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Sepsis is a multi-organ dysfunction characterized by an unregulated host

response to infection. It is associated with high morbidity, rapid disease

progression, and high mortality. Current therapies mainly focus on

symptomatic treatment, such as blood volume supplementation and antibiotic

use, but their effectiveness is limited. Th17/Treg balance, based on its

inflammatory property, plays a crucial role in determining the direction of the

inflammatory response and the regression of organ damage in sepsis patients.

This review provides a summary of the changes in T-helper (Th) 17 cell and

regulatory T (Treg) cell differentiation and function during sepsis, the

heterogeneity of Th17/Treg balance in the inflammatory response, and the

relationship between Th17/Treg balance and organ damage. Th17/Treg balance

exerts significant control over the bloom and wanes in host inflammatory

response throughout sepsis.
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Introduction

Sepsis is defined as an initial hyperinflammatory response to systemic infection caused

by an invasive pathogen (1, 2). This response involves hemodynamic changes and leads to

subsequent immunosuppression and organ dysfunction, eventually triggering multiple

organ failure, secondary infection, and mortality (1, 2). According to data from Germany,

approximately 48.9 million people suffer from sepsis each year, with sepsis-related deaths

accounting for about 20% of all deaths (3, 4). A global observational study in 2017 recorded

11 million sepsis-related deaths, accounting for 19.7% of the total mortality rate for that

specific year (5). In mainland China, sepsis patients make up a significant proportion of

intensive care unit (ICU) admissions, with a 90-day mortality rate of 35.5%, imposing a

substantial economic burden (6). From 1990 to 2017, the incidence of sepsis decreased by
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37.0% and the mortality by 52.8% (5). Despite extensive

investigations into the pathophysiology of sepsis in recent years,

which have made substantial contributions to drug development

and organ support therapy, sepsis continues to prevail as the

primary driver of mortality in critically ill patients (7, 8).

Sepsis presents an extremely heterogeneous feature, due to its

complex types of pathogen infections and differential organismal

response ability (9). The inflammatory and immunosuppressive

states of sepsis occur concurrently (10). In the early stages of sepsis,

besides the fact that Toll-like receptor (TLR) located on the cell

membrane surfaces of antigen-presenting cells (APC) (e.g.,

macrophage, dendritic cell (DC), and neutrophil) recognize either

pathogen-associated molecular marker (PAMP) or damage-

associated molecular patterns (DAMP) for initiation of

inflammation, a massive decrease in T cells via apoptosis has

been observed (11, 12). During the initial exposure phase to

severe infection, TLR recognizes and binds PAMP, activating the

innate immune system and complement systems (13). Then, large

amounts of complement component 3a (C3a) and complement

component 5a (C5a) are produced and secreted, prompting the

release of pro-inflammatory cytokines, thereby triggering a cytokine

storm (13). A prolonged hyperinflammatory response triggers

cellular damage and promotes the release of DAMP, further

bolstering the production and removal of inflammatory mediators

(13). In addition, the hyperinflammatory response provokes

coagulation and endothelial cell activation, resulting in

disseminated intravascular coagulation and endothelial leakage

(14, 15). Subsequently, the adaptive immune system takes effect,

and the T cell receptor (TCR) activates T helper cells (Th, e.g., Th1,

Th17) and cytotoxic T cells, releasing inflammatory factors and

amplifying the inflammatory response to facilitate the clearance of

the infection (16). Tregs have the opposite function to Th17,

suppressing excessive T-cell responses and promoting self-

tolerance under inflammatory conditions (17). The balance

between Th subsets and Tregs is important for clearing the

infection. When a compensatory anti-inflammatory response fails

to balance an explosive pro-inflammatory response, sepsis is

exacerbated and secondary infections are triggered, leading to

organ dysfunction and death. Furthermore, in the distant phase

of sepsis, the continued expression of adaptive anti-inflammatory

markers alters the function of innate immune cells and

induces lymphocyte exhaustion, which leads to prolonged

immunosuppression (14, 18). This phase can last for several

years (19).

Th17 and regulatory T (Treg) cells are two subsets of CD4+ T

cells that participate in the immune response through the defense,

immune surveillance and immune regulation, and act to promote or

suppress the inflammatory response (20). Th17 are differentiated

mainly from T cells stimulated by transforming growth factor-b
(TGF-b) (21), IL-6 (22), IL-21 (23), IL-23 (24) and IL-1b (25),

which further secrete IL-17 and various inflammatory factors, such

as IL-6, IL-22, IL-23, granulocyte-colony stimulating factor (GCSF)

and tumor necrosis factor-alpha (TNF-a), to induce recruitment of

neutrophils (26–28). Forkhead box protein 3 (Foxp3), a

transcription factor, is involved in the Tregs differentiation. Tregs

mainly secret IL-10 and TGF-b to maintain self-tolerance and
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suppress inflammation (29–31). In sepsis, Foxp3 inhibits T-cell

function, while IL-17 promotes its function, and the two thereby

oppose and interact with each other (32–35). As such, during the

inflammatory response, the alterations in the function and quantity

of Th17 and Tregs can effectively modulate the immune response

(Figure 1). In sepsis, the altered immune function of T lymphocytes

is an essential driver of increased mortality and poor prognosis (36).

A study has confirmed that Th17, a central component in

inflammatory diseases, is significantly elevated in septic patients,

which correlates with the intensive inflammatory response and

severity of the disease (37). Meanwhile, some experimental and

clinical trials have shown that sepsis enhances Treg function, which

acts on the innate and adaptive immune system, suppressing

immune function and leading to immune paralysis and,

ultimately, septic death (38–40). Compared to survivors of sepsis,

deceased patients have a higher Th17/Treg ratio in the circulation,

shifting the balance toward Th17 (41). Restoration of the Th17/Treg

balance affects the prognosis of the disease and contributes to the

treatment of sepsis.

The immune response is designed to clear infectious agents, but

the excessive pro-inflammatory response will lead to multiple organ

damage (42–44). Meanwhile, the compensatory anti-inflammatory

response, aimed at suppressing the excessive inflammation, can lead

to immunosuppression (45). These two key events in the

inflammatory response are interactive and concomitant (46).

Th17 are pro-inflammatory, while Tregs are anti-inflammatory

(47). In recent years, Th17/Treg balance has been increasingly

recognized as critical in preventing excessive immune activation

(48–51), autoimmune responses (52–54), and the pathogenesis of

metabolic syndrome (55, 56). This review discusses the changes in

Th17/Treg balance and its role in the pathophysiology of sepsis.
Sepsis and inflammation

Treatment of sepsis is currently focused on continuous fluid

resuscitation, organ support, and anti-infective therapy with

antibiotics (57). To date, novel effective strategies that directly

target the physiological mechanisms are not available (58). The

essence of sepsis is an uncontrolled immune response eroded by the

host in the fight against pathogens or stresses, leading to multi-

organ dysfunction (59). Clinical and animal studies on sepsis still

rely on the characterization of systemic inflammatory response

syndromes (60–63). Numerous studies have confirmed that

excessive inflammatory response and cytokine storm during

sepsis are the leading causes of poor prognosis (64–66). Our

previous study confirmed that the inflammatory response in

septic mice was enhanced by inhibiting SUMOylation of

peritoneal macrophages and increasing NF-kB p65 activity,

inducing inflammatory storm, which markedly inhibited intra-

abdominal bacterial clearance and greatly exacerbated organ

damage and mortality (67). Another study, which enrolled 3,250

subjects, found that serum concentrations of IL-1b, TNF-a, and
interferon (IFN)-g were elevated in patients with sepsis (68). The

mean TNF-a concentration in sepsis was increased approximately

10-fold compared to the mean concentration in healthy participants
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(68). Elevated TNF-a concentration was associated with increased

28-day sepsis mortality (68). Weber and Ebihara et al. also found

that the levels of inflammatory factors IL-3, IL-6, and growth

differentiation factor (GDF)-15 were significantly elevated in

sepsis and correlated with prognosis (64, 69). Overexpression of

inflammatory factors leads to an aggressive inflammatory response

in the host. Failure to control the intensity of the inflammatory

response promptly triggered a persistent and excessive

inflammatory response, which severely compromised the

prognosis of patients with sepsis. However, drugs targeting

inflammatory mediators, like IL-1b, TNF-a, or TLR, to suppress

inflammation are ineffective in improving survival in sepsis patients

(70–72).
Th17 and Treg differentiation and
function in the sepsis

Th17 and Tregs antagonize each other during the inflammatory

reaction and the immune response (73). Th17 produces many pro-

inflammatory factors, which recruit neutrophils and promote

inflammation. In contrast, Tregs produces anti-inflammatory

factors that inhibit the activity of immune cells, thereby

suppressing the inflammatory response to avoid overactivation of
Frontiers in Immunology 03
inflammation (74). Together, Th17 and Tregs direct the immune

process of sepsis.

Th17 can be induced to differentiate by cytokines IL-1b, IL-6,
IL-21, IL-23, and TGF-b (Table 1) (89). Signal transducer and

activator of transcription 3 (STAT3) and SMAD are activated by

cytokines, which in turn induce IL-17 and the transcription factor

retinoic acid-related orphan receptor-gt (RORgt) to differentiate

Th17 (90, 91). Th17 mediates inflammatory response and promotes

host clearance of infected lesions (92). The main mechanisms

include the secretion of pro-inflammatory cytokines (e.g., IL-17,

IL-21, IL-22, IFN-g), aggregation of neutrophils, activation of innate

immune cells, and enhancement of B cell function (93–95). Various

studies have shown that Th17 and the secreted cytokine IL-17 are

inextricably linked to the pathogenesis of sepsis (35, 96–99).

Mohammad et al. confirmed that sepsis led to upregulation of IL-

2-inducible T-cell kinase (ITK) protein (35). ITK regulated the

expression of transcription factors such as nuclear factor of

activated T cells cytoplasmic 1 (NFATc1) and STAT3 in naïve

CD4+ T cells (Th0), promoting their transformation into Th17 (96,

97). Inhibition of ITK expression using ITK inhibitors significantly

reduced the number of IL-17A+CD4+ T cells, and decreased the

levels of inflammatory factors IL-6 and monocyte chemotactic

factor 1 (MCP-1) (35). That shows the involvement of Th17 in

the inflammatory response in sepsis. In addition, overexpression of
FIGURE 1

Cytokines regulate Th17/Treg balance. Naïve T cells can differentiate into Th17 and Tregs in response to specific cytokines. IL-1b, IL-6, IL-21, IL-23
and TGF-b induce Th17 differentiation. IL-6, IL-21 and IL-23 promote STAT3 phosphorylation, induce RORgt gene expression, and then stimulate
CD4+ T cells to differentiate into Th17. mTOR is activated through the PI3K/Akt pathway to promote Th17 differentiation. A low TGF-b concentration
activates SMAD and synergizes with IL-6 to promote Th17 production. Numerous mature Th17 secrete pro-inflammatory factors such as IL-17, IL-21,
IL-22, IFN-g, TNF-a, etc., promoting inflammation. Treg differentiation is mediated by IL-2 and TGF-b. IL-2/STAT5 pathway and high concentrations
of TGF-b promote the expression of the Foxp3 gene and contribute to Treg differentiation. PI3K/Akt/mTOR pathway inhibits the expression of Foxp3
to suppress Treg differentiation. AMPK inhibits mTOR activity and promotes Foxp3 expression, which facilitates Treg differentiation. Many Tregs
secrete IL-10 and TGF-b and induce host anti-inflammatory responses. Th17, T helper 17; Treg, regulatory T; IL, interleukin; TGF-b, transforming
growth factor-b; TCR, T cell receptor; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; STAT3, signal transducer and activator of
transcription 3; STAT5, signal transducer and activator of transcription 5; mTOR, mammalian target of rapamycin; RORgt, retinoid acid-related
orphan receptor gt; HIF-1a, hypoxia inducible factor 1a; IFN-g, interferon-g; TNF-a, tumor necrosis factor-a; Foxp3, forkhead box protein P3; AMPK,
AMP-activated protein kinase.
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calcium release-activated calcium modulator 1 (Orai1) inhibited the

growth of the Th17 population in sepsis and reduced mortality and

organ damage in septic mice (98). Meanwhile, Li et al. have shown

that the percentages of Th17 and the levels of IL-17, IL-22 were

independent risk factors for septic lung injury (99). Th17 and the

cytokines it releases are involved in the pathogenesis and prognosis

of sepsis due to their pro-inflammatory properties.

Tregs contribute to the maintenance of immune homeostasis

and immune tolerance (100). Tregs differentiate from naïve T cells

in the thymus or peripheral lymphoid tissue to protect organisms

from autoimmune diseases and promote tissue repair (Table 1)

(101). The main mechanisms of Tregs include: (1) contact-

dependent mechanism: expression of co-stimulatory receptors,

including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),

programmed cell death 1 (PD-1), T-cell immunoglobulin and

mucin-domain containing-3 (TIM-3), T cell immunoglobulin and

ITIM domain (TIGIT), lymphocyte-activation gene 3 (LAG-3),

ICOS, GITR, to prevent activation and maturation of DC or to

prevent activated T cell response (102–106); (2) contact-

independent mechanism: secretion of anti-inflammatory factors

(IL-10, IL-35, TGF-b) to inhibit T cell proliferation (21, 107,

108); (3) CD25/IL-2 depletion mechanism: CD25, as the a-chain
of the IL-2 receptor, is highly expressed on Tregs, which cause IL-2
Frontiers in Immunology 04
deprivation and thus effector T cells death (109); (4) modification of

the Foxp3 gene to enhance Treg stability (110–112); and

(5) metabolic shifts in Treg from glycolysis to oxidative

phosphorylation to enhance anti-inflammatory properties (113,

114). Many studies have shown that Tregs significantly inhibit

inflammation and attenuate septic lung injury (115, 116). In the

acute phase of sepsis, high-mobility group box 1 protein (HMGB1)-

induced activation of chromosome ten (PTEN) reduced TGF-b
release from macrophages, leading to decreased Treg differentiation

(117). Neutralization of HMGB1 or knockdown of PTEN in

macrophages promoted Tregs differentiation and inhibits Th17

differentiation, which alleviated the inflammatory response (117).

In addition, Chinese medicinal preparations, such as Berberine and

Tanshinone IIA, can inhibit septic inflammation by promoting

Tregs differentiation (118, 119). The above studies confirmed that a

high proportion of Treg contributed to the abatement of

inflammation in septic mice.

However, Treg exacerbated the long-term death of sepsis.

Patients and experimental mice that survived sepsis had more

significant amounts of Tregs and higher concentrations of IL-33

(74, 120, 121). IL-33, present in the nucleus as a nuclear factor, is

rapidly released during cell stress or damage (122). IL-33, in

combination with ST2, induces the production of inflammatory
TABLE 1 The role of cytokines in Th17/Treg balance.

Cytokines Function Mechanism Th17 Treg Th17/
Treg

IL-1b (75) Pro-
inflammatory

Induces gammadelta T cells to produce innate IL-17 and enhance Th17 responses ↑ ↑

IL-6 (76) Pro-
inflammatory

induces STAT3 phosphorylation, increases expression of RORgt and RORa and promotes Th17
differentiation by cooperating with TGF-b

↑ ↑

IL-18 (77) Pro-
inflammatory

decreases levels of Foxp3, decreases Foxp3 di- and oligomerization, and increases the ubiquitination
and proteasomal degradation of Foxp3 to decreased Treg function.

↓ ↑

IL-21 (78) Pro-
inflammatory

promotes CD4+ T cells proliferation and Th17 differentiation, and inhibits Treg differentiation by
upregulating RORgt expression and downregulating Foxp3 expression

↑ ↓ ↑

IL-23 (79) Pro-
inflammatory

promotes the stability and survival of Th17 ↑

IL-33 (80) Pro-
inflammatory

IL-33 deficiency activates and matures DC to secret IL-6 and IL-23, suppressing Th17 responses and
regulating the Th17/Treg balance

↑ ↑

HIF-1a (81) Pro-
inflammatory

Induces transcriptional activation of RORgt and forms a tertiary complex with RORvt to promote
Th17 differentiation; attenuates Treg development by binding Foxp3 and targeting it for
proteasomal degradation

↑ ↓ ↑

IL-2 (82, 83) Anti-
inflammatory

promotes STAT5 phosphorylation and induces Foxp3 transcription for Treg differentiation ↑ ↓

IL-4 (84) Anti-
inflammatory

suppresses activation of STAT6 and activating trascription factor 3 (ATF3) to abrogates Th17 ↓ ↓

IL-10 (85) Anti-
inflammatory

IL-10 deficiency increased CD4+ T cells, CD8+ T cells and Th17 but not Treg cells ↓ ↓

IL-15 (86, 87) Anti-
inflammatory

impaired delivery of IL-15 to CD4+ T cells downmodulates Foxp3 expression (diminishing STAT5
phosphorylation) and enhances RORgt expression

↓ ↑ ↓

TNF-a (88) Anti-
inflammatory

upregulates MHC-II on alveolar type II cells through CXCR-2 to contribute to Treg expansion ↑ ↓

TGF-b (21) Anti-
inflammatory

Stimulates naïve T cell to produce SMAD2, SMAD3 and SMAD4, promotes Foxp3 expression and
Tregs generation

↑ ↓
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factors by DC, macrophages, Th2, Tregs, mast cells, and innate

lymphoid cell type 2 (ILC2) (123, 124), promotes the proliferation

of Tregs and enhances the inhibitory capacity of Tregs (125, 126).

The IL-33/ST2 signaling pathway mediates Treg amplification and

exerts immunosuppressive effects. High levels of IL-33 have been

found in survivors of sepsis, which in part contributes to a state of

persistent immune paralysis. This leads to a depressed immune

response and a much higher probability of infection, when the host

is re-invaded by the similar or different pathogens. In addition, in a

colitis model, IL-33/ST2 signaling was confirmed that increased the

frequency of Tregs and ILC2 (127). Siede et al. demonstrated that

IL-33/ST2 signaling promotes the expression of TGF-b, IL-10, and
Th2-associated cytokines (IL-5/IL-13), and negatively affects

effector T cells through the contact-independent mechanism

(126). Neutralization of IL-33 significantly inhibited the

expansion of Tregs and reduced mortality in mice affected by

secondary infection (74). Moreover, most Tregs circulating in the

blood originate from the spleen (128). In the immunosuppressive

stage, removal of the spleen or use of drugs (e.g., granulocyte-

macrophage colony-stimulating factor (GM-CSF), Poria cocos

polysaccharides) to reduce the proliferation of Tregs can improve

the survival rate and attenuate organ damage in septic mice (129–

131). These results reflect the opposite and conflicting effects of

Tregs in different stages of sepsis.

Briefly, there are differences in the function and expression levels

of Th17 and Tregs in patients with sepsis. The balance of Th17 and

Tregs in the body is highly relevant to the prognosis of patients with

sepsis. A prospective observational study found heavily reduced

numbers of circulating lymphocytes and inverted Th17/Treg ratios

in patients with sepsis (34). Gupta et al. also found a high Treg

proportion and a low Th17 proportion in post-traumatic sepsis

patients, with a significant imbalance of Th17/Treg in cell-mediated

immune response and disturbance (41). Zhou et al. found that the

level of Th17/Treg ratio was higher in patients with sepsis-induced

acute kidney injury (AKI) than in patients without it. Moreover, they

confirmed that Th17/Treg imbalance was associated with the

occurrence and severity of AKI in sepsis patients (132). Another

study has demonstrated a strong positive correlation between the

Th17/Treg ratio and the SOFA score: the higher the Th17/Treg ratio,

the higher the SOFA score and the worse the prognosis of the patient

(41). In a prospective clinical trial, septic patients who initiated

enteral nutrition within 48 h had a significantly shorter duration of

mechanical ventilation and the ICU hospitalization duration, which

was shown to be achieved through modulating Th17/Treg imbalance

and inhibiting the IL-23/IL-17 axis (133). Therefore, Th17/Treg

imbalance is an essential factor in the pathogenesis of sepsis.

Regulating Th17/Treg balance can effectively treat sepsis.

Meanwhile, many animal studies have validated the effect of

Th17/Treg imbalance in cecal ligation and puncture (CLP) models

of sepsis. It was confirmed that Th17/Treg imbalance caused organ

damage and negatively affected survival in septic mice (134–141).

Decreased macrophage recruitment and Th17/Treg imbalance were

observed in the low-lethality non-severe sepsis model (134). The

novel cytokine Metrnl administration reduced the peritoneal

bacterial load while improving survival by promoting peritoneal

macrophage recruitment and restoring Th17/Treg balance (135).
Frontiers in Immunology 05
Calcitriol treatment resulted in a more rational Th17/Treg balance

in septic obese mice and activation of the renin-angiotensin system

(RAS) anti-inflammatory pathway to attenuate acute lung injury

(ALI) (136, 137). Nadeem et al. demonstrated that ALI in septic

mice was attenuated via modulation of the Th17/Treg immune

response and reduction of oxidative stress (138). Restoration of

Th17/Treg balance also alleviated lung capillary leak in septic mice

(139). Administration of arginine maintained Th17/Treg

homeostasis and attenuated hepatic inflammation in sepsis (140).

Mesenchymal stem cell (MSC) controlled sepsis-induced

inflammatory responses by regulating Th17/Treg balance, which

reduced tissue damage, protected organ function, and ultimately

improved the survival rate in aged septic rats (141). Luo et al. also

demonstrated that MSC modulated the Th17/Treg balance by

decreasing IL-17 and RORgt levels and inducing IL-10 and Fxop3

expression via the Gal/Tim-3 pathway (142). As a result,

modulation of Th17/Treg balance by various means in the CLP

model significantly improved the prognosis of septic mice. This

provides strong evidence for further clinical studies. However, the

reports of clinical trials of related measures are fewer at present.
Th17/Treg instability and plasticity

Under physiological conditions, CD4+ T cells can differentiate

into multiple subtypes, such as Th1, Th2, Th9, Tfh, Th17, Treg, and

other T-cell subtypes, which play corresponding immune functions

(142). Differing from most somatic cells, T cells remain

interconvertible between their subtypes due to instability and

plasticity (143–145). Among all Th cell subtypes, Th17 and Treg

were considered to be the most plastic subtypes (146, 147). Under

appropriate cytokine stimulation or pathogenic conditions, Th17,

which exerts a pro-inflammatory effect, can be converted to Treg,

suppressing the immune response (148, 149). Jian and his

colleagues obtained some Evidence from in vitro experiments.

They stimulated tumor-infiltrating T lymphocytes (TILs) with

OKT3 and mononuclear cells to acquire Th17 clones. After

amplifying this subpopulation three times, Foxp3+ cells grew

remarkably, while IL-17+ cells decreased (150), indicating partial

transformation of Th17 to Treg. They are currently thought to

result from epigenetic alterations and gene expression profiles

reprogramming (148, 150).

In addition, due to prolonged exposure to a pro-inflammatory

environment, Treg undergoes Foxp3 expression quiescence and is

reprogrammed to Th17-like Treg, exerting pro-inflammatory

effects and losing its inhibitory function (151). IL-1b and IL-6

stimulation increase the expression of STAT3 and RORgt in the

Treg. This promotes the conversion of Treg to Th17-like Treg,

releasing pro-inflammatory IL-17A (152). IL-23 exacerbates this

phenomenon (152). TGF-b serves as a key factor in inducing Treg

differentiation. Yang et al. used TGF-b to prompt Foxp3 expression.

Then intervention with IL-6 was performed, and the results showed

that the expression of Foxp3 was significantly downregulated, while

the expression of IL-17 was increased (153). Similarly, inhibition of

indoleamine 2,3-dioxygenase (IDO), a plasmacytoid DC-produced

tryptophan-catabolizing enzyme that maintains Treg/Th17 balance,
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increased IL-6 expression and promoted the transformation of Treg

into Th17 (154). Another study has shown that using single-cell

RNA sequencing to focus on T cell subtype alteration in chronically

exposed hypercholesterolemic environments (155). The results

confirmed the continuous increase of Treg in atherosclerotic

mice, which were partially transformed into Th17-like cells with

highly pro-inflammatory properties (155). These findings are

indicative of the instability and plasticity between Th17 and Treg,

which are capable of transforming into each other.

Reports on Treg in sepsis are mixed. Some studies have

demonstrated that increased circulating Treg proportion

contributed to lymphocyte dysfunction and significantly reduced

survival (156), while suppression of Treg percentage improved

survival in sepsis (157). In contrast, other studies have found that

adoptive transfer of Treg or pharmacologic modulation of Treg

response protected septic mice from death (158, 159). Apart from

the excessive inflammatory response and immune paralysis

associated with sepsis, the underlying cause of this conflicting

result may lie in the dysregulation of plasticity between Treg and

Th17, leading to different immune effects of Treg.
Th17/Treg balance in different stages
of sepsis

Sepsis undergoes a sustained initial phase of hyperinflammation

followed by a protracted period of immunosuppression (72, 160).

Patients surviving sepsis often die from secondary infections due to

immunosuppression and organ damage (161). Uncontrolled

lymphocyte apoptosis is thought to be the major cause of

immunosuppression (10, 160). As stated by Cao et al., sepsis is a

life-and-death race between the pathogen and the host immune

response, and the competition between the two determines the

prognosis of septic patients (160, 162). In this process, Th17 and

Tregs’ effects change during sepsis.

In the acute phase of sepsis, the proportion of Th17 is markedly

elevated in the peripheral blood of the host, accompanied by an

expansion in Tregs (130, 132). Invading bacteria activate T cell

function, induce Th17 differentiation, and trigger an adaptive

immune response to clear the bacteria (163, 164). However,

persistent infection leads to excessive inflammatory activation and

promotes Treg differentiation to avoid organ damage from hyper-

inflammation (15, 165). Studies have shown that patients suffering

from sepsis have an increased percentage of Tregs in the peripheral

blood, which occurs mainly in the early stages of sepsis. Persistently

high Treg counts are a vital factor in the poor prognosis of patients

(38, 166). Furthermore, it has been verified in a sepsis mouse model

that Treg percentage showed a significant augmentation following

CLP, a process that lasted up to 7 days (167). Control of Tregs and

Th17 ratio and maintenance of Th17/Treg balance can effectively

affect the prognosis of sepsis. Lu et al. discovered that mucosa-

associated lymphoid tissue lymphoma translocation protein 1

(MALT1) overexpression promoted the polarization of CD4+ T

cells towards Th17 and increased the Th17/Treg ratio, which in

turn promoted systemic inflammation, elevated levels of oxidative

stress, and exacerbated organ damage (168). Meanwhile, receiving
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MSC intravenous treatment, septic mice showed a lower Th17/Treg

ratio in peripheral blood and spleen, protecting organs from

inflammatory damage and increasing the 72 h survival rate (140).

However, another study has reported that increasing the intestinal

Th17 population reduced intestinal inflammation and bacterial

translocation, protected mice from endotoxemia-induced intestinal

injury, and enhanced survival (169). This may be a hyperacute phase

response triggered when intestinal bacteria invade the host, thus

helping the host eliminate the bacteria before they enter the

bloodstream in large numbers, avoiding a storm of inflammatory

factors. Meanwhile, it cannot be ruled out that due to Th17 plasticity,

pathogen stimulation and alteration of the cytokine environment

promoted the reprogramming of Th17 to Treg, which suppressed the

inflammatory response in the gut (148, 149). However, more

experiments are needed to clarify. The above study confirmed that

the ratio of Th17/Treg dramatized the prognosis of sepsis. In the

early phase of sepsis, excessive inflammatory response causes organ

damage. Increasing the proportion of Tregs, decreasing the

proportion of Th17, and correcting the Th17/Treg balance are

essential factors for restoring immune homeostasis, reducing

inflammatory organ damage, and decreasing mortality.

When pathogens are effectively cleared, immune balance can be

restored; conversely, immune regulation is imbalanced, anti-

inflammatory responses are enhanced, and the host is susceptible

to a state of immunosuppression or even organ failure (58). In the

later stages of sepsis, the proportion of Treg increased, accompanied

by a decrease in the proportion of Th17, which led to a lower Th17/

Treg ratio (34). This was related to the initial inflammatory factor

storm causing inflammatory factor depletion and severe T cell

apoptosis (34). Lymphopenia coupled with increased apoptosis

and decreased proliferation of lymphocytes, and more circulating

Treg are associated with persistent organ dysfunction, secondary

infections and long-term mortality (170, 171). Therefore, in the late

stage of sepsis, restoring T cell function and promoting

inflammatory response can help enhance host immunity and

effectively avoid immunosuppression, reducing the late mortality

of sepsis patients. In a two-stroke model of sepsis, methicillin-

resistant Staphylococcus aureus (MRSA) inoculation was used to

trigger secondary pneumonia (172). The presence of long-term

immune dysfunction in septic mice was confirmed by higher

bacterial counts in bronchoalveolar lavages, spleen and kidney

homogenates, increased T-cell apoptosis, enhanced Treg ratio,

accompanied by severe lung injury, and a markedly higher 20-day

mortality rate (172). Treatment with citrulline restored T-cell

mitochondrial activity, reduced the number of Tregs, and

reversed the mortality rate in mice (172). In addition, during the

immunosuppressive phase of sepsis, IL-33, GM-CSF or tumor

necrosis factor receptor antibody (DTA-1) administration can

inhibit Treg amplification and restore Th17/Treg balance,

favoring the survival of sepsis (120, 130, 173).

Currently, many studies are exploring the mechanisms of Th17/

Treg imbalance at different stages of sepsis. In the early stage,

pathogens invade the organism and activate innate immune cells to

phagocytose and clear them, triggering the innate immune response

and complement system to produce various pro-inflammatory

factors, e.g., IL-1b, IL-6, IL-12, and TNF-a (174, 175). The study
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has demonstrated that complement C5a induced DC transfer from

the peritoneal cavity to peripheral blood and lymph nodes, inducing

the expansion Th17 (176). Co-incubation of human DC with gram-

positive bacteria cell wall peptidoglycan polymers stimulates the

production of IL-23 and IL-1b by DC, thereby inducing the CD4+ T

cells to differentiate to Th17 (177). Inflammatory factors stimulate

T-lymphocyte proliferation and differentiation, increasing the

proportion of Th17. The persistently increased Th17 continues to

secrete pro-inflammatory cytokines, further inducing cytokine

storm and Th17/Treg imbalance. Furthermore, most patients who

survive sepsis develop a prolonged immunocompromised state,

which is mainly caused by immunosuppression in the late stage

of sepsis (178, 179). The excessive inflammatory response prompts

overexpression of immune checkpoint molecules (e.g., PD-1, TIM-

3, CTLA-4) (58). These negative co-stimulatory factors cause Th17

decrease and T-cell depletion by inhibiting T-lymphocyte activation

and proliferation or by inducing apoptosis (180–183). The relative

increase in Treg during sepsis was shown to be due to the high

resistance of Treg to apoptosis and preferential loss of other

subtypes (Th1, Th2, Th17, Tfh), which ultimately leads to a

Th17/Treg balance toward Treg (156, 184–187). In addition,

inflammation-related markers are also associated with Treg

amplification. C3aR/C5aR-mediated inflammatory activity

impairs Treg function (188). Excessive inflammatory response in

the sepsis leads to complement C3a depletion, which is thought to

be associated with Treg amplification (189). Administration of

exogenous complement C3a inhibited Treg expansion in sepsis

animal model (190). In addition, cytokine IL-33 also upregulates

Treg and contributes to sepsis-induced immunosuppression by

promoting M2 macrophage polarization and IL-10 secretion (74).

The above pathways increase the Treg proportion in late spies,

inducing Th17/Treg balance biased toward Treg.

However, the great instability and plasticity of Th17/Treg left

multiple possibilities for immune alterations in the septic process.

Under certain conditions, Th17 and Treg underwent functional

changes through internal reprogramming to express other T-cell

related cytokines. Th17 can be transformed into Th1, Th2, Treg,

and Tfh. In contrast, Treg can also be transformed into Th1-like,

Th2-like, and Th17-like, Tfh-like Treg, which was confirmed in

many studies in the tumor microenvironment, autoimmune

disease, allergic asthma, and multiple sclerosis (MS) (90, 146,

191–197). Both Th17 and Treg required TGF-b to regulate their

differentiation (90, 198). Treg inhibited cell differentiation into

Th17 by inhibiting RORyt activity through Foxp3 expression (22).

This restriction can be lifted by IL-6 and other cytokines, and

undergone reprogramming of Th17 and Treg (22). In the early

stages of sepsis, the Th17/Treg balance favored Th17 in the presence

of pathogen st imulat ion and a strong inflammatory

microenvironment. However, there was still no evidence to

confirm whether Treg lost its suppressive function or

reprogrammed to Th17, further promoting a hyperinflammatory

response. Similarly, in advanced sepsis, both Th17 and Tregs

showed decreased numbers due to lymphocyte apoptosis. Th17/

Treg favored Treg, and showed an overall immunosuppressive state.

Nevertheless, whether this state was due to the plasticity and

instability of Th17 leading to the transformation of Th17 to Treg
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remained unknown in the field of sepsis research. Overall, it can be

concluded that the Th17/Treg balance has diametrically opposing

effects on host prognosis at different stages of sepsis, and the

underlying phenotypic and functional alterations were unclear.
Th17/Treg balance in different organs
of sepsis

Most studies have focused on the function and characterization

of Th17/Treg in the circulation or spleen (34, 41, 132, 133, 137).

However, Th17 and Treg are prevalent not only within the immune

organs but also in the lungs, kidneys, liver, heart, brain, and muscle

(199–204). The pathophysiological features of sepsis vary from

organ to organ due to the functional and structural differences of

each organ. Th17/Treg balance has tissue characterization on

each organ.

The lung is the most susceptible and is the first organ to be

engaged in sepsis (205). Sepsis often causes pulmonary

inflammation that fails to subside, inducing ALI/acute respiratory

distress syndrome (ARDS) with a high morbidity and mortality rate

(206, 207). The pathology is characterized primarily by a massive

inflammatory cell infiltrate, loss of barrier integrity and increased

permeability of alveolar capillaries, leading to tissue damage in

inflammation (207, 208). Many studies have shown that restoration

of Th17/Treg balance has a positive effect on sepsis-induced lung

injury (137, 138, 209, 210). Xia et al. demonstrated that Maresin 1,

an emerging specific pro-inflammatory mediator, increased the

number of Tregs and decreased the Th17 count, which regulated

the Th17/Treg balance (210). Altered T-cell balance significantly

inhibited excessive inflammatory response, promoted inflammatory

regression, reduced septic lung damage and improved lung function

(210). On the other hand, Nadeem et al. also acted to regulate the

Th17/Treg balance by inhibiting the expression of ITK, an essential

regulator of Th17 differentiation, reducing Th17 and expanding

Tregs (137). This behavior reversed the level of airway

inflammation and oxidative stress in septic lungs (137). In

addition, Traditional Chinese medicine (TCM) also played a

positive role in modulating Th17/Treg balance. Our previous

study confirmed that berberine attenuated pulmonary edema and

hypoxemia in septic mice by regulating Th17/Treg homeostatic

(209). Paclitaxel also alleviated lung injury and prolonged survival

in septic mice by altering the Th17 and Treg populations.

Besides the lungs, the kidneys are often vulnerable to sepsis.

Many studies have focused on the interaction of Th17 or Treg with

sepsis-induced acute kidney injury (SAKI) (211–214). A high level

of IL-17 and tissue infiltration of Th17 often accompanies SAKI

(215). Inhibition of Th17 differentiation and function can effectively

alleviate renal damage (216). Additionally, several animal studies

confirmed that Tregs protected the kidney from inflammation (214,

217, 218). However, other studies suggested that Treg exacerbated

renal damage, which could be attenuated by depletion of Treg and

inhibition of IL-10 (219, 220). This called for consideration of the

impact of Treg plasticity on SAKI during different phases of sepsis.

Alterations in the phenotype and function of Treg can partially

contribute to the inflammatory response towards the two opposite
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outcomes. Treg exerting anti-inflammatory effects effectively

alleviates renal inflammation in SAKI (213). Nevertheless, Treg

with pro-inflammatory properties, such as Th17-like Treg, can

exacerbate immunopathologic changes in the kidney, but further

studies were necessary to explain this. Furthermore, contradictory

results encouraged us to concentrate on the impact of Th17/Treg

balance on SAKI. Zhou et al. investigated Th17/Treg balance and

found that patients with SAKI had an elevated Th17 ratio and

Th17/Treg imbalance (132). The Th17/Treg balance axis tended to

favor the Th17 lineage (132). The Th17/Treg ratio was an

independent risk factor for SAKI (132). Therefore, perhaps it is

not Th17 or Tregs, but rather the Th17/Treg balance that influenced

the pathological process of SAKI.
Discussion

Variation in the immune function affects regression in septic

patients. The differentiation and function of Th17 and Treg, and

bias in Th17/Treg balance, determine different grades of

inflammatory response and organ damage. Many studies are still

limited to pathophysiological alterations of Th17 or Treg in sepsis,

along with conflicting results. This forced us to focus on Th17/Treg

balance rather than solely on Th17 or Treg. However, the current

established studies have limited insights into Th17/Treg balance in

sepsis. This review summarizes the pathophysiology of Th17 and

Treg in sepsis, and describes the effects of Th17/Treg balance in

different inflammatory stages and organs. Since Th17/Treg balance

controls the shifts in pro-inflammatory and anti-inflammatory

responses, amelioration of sepsis by clarifying the optimal point

of Th17/Treg balance may be an effective therapeutic intervention.
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