multiple ULK complexes but is mostly independent of

mTORC1 (40, 41). These ULK1 assemblies form on cargo marked by

specific autophagic cargo receptors, such as sequestosome-1 (SQSTM1/

p62) and nuclear domain 10 protein 52 (NDP52) (42–44).

1.1.2 Nucleation
The nucleation phase of autophagy has proven to be

exceedingly complicated and hard to study, which is why it is still

not fully understood. In the following section we will outline the

main steps based on the current state of knowledge.

While various organelles have been shown to contribute to

autophagosome biogenesis, it has become clear that the ER serves as

a platform for this process in most cases (45–47). During

nucleation, the ULK1 complex is recruited to the phagophore

assembly site (PAS) at ER regions, which are enriched in vacuole

membrane protein 1 (VMP1) (48–50). ER transmembrane proteins

VAPA/B facilitate the recruitment of the ULK1 complex through

direct interaction with FIP200 and ULK1 (51). ATG9, a

transmembrane protein found in vesicles that originate from the

trans-Golgi, endosomes or even the plasma membrane, is recruited

to the PAS together with ULK1 and has been implicated as a seed

for the initial establishment of membrane contact sites in yeast (52)

and mammals (53, 54) (Figure 1, panel 2).

In the next step, ULK1 initiates the synthesis of

phosphatidylinositol 3-phosphate (PI3P) via the PI3K complex I

that consists of vacuolar sorting protein 34 (VPS34), 150kDa protein

(p150), Bcl-2 interacting protein (Beclin-1), ATG14L and nuclear

receptor-binding factor 2 (NRBF2). ULK1 directly phosphorylates

Beclin-1, which leads to the activation of VPS34 kinase activity that

produces PI3P (55–59). PI3P then regulates the recruitment of several

downstream autophagic factors such as WD repeat domain

phosphoinositide-interacting protein 2 (WIPI2) or the PI3P-

binding protein zinc-finger FYVE domain-containing protein 1

(DFCP1) (49, 60, 61). These PI3P-rich, DFCP1-positive regions are

termed the omegasome and are distinct from the autophagosome or

pre-autophagosome. Omegasomes act as a platform for the

transformation of phagophores into fully-fledged autophagosomes

as well as for membrane expansion and budding of fully-formed

autophagosomes (49, 62–64). WIPI proteins serve as PI3P effectors

and function as an adaptor for the lipidation machinery (ATG16L1

complex) driving membrane expansion in a PI3P-dependent manner

(60, 65) (Figure 1, panel 2).
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1.1.3 Elongation
Elongation of the phagophore requires the interplay of two

complexes that function as ubiquitin-like systems: the ATG16L1

complex and the ATG8 lipidation machinery. The formation of

the ATG16L1 complex is initiated by activation of the ubiquitin-

like protein ATG12 by ATG7 (E1-like enzyme) in an ATP-

dependent manner, resulting in the formation of a covalent

bond between ATG12 and ATG7. ATG3 then acts as an E2

facilitating the binding of ATG12 to ATG5. In the last step,

ATG16 is attached forming ATG12-ATG5-ATG16, also known

as the ATG16L1 complex (66–68). WIPI2b, a WIPI2 isoform,

directly interacts with ATG16L1 and recruits the complex to the

phagophore, where ATG16L1 acts similar to E3 enzymes to

promote the lipidation of ATG8 family proteins (65).

The ATG8 lipidation machinery contains six ATG8 family

proteins, which can be divided into two subfamilies: the
Frontiers in Immunology 03
microtubule-associated protein light chain 3 (LC3A, LC3B,

LC3C) and gamma-aminobutyric acid receptor-associated

protein (GABARAP, GABARAPL1, GABARAPL2) (69–71). LC3

is one of the most well-known markers of autophagosomes

(72, 73). Analogous to the conjugation of ubiquitin to target

proteins, lipidation occurs through the conjugation of

phosphatidylethanolamine (PE) to ATG8 proteins such as LC3.

ATG4, a cysteine protease, cleaves the C-terminal tail of LC3

exposing a glycine residue. This residue then interacts with the E1-

like ATG7 and is conjugated to PE by the E2-like ATG3. To fulfill

its function, ATG3 requires stimulation by the ATG16L1 complex

acting in an E3-like manner. Lipidation transforms LC3-I (nascent

and cytosolic) to LC3-II (conjugated to PE and attached to the

autophagosome) (22, 65, 68) (Figure 1, panel 3).

ATG4 can also induce deconjugation of ATG8 proteins from PE

and must be tightly regulated to prevent autophagosome biogenesis
FIGURE 1

The mechanism of autophagosome biogenesis. 1) Upon starvation, mTORC1 dissociates from ULK1, which is then activated via autophosphorylation
and phosphorylates ATG13 and FIP200. 2) ULK1 is recruited to the phagophore assembly site together with ATG9-positive vesicles. ULK1
phosphorylates the PI3K complex, inducing the production of PI3P. PI3P leads to the recruitment of WIPI2. 3) The ATG16L1 complex is recruited to
the growing autophagosome via WIPI2 and conjugates ATG8-family proteins such as LC3 to PE. Lipid influx is controlled via ATG2, which acts as a
channel funneling lipids from donor compartments. Autophagosome closure is mediated by the ESCRT complex. Membrane contacts are dissolved
via VMP1-mediated changes in local Ca2+ concentration. 4) Fully formed autophagosomes travel to the lysosome and undergo fusion mediated by
SNARE proteins, tethering factors and RABs. Cargo is then degraded by lysosomal hydrolases.
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from stalling. This process might be regulated by reactive oxygen

species (ROS) generated in mitochondria (74) or by

phosphorylation as shown in yeast (75).

Lipids required for ATG8 lipidation and membrane extension

are delivered to the phagophore via ATG2 and ATG9, where ATG9

acts as a seed to initiate lipid transfer by ATG2 that acts as a hose

funneling lipids from relevant compartments (e.g., the ER) to the

phagophore (52–54, 76–78) (Figure 1, panel 3). ATG9 may also

promote redistribution of the lipids to the inner layer through lipid

scramblases (52, 79). ATG8 lipidation facilitates further membrane

expansion by recruiting the rest of the autophagic machinery as

detailed below or by linking cargo receptors to phagophores during

selective autophagy via LC3 interacting regions (LIRs) (40).

After the phagophore has reached its final size, VMP1

promotes the dissociation of contacts between the ER and the

phagophore via local changes in Ca2+ concentrations until the

final scission event is then mediated by the endosomal sorting

complexes required for transport (ESCRT) machinery (80–83)

(Figure 1, panel 3).

1.1.4 Fusion and degradation
For an autophagosome to successfully complete its life cycle, it

needs to recruit proteins that facilitate travel from the PAS to the

perinuclear region, where autophagosomes fuse with lysosomes.

ATG8 family proteins link autophagosomes to kinesins via kinesin

adaptors, such as FYVE and coiled-coil domain containing

protein 1 (FYCO1) (84). Kinesins, but also dynein motor

proteins then mediate travel to the lysosome via microtubules.

ATG8 proteins are also responsible for the recruitment of the

homotypic fusion and protein sorting (HOPS) complex, a

tethering factor required for autophagosome-lysosome fusion

(85). The fusion between autophagosomes and lysosomes is

driven by the coordinated action of two distinct soluble N-

ethylmaleimide-sensitive factor attachment protein receptor

(SNARE) complexes (STX17-SNAP29-VAMP8 and YKT6-

SNAP29-STX7), tethering factors (e.g., the HOPS complex) and

Ras-associated binding proteins (RABs) (e.g., Rab7) (81, 86–89)

(Figure 1, panel 4). The exact mechanism of fusion between

autophagosomes and lysosomes is heavily regulated and has

been thoroughly reviewed (81, 86, 90).

Finally, after the fusion of mature autophagosomes with

lysosomes, autophagic cargo is degraded by lysosomal

hydrolases. This process allows recycling of essential nutrients

such as amino acids but also elimination of potentially pathogenic

substances (91).
1.2 Selective autophagy

During the process of selective autophagy, the autophagic

machinery is targeted to specific cargos via selective autophagy

receptors independent of the energy sensing pathways mTORC1

and AMPK. Selective autophagy can be classified based on different

types of cargo into mitophagy (damaged mitochondria),

aggrephagy (protein aggregates), xenophagy (intracellular

pathogens), and many more (3).
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Cargo selectivity is conferred by selective autophagy receptors.

The majority of selective autophagy receptors are soluble proteins

referred to as sequestosome-like cargo receptors (SLRs). Among

them the most prominent ones are SQSTM1/p62, NDP52, next to

BRCA1 gene 1 protein (NBR1), Tax1-binding protein 1 (TAX1BP1)

or optineurin (OPTN). Selective autophagy and its receptors have

been reviewed expertly elsewhere (3, 40, 92–95). In general, their

primary function is to create a direct link between the cargo and the

autophagic machinery allowing their selective degradation in

the lysosome.

These receptor proteins are characterized by the presence of

LIR motifs for the interaction with ATG8 family proteins such as

LC3 on the surface of phagophores, and many have ubiquitin-

binding domains capable of recognizing ubiquitinated cargo, thus

establishing a bridge between the cargo and the autophagic

machinery (3, 40, 92, 93). Selective autophagy receptors such as

NDP52, TAX1BP1 and p62 are also capable of directly recruiting

the ULK1/2 complex through binding to FIP200 (subunit of the

ULK1 complex) to initiate de novo autophagosome biogenesis at

the site of the cargo (40, 42, 43). Moreover, OPTN can directly

recruit ATG9A or TANK-binding kinase 1 (TBK1), while NIX can

recruit WIPI2, resulting in mitophagy induction (96–98).

A special role during the process of selective autophagy is

allocated to TBK1. Initially it was thought that the main role of

TBK1 during selective autophagy was facilitating the interaction

between ATG8 family protein members and the selective cargo via

selective autophagy receptors. We know now that the role of TBK1

in regulating selective autophagy is much broader than previously

thought with recent studies implicating TBK1 in the direct

recruitment of cargo receptors as well as the early autophagic

machinery to intracellular bacteria and mitochondria, which will

be described in more detail below (40, 99).
2 cGAS-STING signaling

One of the main defense systems against pathogenic bacteria or

viruses is the innate immune system. It utilizes pattern recognition

receptors (PRRs) to detect and respond to various pathogen- or

damage-associated molecular patterns (PAMPs or DAMPs) (100).

One such innate immune pathway that was discovered over the last

two decades is the cGAS-STING signaling cascade, which

recognizes cytosolic double-stranded DNA (dsDNA) and triggers

the expression of interferons (IFN) and interferon-stimulated genes

(ISGs) (101). ISGs boost the body’s defense against disease by

inducing the antiviral state. Cyclic GMP-AMP synthase (cGAS)

acts as a PRR for cytosolic dsDNA and generates the second

messenger 2´3´-cyclic GMP-AMP (cGAMP). cGAMP binds to

stimulator of interferon genes (STING), which further activates

interferon regulatory factors 3 and 7 (IRF3, IRF7) that drive type I

IFN expression or nuclear factor kappa-light-chain-enhancer of

activated B-cell (NF-kB) that induces the expression of

proinflammatory genes (101–104).

Chronic or heightened activation of cGAS-STING signaling has

been associated with autoimmune diseases such as Aicardi-

Goutières syndrome and other pathologies. Additionally, it is also
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a prominent target for cancer research due to its interplay with

many chemotherapeutic treatments, radiation therapy and immune

checkpoint inhibitors, which could lead to abscopal responses and

improve patient outcome (105, 106).

Recent reports have linked the cGAS-STING pathway with

autophagy, revealing multiple regulatory mechanisms and

interactions that highlight the potential of exploiting these

pathways for cancer therapy.
2.1 The mechanism of cGAS-
STING signaling

Under physiological conditions, DNA is exclusively found in the

nucleus and in mitochondria. However, certain types of cellular stress

can lead to the accumulation of DNA in the cytosol, where it is then

recognized by cGAS. Cytosolic DNAmay originate fromDNA viruses,

intracellular bacteria or RNA viruses causing the release of

mitochondrial DNA (mtDNA) (101, 107–111). In addition, cGAS

can recognize not only foreign DNA but also endogenous DNA that is

released into the cytosol from mitochondria or micronuclei resulting

from mitotic defects (Figure 2). Extracellular DNA originating from

dead cells can also be taken up by cells and stimulate the cGAS-STING

pathway (111–116). cGAS is also found in the nucleus but is kept

inactive due to nucleosome binding and chromatin tethering (117).

However, nuclear cGAS can be activated by human immunodeficiency

virus (HIV) in dendritic cells and macrophages (118).

Structurally, cGAS can bind double-stranded DNA as well as

single-stranded DNA with secondary structures and has even been

shown to bind RNA-DNA hybrids (119–122). Even though both
Frontiers in Immunology 05
small and large DNA fragments can be bound, cGAS activation

requires a certain minimal fragment size and has been shown to

improve with increasing DNA length (120–124). A very recent

publication proposes that mechanical flexibility of DNA, which is

increased in the case of DNA damage and higher AT content,

promotes the binding and activation of cGAS (125).

Upon DNA binding, cGAS undergoes a conformational change,

leading to activation and dimerization with two DNA molecules

sandwiched in between (124, 126–128). Those dimers can undergo

liquid-liquid phase separation in a DNA length-dependent manner,

forming condensates that act as “minireactors” and concentrate

cGAS as well as substrates to increase the catalytic activity of cGAS.

This could also explain why longer DNA fragments activate cGAS

more efficiently (129).

Once activated, cGAS uses GTP and ATP as substrates to

produce the secondary messenger cGAMP, which can then be

recognized by the ER transmembrane protein STING (130–132).

Additionally, cGAMP can diffuse into neighboring cells via gap

junctions or be released into the local microenvironment to activate

STING signaling in surrounding cells (133–137).

STING resides at the ER membrane as a dimer, where two C-

terminal ligand-binding domains form a binding pocket for

cGAMP. Binding of cGAMP induces a conformational change

that facilitates oligomerization of STING dimers and STING

activation (138–140).

Active STING is translocated from the ER to the ER-Golgi

intermediate compartment (ERGIC) and Golgi via COPII vesicles,

which requires secretion-associated and Ras-related GTPase 1A

(SAR1), SEC24 homolog C (SEC24C) and ADP-ribosylation factor

(ARF) family members (141).
FIGURE 2

The cGAS-STING pathway is directly connected to autophagy. cGAS-STING signaling is an innate immune pathway, responsible for the production of type I
IFNs. Extracellular stressors such as genotoxic stress or viral infection as well as genomic instability can lead to the appearance of dsDNA in the cytosol. cGAS
is activated upon binding dsDNA, which leads to the production of the secondary messenger cGAMP. cGAMP then activates STING, located at the ER,
inducing its oligomerization and translocation to the Golgi via the ERGIC. Alternatively, cGAMP can also trigger the activation of STING in neighbouring cells
via intercellular transport mediated by gap junctions. At the Golgi, STING induces the phosphorylation of TBK1 and ultimately IRF3 leading to its translocation
to the nucleus where phosphorylated IRF3 drives the transcription of type I IFNs. Each distinct step of the cGAS-STING pathway is interconnected with
autophagy. For example, STING, upon activation, leads to the formation of autophagosomes at the ERGIC in a WIPI2-dependent manner. This acts as a
negative feedback loop by degrading dsDNA and other members of the pathway, such as cGAS or IRF3. Additionally, microautophagy is responsible for the
final termination of STING signaling in an ESCRT-dependent manner.
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At the Golgi and in post-Golgi compartments, TBK1 is

recruited and then activated by STING (142). Activated TBK1

phosphorylates the C-terminal tail (CTT) of STING at several

residues including Ser366, which is part of a highly conserved

motif (pLXIS) (143, 144). This motif recruits IRF3, which is then

phosphorylated by TBK1, inducing i ts dimerizat ion.

Phosphorylated IRF3 dimers can translocate into the nucleus

where they act as transcription factors for type I interferons and

other immune-related proteins (143–145) (Figure 2). After

activation of IRF3, cGAMP-bound STING oligomers are

transported through the trans-Golgi and sorted into RAB7-

positive late endosomes that travel to lysosomes for degradation

via multivesicular bodies (141).

In addition to its function as an activator of type I IFN synthesis

and autophagy, STING can also activate the NF-kB pathway in a

TBK1-IKKϵ-dependent or TBK1-independent manner that involves

DNA damage response factors ataxia telangiectasia mutated (ATM)

and poly(ADP-ribose) polymerase 1 (PARP1) (146–148).
3 Interactions of autophagy with the
cGAS-STING pathway

3.1 cGAS

The interplay between autophagy and cGAS occurs through (i)

cGAS-Beclin-1 interaction that promotes autophagic degradation of

cytosolic dsDNA, (ii) cGAS-LC3 interaction that promotes

micronucleophagy, and (iii) degradation of cGAS through p62-

mediated selective autophagy (Figure 3).

Robust activation of the enzymatic function of cGAS is

dependent on the length of dsDNA fragments and longer
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fragments (>45bp) promote robust activation of cGAS (123, 149).

Conversely, small cytosolic dsDNA fragments decrease cGAS-

STING signaling by competing with long dsDNA fragments for

cGAS binding. Binding of small dsDNA fragments to cGAS

promotes the binding of cGAS to Beclin-1. By binding to Beclin-

1, cGAS outcompetes run domain Beclin-1 interacting and

cysteine-rich containing protein (Rubicon) (150). Rubicon

negatively regulates maturation and fusion of the autophagosome

with the lysosome and endocytic trafficking by suppressing VPS34

kinase activity (151–153). Binding of cGAS to Beclin-1 leads to the

release of Rubicon, thereby enabling autophagic degradation of

cytosolic dsDNA and resulting in decreased cGAS-STING signaling

(Figure 3). Moreover, Beclin-1 also suppresses the NTase activity of

cGAS to decrease the production of the secondary messenger

cGAMP and type I IFN production (150, 154).

Furthermore, cGAS itself has been proposed as a potential

selective autophagy receptor for autophagic degradation of

micronuclei a lso known as micronucleophagy (155) .

Overexpression of cGAS significantly reduces the number of

micronuclei in an autophagy-dependent manner independent of

its role in cGAS-STING signaling. cGAS was shown to directly

interact with the ATG8 family protein LC3 and colocalize at

micronuclei, thereby facilitating the recruitment of the autophagic

machinery to enable lysosomal degradation of micronuclei

(Figure 3). Moreover, cGAS-driven micronucleophagy also

dampens cGAMP production and altogether exerts a negative

effect on cGAS-STING signaling and innate immunity (155).

In another report, it was shown that K48-linked ubiquitinated

cGAS is directly sequestered into the lysosome for degradation by

interacting with the selective autophagy receptor p62 (Figure 3).

Upon viral infection, the ISG tripartite motif 14 (TRIM14) directly

binds to the C-terminus of cGAS and recruits ubiquitin-specific
FIGURE 3

Autophagy as a negative regulator of cGAS. cGAS is a cytosolic sensor for long cytosolic dsDNA fragments. Binding to long dsDNA fragments leads to
productive cGAS-STING signaling culminating in the production of type I IFNs. Conversely, binding of small cytosolic dsDNA (<45bp) promotes binding of
cGAS to Beclin-1, thereby reducing the interaction of Beclin-1 with Rubicon, a negative regulator of autophagy. This gives rise to the production of PI3P and
the formation of autophagosomes allowing degradation of cytosolic dsDNA and negatively impacting cGAS activation. cGAS can also act as a selective
autophagy receptor for micronuclei causing their ultimate degradation and thereby prohibiting them from releasing DNA into the cytosol. Finally, K48-linked
ubiquitination of cGAS promotes selective p62-dependent autophagic degradation of cGAS, limiting the available amount of activatable cGAS.
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peptidase 14 (USP14) to prevent K48-linked ubiquitination and

degradation of cGAS. Consequently, cGAS evades p62-mediated

autophagic degradation and can stimulate type I IFN signaling after

viral infection (156).
3.2 STING

STING and autophagy are connected on four levels: (i) STING

facil itates non-canonical induction of autophagy, (i i)

microautophagy and selective macroautophagy can induce STING

degradation, (iii) ULK1 negatively regulates STING-IRF3 signaling

by phosphorylating STING, and (iv) non-canonical RAB22-

mediated autophagy can promote intercellular spreading of

activated STING (Figure 4).

Autophagy induction has been proposed to be the primordial

function of cGAS-STING signaling before interferon induction

evolved. STING can induce autophagy independent of TBK1 and

IRF3 via an LR motif at the C-terminus of STING (141, 157). This

motif can also be found in other organisms such as Nematostella

vectensis that are lacking the C-terminal activation domain required

for interferon production. Upon cGAMP binding, STING moves to

the ERGIC in a COPII- and ARF GTPase-dependent manner. The

ERGIC can then serve as a membrane source for LC3 lipidation,

which is dependent on the adaptor protein WIPI2 and ATG5 but

does not require ULK1 or VPS34, indicating that this non-canonical

STING-dependent induction of autophagy can “skip” early steps of

the canonical autophagy mechanism (141). STING directly recruits

WIPI2 to STING-positive vesicles and competes with PI3P

(canonical bulk autophagy) for binding to WIPI2, adding another

layer of complexity to the feedback mechanism between autophagy

and cGAS-STING signaling (158) (Figure 4). STING-induced non-
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canonical autophagy was shown to inhibit herpes simplex virus

(HSV-1) (159).

Myristic acid has recently emerged as a regulator of STING

degradation via N-myristoylation of ARF1, which is involved in

directing the membrane trafficking and autophagic degradation of

STING, thereby limiting cGAS-STING-induced interferon

response. Upon viral infection the production of myristic acid is

reduced due to a disruption in the cellular lipid metabolism, which

alleviates autophagy-dependent STING degradation (160).

Another recent report postulated that STING-induced LC3

lipidation happens independent of WIPI2 at perinuclear single

membrane ve s i c l e s , r a t he r than doub l e -membrane

autophagosomes, and requires both the V-ATPase as well as the

WD40 domain of ATG16L1 required for interaction with V-

ATPase (161, 162). Autophagy-independent LC3 lipidation occurs

during influenza A virus infection and mouse models lacking the

WD40 domain of ATG16L1 show a reduction in major

histocompatibility complex class II (MHC-II)-dependent antigen

presentation in dendritic cells (162). The V-ATPase-ATG16L1 axis

was also shown to initiate intracellular clearance of bacteria (163).

In line with this, STING was recently shown to have proton channel

activity that is essential for both non-canonical LC3 lipidation and

inflammasome activation. This would allow for mechanistic

decoupling of IFN induction via phosphorylated STING and

proton channel-dependent LC3 lipidation and inflammasome

activation (164). In conclusion, STING can induce non-canonical

autophagy in a WIPI2-dependent manner at the ERGIC and

autophagy-independent LC3 lipidation at perinuclear single

membrane vesicles facilitating defense against viruses and bacteria.

While STING can induce autophagy, autophagy can degrade

STING through multiple mechanisms including microautophagy

and selective macroautophagy. In microautophagy, cytoplasmic
FIGURE 4

STING signaling is linked to autophagy. STING directly induces the formation of autophagosomes at the ERGIC in a WIPI2-dependent manner
utilizing the ERGIC as a membrane source. This process is independent of “canonical” upstream autophagic machinery such as ULK1 or VPS34.
However, STING itself is not degraded this way but rather by microautophagy where it is packaged into clathrin-coated vesicles from the Golgi by
AP-1. These vesicles are directly taken up by lysosomes thereby terminating STING signaling. Alternatively, upon activation by cGAMP, STING can be
transported to neighbouring cells inside non-canonical RAB22A-dependent autophagosomes that fuse with endosomes. The emerging new vesicle
can inactivate Rab7, thereby escaping lysosomal degradation and allowing STING pathway activation in surrounding tissues.
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cargo is directly engulfed by the lysosome. STING is transported by

clathrin-coated vesicles and recycling endosomes (141) and directly

encapsulated in lysosomal associated membrane protein 1 (LAMP-

1) positive compartments through the ESCRT components tumor

susceptibility gene 101 (TSG101) and vacuolar sorting-associated

protein 4 (VPS4) (165). STING packaging from the trans-Golgi into

clathrin-coated vesicles is mediated by the cargo adaptor complex 1

(AP-1), which also controls the termination of STING-dependent

immune activation by an as of yet unknown mechanism (166)

(Figure 4). In addition, basal STING levels seem to be kept under

control by the ER-associated degradation (ERAD) system. The

ERAD protein complex SEL1L-HRD1 directly interacts with and

mediates targeted degradation of basal inactive STING thereby

l imit ing the act ivatable STING pool and preventing

overactivation of the immune response (167). Alternatively,

STING may be degraded through selective macroautophagy,

whereby TBK1-mediated phosphorylation of p62 at S403

increases its affinity for K63-ubiquitinated STING (168) and

ubiquitously expressed transcript (UXT) may facilitate the

interaction between p62 and STING (169). Taken together,

microautophagy and p62-mediated selective autophagy regulate

STING degradation and thereby keep the interferon response

in check.

Autophagy has also been shown to have a more direct function

in negatively regulating STING-dependent signaling. ULK1

phosphorylates STING at S366, thereby inhibiting IRF3- but not

NF-kB-dependent interferon production upon stimulation with

dsDNA (170).

A non-canonical autophagy pathway that relies on RAB22A

was shown to facilitate the spreading of activated STING to

neighboring cells. RAB22A activates phosphatidylinositol 4-

phosphate 3-kinase C2 domain-containing subunit alpha

(PI3K2A) to produce phosphatidylinositol 4-phosphate (PI4P)

that recruits ATG12-ATG5-ATG16L1. The ATG16L1 complex

then induces the formation of ER-derived non-canonical

autophagosomes containing activated STING. RAB22A-induced

autophagosomes fuse with early endosomes, while inhibiting

RAB7-mediated fusion with lysosomes. Secretion of the RAB22A-

induced extracellular vesicles enables intercellular transfer of

activated STING and the spreading of interferon induction to

neighboring cells similarly to cGAMP (171) (Figure 4).

In summary, STING can induce non-canonical formation of

autophagosomes via WIPI2 using the ERGIC as a source for

autophagosome lipidation and promotes autophagy-independent

LC3 lipidation. However, none of these pathways seem to mediate

the degradation of STING. Instead, STING is degraded by direct

microautophagic uptake by lysosomes after being packaged into

clathrin-coated vesicles, which is mediated by AP-1. In addition to

microautophagic degradation, p62-dependent degradation of

STING might also contribute to this phenomenon. Lastly, STING

can be taken up by non-canonical RAB22A-induced

autophagosomes that do not fuse with lysosomes but are secreted

to surrounding cells, spreading active STING. Overall, STING

positively regulates and induces different types of autophagy,

while autophagy negatively impacts STING signaling (Figure 4).
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3.3 TBK1

The kinase TBK1 is known to fulfill a broad range of functions in

our cells ranging from IFN signaling, innate immunity and

inflammation to autophagy. It is likely that distinct functions of

TBK1 in different cellular pathways are due to its cellular localization

and association with different adaptor proteins (99, 172). Moreover,

TBK1 may simultaneously regulate autophagy and IFN signaling by

controlling starvation-induced autophagy and different forms of

selective autophagy (e.g., mitophagy or xenophagy). TBK1 may

regulate the clearance of dsDNA in the cytosol and thereby

modulate cGAS-STING activation and IFN production. TBK1 can

regulate autophagy by: (i) activating or inhibiting mTORC1, (ii)

inhibiting AMPK, (iii) promoting mitophagy, and (iv) promoting

xenophagy (Figure 5).

During starvation-induced autophagy, TBK1 can positively and

negatively regulate autophagic flux by inhibiting or activating

mTORC1 respectively (173, 174). TBK1 can phosphorylate and

activate regulatory-associated protein of mTOR (RAPTOR), which

decreases activity of mTORC1 and promotes autophagy (173).

Besides inhibition of mTORC1, TBK1 can directly activate

mTORC1 by phosphorylation of mTOR on S2159 to control

innate immunity (174) (Figure 5). Whether TBK1 activates or

inhibits mTORC1 seems to be cell-context dependent. TBK1 can

also initiate autophagy under starvation conditions by

phosphorylating and activating the autophagosome-lysosomal

fusion protein syntaxin 17 (STX17). Phosphorylated STX17

translocates from the Golgi to the mammalian PAS and controls

the formation and assembly of the ULK1 complex, thereby

promoting initiation of the autophagic process (175).

The energy sensor AMPK is also regulated by TBK1. Mice

with high fat diet have high protein levels of TBK1, which

negatively regulates AMPK activity. At the same time, active

AMPK indirectly enhances TBK1 activity by promoting ULK1-

mediated phosphorylation of TBK1. This creates a negative

feedback loop whereby AMPK activates TBK1, which

downregulates AMPK, possibly explaining diminished obesity in

TBK1 KO mice (176). Since AMPK is known to promote

autophagy via direct activation of ULK1 (24), this negative

feedback loop between TBK1 and AMPK can negatively affect

autophagic flux (Figure 5).

TBK1 is also involved in the regulation of mitophagy, especially

in the early steps, where it is instrumental for initiating

autophagosome biogenesis (43, 97, 177, 178). Mitophagy is

activated by PTEN-induced kinase I (PINK1), which upon

mitochondrial depolarization accumulates at the outer

mitochondrial membrane (OMM) followed by the recruitment of

PARKIN and ubiquitination of mitochondrial proteins (40, 179).

During PINK1-PARKIN-induced mitophagy, the selective

autophagy receptors OPTN and NDP52 redundantly activate

TBK1, which in turn phosphorylates the mitophagy receptors

OPTN, NDP52 and p62 to ensure their retention at damaged

mitochondria and to facilitate the recruitment of ATG8 family

proteins (180, 181). TBK1-mediated phosphorylation of NDP52

facilitates direct interaction with the FIP200/ULK1 complex thus
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enabling spatial proximity to ubiquitinated cargo to drive

autophagosome biogenesis (43). OPTN-induced mitophagy is not

necessarily dependent on the binding to the FIP200/ULK1 complex

as shown for NDP52. In fact, TBK1 takes over the functions of the

ULK1 complex and directly interacts with the PI3K complex I to

initiate mitophagy (97). TBK1-mediated phosphorylation of OPTN

supports mitophagy by stabilizing the binding of OPTN to

ubiquitinated cargo (181). Reciprocally, OPTN-mediated TBK1

relocalization to mitochondria is crucial for proper TBK1

activation (182, 183). TBK1 also phosphorylates RAB7A, which

promotes the recruitment of ATG9-positive vesicles to damaged

mitochondria enabling efficient mitophagy (184) (Figure 5).

Recently, it was shown that mitochondria can be cleared upon

PINK1-PARKIN mediated mitophagy in the absence of the

mATG8-conjugation machinery and independent of lysosomal

degradation via a process called autophagic secretion of

mitochondria (ASM). ASM promotes cGAS-STING signaling in

recipient cells. The exact mechanism of how mtDNA-containing

extracellular vesicles get in contact with cytosolic cGAS of recipient

cells remains to be elucidated (185).
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Xenophagy is another form of selective autophagy responsible

for elimination of pathogens or clearance of invading bacteria

which, like mitophagy, relies on TBK1 (3). During early

xenophagy, Galectin-8 (GAL8) recognizes exposed glycans on

ruptured vacuoles and subsequently recruits the selective

autophagy receptor NDP52. Binding of NDP52 to the two

adaptor proteins NAP1 and SINTBAD enables recruitment of

TBK1 and the formation of an NDP52-ULK1-TBK1 super

complex, which is essential for WIPI2-positive phagophore

formation and for the recruitment of LC3 (42) (Figure 5). In

addition, the ubiquitin ligase RNF213 directly ubiquitylates

lipopolysaccharides (LPS) upon vacuole rupture, followed by the

recruitment of linear (M1) Ub assembly complex (LUBAC), which

is responsible for the assembly of M1 ubiquitin chains. The

recruitment of the selective autophagy receptor OPTN and the

immune adaptor NF-kB essential modulator (NEMO) is dependent

on LUBAC function, while the recruitment of the selective

autophagy receptors p62 and NDP52 requires only RNF213

(186). TBK1 directly phosphorylates S403 of p62, which is

required for the autophagic function of p62 in driving
FIGURE 5

TBK1 regulates different types of autophagy. 1) mTORC1: TBK1 can positively and negatively affect autophagic flux via direct or indirect regulation of
mTORC1. Phosphorylation of RAPTOR by TBK1 decreases the activity of mTORC1 and promotes autophagy. In addition, TBK1 can directly
phosphorylate mTOR, which increases mTORC1 activity and decreases autophagic flux. 2) AMPK: AMPK can enhance TBK1 activity via ULK1-
mediated phosphorylation of TBK1. High levels of active TBK1, however, negatively regulate AMPK, thus creating a negative feedback loop that can
negatively affect autophagic flux. 3) Mitophagy: During PINK1-PARKIN-mediated mitophagy, OPTN and NDP52 redundantly activate TBK1, which in
turn phosphorylates OPTN and NDP52 to ensure their retention at damaged mitochondria and facilitate the recruitment of ATG8 family proteins. In
addition, TBK1-mediated phosphorylation enables spatial proximity to the autophagic machinery by facilitating the binding of NDP52 to the FIP200/
ULK1 complex. During OPTN-induced autophagy, TBK1 can take over the functions of the ULK1 complex and directly interact with the PI3K complex
to drive mitophagy. Moreover, by phosphorylating RAB7A, TBK1 enables recruitment of ATG9-positive vesicles to damaged mitochondria.
4) Xenophagy: Gal8 recognizes exposed glycans and recruits NDP52. Subsequently, TBK1 is recruited via the two adapter proteins NAP1 and
SINTBAD leading to the formation of a NDP52-ULK1-TBK1 super complex, which is essential for phagophore formation. In addition, TBK1 directly
phosphorylates the selective autophagy receptors p62 and OPTN, which are crucial for autophagic clearance of ubiquitin-coated bacteria.
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autophagosome maturation (187). OPTN is also directly

phosphorylated by TBK1, thereby enhancing LC3 binding and

autophagic clearance of ubiquitin-coated bacteria (188) (Figure 5).

TBK1 is known to be tightly regulated by multiple post-

translational modifications to prevent sustained and prolonged

immune activation (99, 189–191). The E3 ubiquitin ligase neural

precursor cell-expressed developmentally downregulated gene 4

(NEDD4) controls the stability of TBK1 through K27-linked

polyubiquitination. The selective autophagy receptor NDP52

binds polyubiquitinated TBK1 and elicits autophagic degradation,

resulting in decreased type I IFN signaling (189) (Figure 6).

Lysosomal degradation of TBK1 is also promoted by ubiquitin

specific peptidase 19 (USP19), which interacts with the TBK1-

HSPA8 complex via the chaperone-mediated autophagy (CMA)

motif of TBK1 (190) (Figure 6). Another way in which autophagy

negatively regulates TBK1 stability is through the autophagy protein

ATG4B, which serves as an adaptor for the recruitment of TBK1 to

gamma-aminobutyric acid receptor-associated protein

(GABARAP) via its LIR motif. Subsequently, TBK1 is sequestered

into the lysosome and degraded (Figure 6). Pharmacological

inhibition of ATG4B-dependent autophagic degradation of TBK1

was shown to increase the overall antiviral response (192). Taken

together, TBK1 stability is regulated by autophagy to prevent

sustained type I IFN production and prolonged immune reaction.
3.4 IRF3

Autophagic degradation of IRF3 is another mechanism of

keeping immune activation in check. NDP52 mediates the

selective degradation of IRF3 upon viral infection (Figure 7).

Under homeostatic conditions, the deubiquitinase PSMD14

cleaves K27-linked polyubiquitin chains at K313 of IRF3, thereby

preventing autophagic recognition and degradation (193).

Furthermore, OUT deubiquitinase 7B (OTUD7B) promotes

autophagic degradation of IRF3 upon viral infection by enhancing

the association between IRF3 and p62, thereby negatively regulating

the immune response. OTUD7B directly interacts with IRF3 and

activates p62 by removing K63 polyubiquitin chains leading to

enhanced p62 oligomerization. This allows more efficient

degradation of IRF3 in a p62-dependent manner (194) (Figure 7).

The histone deacetylase HDAC10 can bind to IRF3 in a deacetylase-

independent manner and inhibit i ts TBK1-dependent

phosphorylation at S396. Viral infection induces targeted

autophagic degradation of HDAC10 resulting in increased

phosphorylation of IRF3 and enhanced interferon response (195).
4 Autophagy and cGAS-STING
signaling in cancer

One of the major functions of the immune system is the

prevention of malignant transformation, cancer progression as

well as metastasis (196, 197). Modern cancer therapies utilize the

immune system to target and destroy cancer cells and to provide

lasting recovery. One of the main pathways involved in response to
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radiotherapy and chemotherapies is cGAS-STING signaling. In

recent years, many therapies specifically targeting the immune

signaling pathway have been tested (198).

Since autophagy is one of the main players in the degradation of

damaged organelles and protein aggregates to maintain cellular

homeostasis and is also tightly connected to other essential cellular

signaling pathways like nutrient sensing or cell death, deregulation

of this pathway can have severe consequences in cancer

development and progression (19, 199).

Both cGAS-STING signaling and autophagy were shown to

form multiple signaling complexes with different cellular effectors

that may exert pro- or anti-tumorigenic functions at different stages

of the disease (1, 200). We will provide an overview of the

involvement of cGAS-STING signaling and autophagy in cancer

progression and treatment strategies individually, as well as their

interactions in the context of cancer and how this might affect

potential therapeutic strategies.
4.1 cGAS-STING and cancer

Genomic instability resulting from defects in DNA damage

response, chromosomal instability or defects in chromosome

segregation can lead to the formation of micronuclei and generation
FIGURE 6

Multiple modes of autophagy negatively regulate TBK1. ATG4B
directly associates with TBK1 and acts as an adapter mediating the
direct LIR-dependent interaction between the ATG8 family protein
GABARAP and TBK1 leading to TBK1 degradation via the
autophagosome. The E3 ubiquitin ligase NEDD4 is responsible for
the deposition of K27-linked polyubiquitin chains on TBK1, which
can be recognized by NDP52 causing selective degradation of TBK1.
Conversely, TBK1 can also be degraded by chaperone-mediated
autophagy via TBK1 CMA motif that is recognized by the CMA
adapter proteins HSPA8 and USP19.
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of aberrant cytosolic dsDNA fragments (113, 201, 202). Micronuclei

are small nuclei-like structures containing chromatin encapsulated by

the nuclear envelope, which arise from chromosomal instability (203).

Micronuclei can rupture and release genomic dsDNA into the cytosol,

which is directly engaged by cGAS (113, 204). In addition to genomic

dsDNA, dsDNA released from mitochondria can also directly activate

the cGAS-STING pathway (205). Another way to activate cGAS is

through dying tumor cells, which release DNA into their surroundings.

This DNA can be taken up by dendritic cells and activate the cGAS-

STING pathway (206).

One of the major concepts in cancer biology is the cancer-

immunity cycle, a cyclic self-propagating process that leads to the

initiation and amplification of T-cell responses against cancer cells

(197). Functional STING signaling affects multiple stages of the

cancer-immunity cycle and can enhance tumor-specific T-cell

responses (197, 198, 207). Type I IFNs produced by activation of

the cGAS-STING pathway instigate the differentiation and

maturation of antigen-presenting cells (APCs) and the expression

of MHC molecules, thereby facilitating enhanced tumor antigen

presentation (208–211). Consequently, cGAS-STING signaling is

important for priming, activation and infiltration of tumor-specific

cytotoxic T cells (212–214). Active cGAS-STING signaling has also

been linked with the production of certain chemokines that recruit

T cells to the tumor site such as CXCL10, as well as induction of T-

cell stemness (197, 215). Generally, the induction of the type I IFN

response targets different immune cells from antigen-presenting

dendritic cells, T cells to natural killer (NK) cells (200). In addition

to the production of type I IFNs, STING activation can induce the

NF-kB pathway and the expression of various proinflammatory

cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-a

(TNF-a) (200). Apart from its intrinsic function in tumor and

immune cells, cGAS-STING can signal intercellularly by cGAMP

spreading to neighboring cells via gap junctions (134, 216, 217).

This process is an active field of study and has recently been

reviewed (217). Conventional cancer therapies including radio-
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and chemotherapy can induce cGAS-STING and anti-tumor

immunity alone or in combination with STING agonists and

immune checkpoint blockade (198, 218, 219).

In contrast to its anti-tumorigenic function, cGAS-STING

signaling has also been implicated in oncogenesis (200, 220–222).

The major culprits seem to be chronic type I IFN production and

inflammation, which promote cancer cell invasion, metastasis and

cancer cell stemness (200, 223–225). Recently, active STING

signaling has been linked to the survival of chromosomally

unstable cancers in an IL-6 dependent manner involving both

NF-kB and signal transducer and activator of transcription 3

(STAT3) activation (226). Additionally, chromosomal instability

can promote metastasis via STING-dependent NF-kB
activation (227).

Overall, the relationship between pro- and antitumorigenic

functions of the cGAS-STING pathway are complex and highly

dependent on the genetic makeup of the tumor as well as the tumor

microenvironment. Recent therapeutic approaches have mostly

focused on the induction of the pathway with some promising

results that seem to outweigh the negative effects. However,

preventing chronic induction of type I interferons by using short,

focused bursts of interferon induction might prove valuable in the

future in preventing possible side effects.
4.2 Autophagy and cancer

Similar to cGAS-STING signaling, the function of autophagy in

cancer development and therapy is complex. The effect of

autophagy on cancer is strongly dependent on the stage of the

disease. Initially, autophagy is involved in the control and

prevention of malignant transformation. Since autophagy mostly

acts in a cytoprotective fashion, this also applies to cells that have

already turned to malignancy, providing them with multiple tools to

avoid detection and destruction (1, 19, 228).
FIGURE 7

IRF3 is selectively degraded via the autophagic cargo receptors p62 and NDP52. The deubiquitinase OTUD7B removes ubiquitin chains from p62,
thereby allowing it to more efficiently oligomerize. This allows for tighter association between p62 and IRF3, causing selective autophagic
degradation of IRF3. Autophagic degradation of IRF3 is further promoted by the selective cargo receptor NDP52, which recognizes K27-linked
polyubiquitin chains on IRF3, thereby inducing its autophagic degradation.
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4.2.1 Tumor suppression
In early stages of tumorigenesis autophagy may act as a tumor

suppressor by exhibiting various cytoprotective effects such as

degradation of damaged organelles or proteins and maintenance

of cellular homeostasis. Indeed, several reports have shown that

depletion of certain autophagy-related genes frequently occurs in a

variety of cancers to enable proper tumorigenesis (229). The first

step in tumorigenesis is the transformation of a pre-malignant cell

into a neoplastic precursor, which can be inhibited by autophagy via

cellular senescence. Autophagy can remove damaged mitochondria

that would otherwise release reactive oxygen species (ROS) or

micronuclei that act as a source of genomic instability. Autophagy

can also maintain healthy stem cell niches; however, upon

completion of malignant transformation, autophagy may promote

tumor growth by maintaining cancer stem cells, especially in

combination with tumor hypoxia (230).

4.2.2 Tumor promotion
In advanced late-stage tumors, autophagy was shown to

promote tumor growth. At this stage, the tumor is exposed to

various types of stress such as nutrient deprivation or hypoxia. Due

to high proliferation rates of the tumor, the availability of high

amounts of nutrients is indispensable. Because of the recycling

capacity of autophagy, nutrients can be made available for the

tumor to fulfill its high energetic demands. Therefore, the tumor

can hijack the autophagic machinery resulting in enhanced stress

tolerance and cancer cell survival (229, 231)

RAS-driven cancers are especially dependent on autophagy for

tumor progression and malignancy (232). Autophagy inhibition in

those tumors affects multiple aspects of cancer metabolism such as

lipid metabolism (233), amino acid recycling (234) and nucleotide

homeostasis (235), making it a promising therapeutic strategy for

RAS-driven cancers.

Furthermore, autophagy has been implicated in chemotherapy

resistance. Treatment with chemotherapeutics like 5-fluorouracil or

cisplatin was shown to induce protective autophagy in a variety of

different cancer types, thereby restricting the efficacy of those drugs

and promoting resistance. Combining autophagy inhibitors with

chemotherapeutic drugs may provide a promising strategy for

overcoming cancer drug resistance (236–239).

A lot of effort has been poured into finding suitable biomarkers

associated with autophagy that could guide available treatments

options. LC3B has been identified as a potential biomarker and high

LC3B rates can predict poor prognosis in hepatocellular carcinoma

as well as colon cancer and TNBC, while p62 has also been used as a

biomarker for colon cancer (240–242). In TNBCs with high LC3B

rates, autophagy inhibition showed promising results as proof of

concept (243).

Since many pancreatic cancers seem to rely on high autophagy

rates for tumor growth, autophagy inhibitors may prove beneficial

for the treatment of pancreatic tumors (244, 245). Autophagy

inhibition may sensitize pancreatic cancer to radiotherapy, as

radiation was shown to induce autophagy (246). In pancreatic

cancer, autophagy has been linked with the degradation of MHC-

I, thereby limiting antigen presentation and promoting immune

evasion (247).
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Currently the only two Food and Drug Agency (FDA)-

approved autophagy inhibitor drugs are chloroquine (CQ) and

hydroxychloroquine (HCQ). In the context of cancer, multiple

clinical trials using CQ or HCQ either in combination or as

monotherapy are currently in progress showing partly promising

results in terms of anticancer effects and toxicity in early phase

studies. Since the majority of clinical trials are either in phase I or II,

further evaluation and testing is needed regarding long term toxicity

and potential adverse effects associated with those drugs (248–252).

Unfortunately, one of the main downsides of using CQ and HCQ is

the high degree of off target effects (253). An effort to produce highly

specific small molecule inhibitors that might be better suited as

targeted treatments in patients is under way (18, 254).

In conclusion, targeting autophagy might be a promising

strategy for cancer therapy. However, the lack of clinically

suitable autophagy inhibitors and the accompanying effects on the

tumor, which are dependent on the genetic makeup and stage of the

tumor, must be considered and further improved to ensure

favorable outcomes for patients.
4.3 Autophagy and hypoxia

Cancer cells are part of the tumor microenvironment (TME),

which includes non-cancerous cells present in the tumor as well as

surrounding stroma and various cytokines and chemokines that are

secreted. The TME generally tends to promote cancer progression

as well as therapy resistance (255, 256). One of the players shaping

the TME and its tumorigenic effects is hypoxia. Due to their fast

proliferation, tumors can rapidly outgrow their vasculature leading

to low oxygen levels. To compensate for their lack of oxygen, cells

utilize hypoxic signaling mediated mainly by HIF1 (257). HIF1 is a

transcription factor that can bind to hypoxia response elements in

promoters, which leads to the transcription of genes involved in cell

survival, proliferation and autophagy (258–260). HIF1 is a

heterodimer that consists of HIF1a and HIF1b. Both subunits are

constitutively expressed, however, during normoxia HIF1a is

polyubiquitinated by the VHL complex mediating its degradation

by the proteasome. Upon induction of hypoxia, HIF1a is no longer

polyubiquitinated and can form a functional heterodimer with

HIF1b, allowing it to translocate to the nucleus and induce

transcription (14, 261).

BCL2-interacting protein 3 (BINP3) and BCL2-interacting

protein 3-like (BINP3L) are induced by HIF1. Under normoxia,

B-cell lymphoma 2 (Bcl-2) forms low-affinity complexes with

Beclin-1, thereby decreasing the overall rate of autophagy. Under

low oxygen, BINP3 and BNIP3L are upregulated, bind to Bcl-2 in

place of Beclin-1, freeing it from the complex and leading to higher

rates of autophagy (262).

Another way by which hypoxia can lead to the induction of

autophagy is via ER stress followed by the unfolded protein

response (UPR). Prolonged hypoxia leads to ER stress, which can

be sensed by protein kinase R-like endoplasmatic reticulum kinase

(PERK) (263). PERK induces the translation of ATF4, which

induces the expression of the transcription factor C/EBP

homologous protein (CHOP) (264). CHOP regulates the
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expression of autophagy genes and the switching between

autophagy and apoptosis (265).

Since severe hypoxia also goes hand in hand with lack of

nutrients, AMPK, which is one of the main regulators of

metabolic stress, is often activated under hypoxia and can

regulate autophagy directly by phosphorylation of ULK1 as well

as indirectly by inactivation of mTOR (266).
4.4 Interaction of cGAS-STING signaling
with autophagy in cancer

Given that cGAS-STING signaling is intricately connected with

autophagy, the following section will provide insights into how

autophagy affects cGAS-STING signaling in the context of cancer.

In breast cancer cell lines, irradiation-induced Bcl-2-associated

X (BAX)-dependent permeabilization of the mitochondrial

membranes results in the release of mtDNA into the cytosol, thus

increasing cGAS-STING dependent type I IFN production.

Autophagy negatively regulates this effect by clearing cytosolic

dsDNA and thereby promoting radio-resistance. Yamazaki et al.

further identified cytosolic DNA originating from mitochondria as

the main driver of the abscopal response, a phenomenon whereby

distant tumor sites are affected by irradiation of the main malignant

lesion. In autophagy-deficient mice, irradiation shows a strong

induction of type I interferons, which are responsible for the

regression of abscopal tumors. The authors linked this to clinical

outcomes in breast cancer patients; autophagy rates inversely

correlate with the amount of mtDNA and type I IFN response

and patients with higher amounts of mtDNA show improved

disease-free survival and overall survival (205).

In esophageal squamous cell carcinoma (ESCC), however,

disruption of mitochondrial biogenesis through transcription

factor A, mitochondrial (TFAM) downregulation strongly induces

autophagy and promotes ESCC cancer growth, in line with the poor

overall survival rate of ESCC patients with low expression of TFAM.

Mechanistically, TFAM downregulation promotes the release of

mtDNA, thereby promoting non-canonical autophagy through the

activation of the cGAS-STING pathway. In TFAM-deficient ESCC

cells, ISGs are significantly downregulated supporting the idea that

STING degradation through autophagy attenuates the expression of

type I IFN genes, thereby promoting cancer cell progression (267).

Blockage of autophagy using the late-stage autophagy inhibitor

bafilomycin A1 was shown to reduce STING degradation leading to

enhanced downstream signaling and improved anti-tumor

response (268).

Further building on the inverse relationship between autophagy

and cGAS-STING signaling, inhibition of autophagy has been

shown to increase the cGAS-STING signaling activity by

promoting the accumulation of irradiation-induced dsDNA in the

cytosol. Moreover, inhibition of autophagy combined with

irradiation induces a potent antitumor effect in PD-L1-deficient

lung cancer mouse models via cGAS-STING-mediated T-cell

activation, suggesting a possible combination therapy of

irradiation, anti-PD-L1 immune checkpoint blockade and

autophagy inhibition in patients with lung cancer (218).
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Furthermore, inhibition of the deubiquitinase TRAF-binding

domain-containing protein (TRABID) that regulates cell division

leads to accumulation of micronuclei through defects in cell

division and autophagy. Moreover, cGAS is no longer

autophagically degraded and can recognize micronuclei generated

by mitotic defects, thereby inducing cGAS-STING signaling (269).

In addition to the induction of type I IFNs via phosphorylated

IRF3, the activated cGAS-STING signaling cascade also induces the

NF-kB signaling pathway, leading to the production of

inflammatory cytokines like IL-6 or TNF-a, chemokines such as

CXCL10 and cell cycle regulators (104, 270–272). cGAS-STING-

dependent IL-6 production contributes to the survival of

chromosomally unstable cancers in an IL-6-STAT3 dependent

manner, at the same time inhibiting STAT1 signaling,

preventing apoptosis and promoting cell survival and growth

(226). In addition to cell survival and proliferation, STAT3 has

been linked to various other protumorigenic functions such as

angiogenesis and immune escape and is often categorized as

immunosuppressive (273, 274). Inhibition of hypoxia-induced

autophagy was shown to disrupt pSTAT3 signaling through

accumulation of p62, which selectively induces pSTAT3

degradation by the proteasome system and thereby restores

cytotoxic T-cell mediated killing of tumor cells (273). In triple

negative breast cancer cell lines, myc overexpression was shown to

downregulate STING signaling and its downstream effectors in a

STAT3-dependent manner (274).

In colorectal cancer, IL-6 induces Beclin-1 phosphorylation at

Y333 by the JAK2 kinase, which increases Beclin-1 affinity for

VPS34. This enhances autophagic rates and promotes

chemoresistance in a STAT3-independent manner. Patients with

Beclin-1 Y333 phosphorylation also display increased

chemotherapy resistance and poor prognosis (275). Recently, it

was shown that IL-6-induced autophagy can also contribute to

cancer cachexia, a condition characterized by severe loss of body

weight and increased muscle wasting and is associated with an

increased risk of cancer treatment failure and poor overall survival.

Mechanistically, cancer cells capable of inducing cancer cachexia

are secreting IL-6, which subsequently induces autophagy in

differentiated muscle cells via IL-6 signaling and therefore might

be relevant for the characteristic muscle and weight loss during

cancer cachexia (276).
4.5 Clinical implications

4.5.1 Sting agonists
Given the complex involvement of STING signaling in the

cancer immunity cycle and its capability to induce an anti-tumor

immune response, efforts have been made to develop new STING

agonists. In a pre-clinical setting, numerous STING agonists such as

DMXAA or ADU-S100 have shown promising results by inducing a

potent anti-tumor immune response either alone or in combination

with other conventional cancer therapies including radio- and

chemotherapy (277–281). Therefore, it was only a matter of time

until STING agonists entered clinical trials, with DMXAA being the

first. Contrary to pre-clinical studies where DMXAA was shown to
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induce a robust anti-tumor immune response, clinical trials did not

show any beneficial effects (282, 283). Later studies, however,

revealed that DMXAA binds to mouse STING, but not to its

human counterpart, explaining the lack of response in clinical

trials (284). The new STING agonist ADU-S100 capable of

activating human STING showed modest efficacy with low overall

response rates (285, 286). Nevertheless, multiple clinical trials

testing different cyclic dinucleotides [e.g., BMS-986301

(NCT03956680) or BI 1387446 (NCT04147234)] either alone or

in combination with other cancer therapies are currently ongoing

and will ultimately determine the future relevance of STING

agonists in a clinical setting (www.clinicaltrials.gov). One of the

major constraints is the delivery of these drugs, which significantly

limits their clinical application. This led to the development of new

delivery systems such as extracellular vesicles loaded with cyclic

dinucleotides (referred to as exoSTING) or SYNB1891, an

engineered E. coli strain capable of producing cyclic dinucleotides

when injected intratumorally (287–289).

While first-generation STING agonists showed only modest

activities, new potent STING agonists in combination with other

cancer therapies and improved delivery methods might improve

treatment options for cancer patients.

4.5.2 Autophagy modulators
Chloroquine and hydroxychloroquine remain the most clinically

tested autophagy inhibitors to date, due to their previous FDA

approval as anti-malaria drugs. While they appear to be relatively

safe, the outcomes of clinical studies are inconsistent, largely due to

their lack of specificity (290, 291). This instigated the development of

specific small molecule inhibitors of autophagy such as SAR405 or

repurposing of FDA approved drugs (254, 292–297). The

chemoproteomic platform has also been used to screen for novel

small molecule inhibitors targeting autophagy and could provide an

invaluable tool in the future (298–300). Despite promising preclinical

results with new inhibitors, CQ or HCQ are still predominantly used

in clinical trials in combination with histone deacetylase inhibitors,

antiangiogenic kinase inhibitors or MEK inhibitors in different

tumors (301–304).

In recent years, activation of autophagy has also been

considered for cancer therapy (296, 305). For example, fasting

cycles, especially in combination with chemotherapeutic agents,

led to increased long-term survival in mice (306). Starvation, as

induced by caloric restriction, downregulates mTOR activity and

activates autophagy (307, 308). Diets or drugs mimicking caloric

restriction such as hydroxycitrate could effectively delay

progression in breast cancer, melanoma and lung cancer and led

to the autophagy-dependent depletion of regulatory T cells in mice

(307, 309).

Considering the heterogenicity of the tumor and its

microenvironment, modulation of autophagy should be assessed

on a case-by-case basis depending on specific tumor types and

biomarkers to avoid adverse effects (19, 291, 310–312). For example,

chronic inhibition of autophagy is associated with an irreversible

increase in cancer risk (310). In breast cancer, samples positive for

both LC3B and nuclear HMGB1 positively correlate with prolonged
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metastasis-free survival (313, 314). Conversely, LC3-positive

extracellular vesicles (EVs) can promote lung metastasis in breast

cancer patients and the number of LC3-positive EVs positively

correlates with disease progression (315). In comparison, high

autophagy rates correlate with poor survival, lymph node

metastasis and hepatic metastasis in gastric cancer (316). Low

LACTB expression and high LC3 levels are associated with poor

patient responses to neoadjuvant chemotherapy (317). However, in

multiple myeloma, patients with strong immunoreactivity to

Beclin-1 or LC3 show significantly improved overall survival

compared to those with medium or low levels of Beclin-1 or LC3

(318). This heterogenicity of tumors and the resulting convoluted

nature of biomarkers makes personalized cancer treatments

challenging, especially considering that combinations of multiple

markers correlate with different outcomes compared to

single markers.

4.5.3 Radiotherapy
Radiotherapy is a commonly used treatment approach for many

different types of cancer with approximately 50% of all cancer

patients receiving radiotherapy during the course of their illness. It

is used to treat both benign and malignant cancers, alone or in

combination with other therapeutical approaches such as

chemotherapy or surgery (319).

Radiotherapy can activate the immune system through the

cGAS-STING signaling pathway and thereby potentiate

immunotherapy with immune checkpoint inhibitors (ICIs) (209,

320, 321). Irradiated tumor cells secrete type I interferons, which

activate several immune cell types, including dendritic cells and T

cells (320). Indeed, in several preclinical studies with

immunocompetent mouse models radiotherapy was shown to

synergize with ICIs (322–325). Clinical evidence is, however,

conflicting. A combinatorial treatment of radiotherapy with ICIs

was effective in lung, prostate cancer and melanoma but failed to

show superior effects over radiotherapy or immunotherapy alone in

glioblastoma and head and neck cancer (326–331).

Conventionally, the main goal of radiotherapy has been to kill

cancer cells, notwithstanding the local immunosuppression through

various pathways such as vascular disruption and hypoxia, which

might result in diminished recruitment of certain immune effector

cells, exhaustion of effector T cells, and stimulation of regulatory T

cells (321, 332–334). Furthermore, standard radiotherapeutic

approaches sometimes target the local draining lymph nodes to

reduce the risk of tumor recurrence. Draining lymph nodes,

however, are essential for T-cell priming, immunostimulatory

effects and successful checkpoint blockade (321, 335). Therefore,

efforts must be made to adapt radiotherapy to work in a more

immunostimulatory way and thereby enable a clinically superior

radiotherapy-immunotherapy combinatorial approach. For

example, hypofractionated radiation was shown to be more

immunogenic compared to a single high dose in breast cancer

and was shown to sensitize mice with breast cancer, melanoma,

colon carcinoma or pancreatic cancer to ICI (336–340). Synergistic

effects of hypofractionated radiation and ICI were confirmed in

patients with lung cancer or melanoma (328, 330). Spacing fractions
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apart in personalized ultrafractionated stereotactic adaptive

radiotherapy (PULSAR) has shown promising results in

combination with ICI in colon and lung cancer mouse models,

which is currently being evaluated in clinical studies (341).

Moreover, particle therapy with protons or carbon ions was

shown to induce a stronger immunogenic response compared to

conventional photon therapy in mouse melanoma models (342).
5 Conclusion and outlook

Autophagy and cGAS-STING signaling are two highly

connected pathways. Both are crucial for defense against

pathogen invasion and different diseases such as cancer or

neurodegeneration. Here we provided a comprehensive overview

of the current state of knowledge on how these two pathways

interact. cGAS-STING signaling is tightly regulated by autophagy at

almost all levels. In the context of cancer therapy, targeting cGAS-

STING signaling is a promising strategy to activate the innate

immune system to fight and ultimately kill tumor cells. In most

cases, autophagy negatively regulates cGAS-STING signaling and

may therefore negatively impact cancer therapy. Preclinical data

indicates that boosting cGAS-STING signaling while inhibiting

autophagy might be a promising treatment option to improve

patients’ outcomes. Enhancing the immunostimulatory effects of

radiotherapy, improving delivery methods for STING agonists and

developing specific autophagy modulators will allow further

investigation of their clinical potential as monotherapy or

combinatorial therapy. Moreover, approaches such as

proteogenomics (343–346) that provide information about tumor

subtypes and tumor microenvironment may reveal new biomarkers

to guide personalized therapy options. Finally, further efforts in

understanding cGAS-STING signaling and autophagy pathways

individually as well as their interactions will be instrumental for

their targeting in cancer.
Frontiers in Immunology 15
Author contributions

MS: Writing – original draft, Writing – review & editing. PF:

Writing – original draft, Writing – review & editing. ME: Writing –

review & editing, Visualization. JW: Writing – review & editing.

SK-G: Writing – review & editing. DS: Writing – review & editing,

Writing – original draft.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

We thank Sascha Martens and Christian Zierhut for critical

feedback on the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy.
Nat Rev Mol Cell Biol. (2018) 19:349–64. doi: 10.1038/s41580-018-0003-4

2. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity:
insights from model organisms. Nat Rev Mol Cell Biol. (2018) 19:579–93. doi: 10.1038/
s41580-018-0033-y

3. Vargas JNS, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms
and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. (2022) 24:167–85.
doi: 10.1038/s41580-022-00542-2

4. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V, et al.
Secretory autophagy. Curr Opin Cell Biol. (2015) 35:106–16. doi: 10.1016/
j.ceb.2015.04.016

5. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V, et al.
Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1b.
EMBO J. (2011) 30:4701–11. doi: 10.1038/emboj.2011.398

6. Iula L, Keitelman IA, Sabbione F, Fuentes F, Guzman M, Galletti JG, et al.
Autophagy mediates interleukin-1b Secretion in human neutrophils. Front Immunol.
(2018) 9:269. doi: 10.3389/fimmu.2018.00269

7. Kim YH, Kwak MS, Lee B, Shin JM, Aum S, Park IH, et al. Secretory autophagy
machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy.
(2021) 17:2345–62. doi: 10.1080/15548627.2020.1826690
8. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J
Pathol. (2010) 221:3–12. doi: 10.1002/path.2697

9. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism,
and regulation. Antioxid Redox Signal. (2014) 20:460–73. doi: 10.1089/ars.2013.5371

10. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. (2009)
122:3589–94. doi: 10.1242/jcs.051011

11. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease.
Cell. (2017) 168:960–76. doi: 10.1016/j.cell.2017.02.004

12. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth,
autophagy and metabolism. Nat Cell Biol. (2011) 13:1016–23. doi: 10.1038/ncb2329

13. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial
homeostasis. Nat Rev Mol Cell Biol. (2018) 19:121–35. doi: 10.1038/nrm.2017.95

14. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia
inducible factors and beyond. Nat Rev Mol Cell Biol. (2020) 21:268–83. doi: 10.1038/
s41580-020-0227-y

15. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation.
Nature. (2011) 469:323–35. doi: 10.1038/nature09782

16. Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: A
comprehensive review. Biomed Pharmacother. (2018) 104:485–95. doi: 10.1016/
j.biopha.2018.05.007
frontiersin.org

https://doi.org/10.1038/s41580-018-0003-4
https://doi.org/10.1038/s41580-018-0033-y
https://doi.org/10.1038/s41580-018-0033-y
https://doi.org/10.1038/s41580-022-00542-2
https://doi.org/10.1016/j.ceb.2015.04.016
https://doi.org/10.1016/j.ceb.2015.04.016
https://doi.org/10.1038/emboj.2011.398
https://doi.org/10.3389/fimmu.2018.00269
https://doi.org/10.1080/15548627.2020.1826690
https://doi.org/10.1002/path.2697
https://doi.org/10.1089/ars.2013.5371
https://doi.org/10.1242/jcs.051011
https://doi.org/10.1016/j.cell.2017.02.004
https://doi.org/10.1038/ncb2329
https://doi.org/10.1038/nrm.2017.95
https://doi.org/10.1038/s41580-020-0227-y
https://doi.org/10.1038/s41580-020-0227-y
https://doi.org/10.1038/nature09782
https://doi.org/10.1016/j.biopha.2018.05.007
https://doi.org/10.1016/j.biopha.2018.05.007
https://doi.org/10.3389/fimmu.2024.1356369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schmid et al. 10.3389/fimmu.2024.1356369
17. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O, et al.
Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. (2019) 134:116–
37. doi: 10.1016/j.ejps.2019.04.011

18. Levine B, Kroemer G. Biological functions of autophagy genes: a disease
perspective. Cell. (2019) 176(1-2):11–42. doi: 10.1016/j.cell.2018.09.048

19. Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F.
Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev. (2021) 169:40–50.
doi: 10.1016/j.addr.2020.12.003

20. Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol
Cell Biol. (2020) 21:439–58. doi: 10.1038/s41580-020-0241-0

21. Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown,
biogenesis complex. Nat Rev Mol Cell Biol. (2013) 14:759–74. doi: 10.1038/nrm3696

22. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, et al.
A comprehensive glossary of autophagy-related molecules and processes (2nd edition).
Autophagy. (2011) 7:1273–94. doi: 10.4161/auto.7.11.17661

23. Lee JW, Park S, Takahashi Y, Wang H-G. The association of AMPK with ULK1
regulates autophagy. PloS One. (2010) 5:e15394. doi: 10.1371/journal.pone.0015394

24. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy
through direct phosphorylation of Ulk1. Nat Cell Biol. (2011) 13:132–41. doi: 10.1038/
ncb2152

25. Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by
canonical and non-canonical ER stress responses. Semin Cancer Biol. (2020) 66:116–28.
doi: 10.1016/j.semcancer.2019.11.007

26. Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the
ER stress response. Trends Biochem Sci. (2015) 40:141–8. doi: 10.1016/
j.tibs.2015.01.002

27. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash
between damage and metabolic needs. Cell Death Differ. (2015) 22:377–88.
doi: 10.1038/cdd.2014.150

28. Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, et al. Autophagy in
intracellular bacterial infection. Semin Cell Dev Biol. (2020) 101:41–50. doi: 10.1016/
j.semcdb.2019.07.014

29. Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk
during bacterial infection. Nat Microbiol. (2022) 7:497–507. doi: 10.1038/s41564-022-
01080-5

30. Juretschke T, Beli P. Causes and consequences of DNA damage-induced
autophagy. Matrix Biol. (2021) 100–101:39–53. doi: 10.1016/j.matbio.2021.02.004

31. Zhang D, Tang B, Xie X, Xiao Y-F, Yang S-M, Zhang J-W, et al. The interplay
between DNA repair and autophagy in cancer therapy. Cancer Biol Ther. (2015)
16:1005–13. doi: 10.1080/15384047.2015.1046022

32. King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical
stress. Autophagy. (2011) 7:1490–9. doi: 10.4161/auto.7.12.17924

33. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-
dependent mTORC1 association with the ULK1–atg13–FIP200 complex required for
autophagy. Mol Biol Cell. (2009) 20:1981–91. doi: 10.1091/mbc.e08-12-1248

34. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, et al. ULK-Atg13-FIP200
complexes mediate mTOR signaling to the autophagy machinery.Mol Biol Cell. (2009)
20:1992–2003. doi: 10.1091/mbc.e08-12-1249

35. Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a
target of multiple phosphorylation events. Biochem J. (2011) 440:283–91. doi: 10.1042/
BJ20101894

36. Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, Kondo-Kakuta C,
et al. The intrinsically disordered protein atg13 mediates supramolecular assembly of
autophagy initiation complexes. Dev Cell. (2016) 38:86–99. doi: 10.1016/
j.devcel.2016.06.015

37. Kamber RA, Shoemaker CJ, Denic V. Receptor-bound targets of selective
autophagy use a scaffold protein to activate the atg1 kinase. Mol Cell. (2015) 59:372–
81. doi: 10.1016/j.molcel.2015.06.009

38. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control
cell growth and survival. Cell. (2003) 115:577–90. doi: 10.1016/S0092-8674(03)00929-2

39. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS,
et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell.
(2008) 30:214–26. doi: 10.1016/j.molcel.2008.03.003

40. Adriaenssens E, Ferrari L, Martens S. Orchestration of selective autophagy by
cargo receptors. Curr Biol. (2022) 32:R1357–71. doi: 10.1016/j.cub.2022.11.002

41. Goodall EA, Kraus F, Harper JW. Mechanisms underlying ubiquitin-driven
selective mitochondrial and bacterial autophagy. Mol Cell. (2022) 82:1501–13.
doi: 10.1016/j.molcel.2022.03.012

42. Ravenhill BJ, Boyle KB, Muhlinen von Ellison N CJ, Masson GR, Otten EG, et al.
The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex
to cytosol-invading bacteria. Mol Cell. (2019) 74:320–329.e6. doi: 10.1016/
j.molcel.2019.01.041

43. Vargas JNS, Wang C, Bunker E, Hao L, Maric D, Schiavo G, et al. Spatiotemporal
control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol Cell.
(2019) 74:347–362.e6. doi: 10.1016/j.molcel.2019.02.010

44. Turco E, Witt M, Abert C, Bock-Bierbaum T, Su M-Y, Trapannone R, et al.
FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at
Frontiers in Immunology 16
Ubiquitin Condensates. Mol Cell. (2019) 74:330–46.e11. doi: 10.1016/j.molcel.
2019.01.035

45. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto
A, et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome
formation. Nat Cell Biol. (2009) 11:1433–7. doi: 10.1038/ncb1991

46. Takahashi S, Saito C, Koyama-Honda I, Mizushima N. Quantitative 3D
correlative light and electron microscopy of organelle association during autophagy.
Cell Struct Funct. (2022) 47:89–99. doi: 10.1247/csf.22071

47. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. 3D tomography reveals
connections between the phagophore and endoplasmic reticulum. Autophagy. (2009)
5:1180–5. doi: 10.4161/auto.5.8.10274

48. Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. Temporal analysis of
recruitment of mammalian ATG proteins to the autophagosome formation site.
Autophagy. (2013) 9:1491–9. doi: 10.4161/auto.25529

49. Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker SA,
et al. Dynamic association of the ULK1 complex with omegasomes during autophagy
induction. J Cell Sci. (2013) 126:5224–38. doi: 10.1242/jcs.132415
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