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Radiation therapy (RT) not only can directly kill tumor cells by causing DNA

double-strand break, but also exerts anti-tumor effects throughmodulating local

and systemic immune responses. The immunomodulatory effects of RT are

generally considered as a double-edged sword. On the one hand, RT

effectively enhances the immunogenicity of tumor cells, triggers type I

interferon response, induces immunogenic cell death to activate immune cell

function, increases the release of proinflammatory factors, and reshapes the

tumor immune microenvironment, thereby positively promoting anti-tumor

immune responses. On the other hand, RT stimulates tumor cells to express

immunosuppressive cytokines, upregulates the function of inhibitory immune

cells, leads to lymphocytopenia and depletion of immune effector cells, and thus

negatively suppresses immune responses. Nonetheless, it is notable that RT has

promising abscopal effects and may achieve potent synergistic effects, especially

when combined with immunotherapy in the daily clinical practice. This

systematic review will provide a comprehensive profile of the latest research

progress with respect to the immunomodulatory effects of RT, as well as the

abscopal effect of radioimmunotherapy combinations, from the perspective of

biological basis and clinical practice.
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Introduction

Cancer remains the leading disease burden worldwide (1–3).

Radiation therapy (RT) plays an important role in the treatment

of cancers and is an effective local treatment method.

Traditionally, it is wide acknowledged that RT leads to DNA

double stand breaks (DSBs) and thereby kills tumor cells (4). In

recent years, multiple studies have suggested that RT could exert

anti-tumor immune effects by regulating local and systemic

immune responses (5). Currently, with the development of

immune checkpoint inhibitors (ICIs), the immune modulatory

effect of RT and the synergistic effect of radioimmunotherapy

combinations have attracted extensive attention and discussions

(6, 7). However, the immune modulatory effect of RT has a

double-sided nature: it can enhance the host’s anti-tumor

immune response , but i t may also produce immune

suppression effects under certain conditions (8). The key

molecular mechanisms of RT promoting or inhibiting adaptive

and innate anti-tumor immune responses not only have triggered

numerous exploration and investigations, but also remain the

research hotspot now and in the future (9).

In addition, in the clinical practice of combining RT with ICI

treatments, it has been observed that effective anti-tumor immune

responses can occur at distant lesions outside the irradiation field,

known as the “abscopal effect”, further emphasizing the immune

modulatory and synergistic effects of RT (10–13). Therefore, the

combinatorial use of RT and ICIs may produce complex

interactions. This review focuses on the latest research progress

on the immune modulatory effects of RT and systematically

summarizes the theoretical basis and clinical evidence for the

synergistic effects of radioimmunotherapy, aiming to elucidate the

biological mechanisms and practical principles when combining RT

with ICIs and provide reference for improving the comprehensive

cancer treatment.
Abbreviations: APCs, Antigen-presenting cells; CCL, Chemokine ligand; cGAS,

Cyclic GMP-AMP synthase; CTLA-4, Cytotoxic T lymphocyte-associated

antigen-4; CTLs, Cytotoxic T lymphocytes; DAMPs, Damage-associated

molecular patterns; DCs, Dendritic cells; DSBs, Double strand breaks; dsDNA,

Double-stranded DNA; GM-CSF, Granulocyte macrophage-colony stimulating

factor; Th, Helper T cells; ICIs, Immune checkpoint inhibitors; ICD,

Immunogenic cell death; IDO, Indoleamine 2,3-dioxygenase; iNOS, Inducible

nitric oxide synthase; IL-10, Interleukin-10; MHC, Major histocompatibility

complex; mtDNA, Mitochondrial DNA; MDSCs, Myeloid-derived suppressor

cells; NK, Natural killer; PD-L1, Programmed cell death ligand-1; PD-1,

Programmed cell death protein-1; RT, Radiation therapy; ROS, Reactive

oxygen species; Tregs, Regulatory T cells; STAT1, Signal transducer and

activator of transcription 1; STING, Stimulator of interferon genes; SBRT,

Stereotactic body radiotherapy; TAAs, Tumor-associated antigens; TAMs,

Tumor-associated macrophages; TIME, Tumor immune microenvironment;

TILs, Tumor infiltrating lymphocytes; TNF-a, Tumor necrosis factor-alpha;

TGF-b, Transforming growth factor-beta.
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Immune-activating effect of
radiation therapy

Induce immunogenic cell death to
promote T cell immune response

The key molecular mechanism that ionizing radiation promotes

anti-tumor immune responses is mainly by inducing the

immunogenic cell death (ICD), which leads to the release of specific

antigens from tumor cells and the stimulation of clone expansion in

tumor-specific T lymphocyte subsets (14, 15). Antigen-presenting cells

(APCs) capture specific antigens and present them in conjunction

with major histocompatibility complex (MHC) to activate helper T

cells (Th), which can include cytotoxic T lymphocytes (CTLs) and

natural killer (NK) cells to exert anti-tumor immune effects and

eliminate tumor cells (16, 17). Overall, ICD induced by RT can

effectively stimulate T lymphocyte recruitment and differentiation to

recognize and kill tumor cells (18, 19).

Prior studies have suggested that RT can induce oxidative stress

sources, such as reactive oxygen species (ROS), leading to

endoplasmic reticulum stress responses and mediating ICD (20,

21). This process is accompanied by an increase in antigen release

and damage-associated molecular patterns (DAMPs), which

participate in the activation of immune response signaling

pathways and facilitate anti-tumor immune responses (22).

DAMPs are one of the most crucial molecular steps during the

radiation-induced ICD. DAMPs include cell surface expression of

calreticulin and heat shock proteins, release of high mobility group

box 1 protein, and active secretion of adenosine triphosphate (23).

In addition, DAMPs can upregulate the expression of tumor-

associated antigens (TAAs), that is, primarily neoantigens that are

immunogenic mutations induced by ionizing radiation. With the

release of inflammatory cytokines, DAMPs can also enhance the

function of cytotoxic CD8+ T cells (15, 24). Recent research has also

shown that RT can further reshape the T cell receptor repertoire of

tumor-infiltrating lymphocytes (TILs) (25, 26).
Activate cGAS-STING pathway to induce
type I interferon response

Stimulator of interferon genes (STING) is an endoplasmic

reticulum membrane protein that regulates innate immune

signaling (27). Cyclic GMP-AMP synthase (cGAS) is a

nucleotidyltransferase that senses cytoplasmic DNA and activates

the STING-TBK1-IRF-3 signaling axis, thereby producing type I

interferon signaling (28). The cGAS-STING pathway is crucial to

innate immune responses, anti-viral immune responses, and tumor

adaptive immunity (24). Another pivotal mechanism by which RT

promotes anti-tumor immune effects is activating the cGAS-STING

pathway, subsequently triggering type I interferon cascade

reactions, and recruiting APCs to capture and cross-present

TAAs to deploy cytotoxic CD8+ T-cell functions (24, 28).

Specifically, RT promotes the release of double-stranded DNA

(dsDNA) in the cell nucleus, increases the permeability of the
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outer mitochondrial membrane, and triggers the exposure of

mitochondrial DNA (mtDNA) in the cytoplasm (29). Both

dsDNA and mtDNA are effective mediators for initiating the

cGAS-STING pathway and the transcription of type I interferons

(30, 31). The type I interferon signal further activates dendritic cells

(DCs). After being matured, DCs present antigens to T cells. Tumor

antigen-specific T cell effector functions is therewith activated, the

number of effector lymphocytes increases, and macrophage activity

is also promoted, resulting in the amplification of adaptive anti-

tumor immune responses (31).
Enhance MHC-I expression and increase
the visibility of antigen

MHC-Imolecules bind to endogenous antigen peptides produced

within cells and are capable of displaying and conveying antigenic

information on the cell surface (32). By binding to CD8+ T cells,

MHC-I molecules enable the recognition and effective killing of

pathological cells that synthesize abnormal proteins, such as tumor

cells that express mutated proteins (33, 34). MHC-I tumor antigens

play an important role in anti-tumor immune responses. However,

during the development of malignant tumors, tumor cells often lack

or have low expression of MHC-I molecules to evade the recognition,

immune surveillance, and attack by T lymphocytes (33, 34).

Therefore, tumor cells could achieve immune escape by losing

MHC-I antigen expression, which not only damages the anti-

tumor effect of innate immune responses, but also weakens the

therapeutic effect produced by some immune checkpoint inhibitors

that can reactivate CD8+ T cells to exert anti-tumor effects (35). Many

recent studies have indicated that RT can significantly increase the

expression of MHC-I on the surface of tumor cells and promote the

generation of TAAs (36, 37). This can expand the antigen pool that

can be presented by APCs, improve the ability of CTL to recognize

tumor cells, increase the visual imprint of the host immune system on

tumor cells, effectively reduce tumor escape, and enhance anti-tumor

immune responses (34).
Release proinflammatory cytokines to
activate tumor microenvironment

In addition to directly killing tumor cells, RT regulates tumor

immune microenvironment (TIME) and transforms it from an

immunosuppressive “cold” to immune-activated “hot” tumors. RT

can stimulate the release of many pro-inflammatory chemokines,

including CXCL9, CXCL10, CXCL11, and CXCL16, from tumor cells

and stromal cells, which promote the immune infiltration and increase

the cell abundance of DCs, macrophages, and T lymphocytes, thereby

effectively activating TIME (38, 39). Recent research has demonstrated

that conventional fractionated RT with 2 Gy per fraction could

reprogram the phenotype of tumor-associated macrophages

(TAMs), making them more prone to promote immune antigenicity

and increase their anti-tumor immunity (40). In general, TAMs have

shown to inhibit T lymphocytes and accelerate tumor metastases,

whereas after polarization they could exhibit anti-tumor effects. RT
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can promote the polarization of M2-like macrophages towards

inducible nitric oxide synthase (iNOS)-positive M1-like polarized

macrophages. Though M2-like macrophages express CD206 and

Arg-1 and release anti-inflammatory cytokines, M1 iNOS-positive

macrophages can induce Th1 chemokine expression, release a variety

of inflammatory cytokines, recruit CD8+ and CD4+ T cells, and

promote T cell-mediated anti-tumor responses (41, 42). Hence, the

theoretical principle of RT driving stress signals to reshape TIME

mainly lies in the fact that RT can increase various immune regulatory

proteins, adhesion molecules, cytokines, and pro-oxidants, positively

activating TIME and anti-tumor immune responses.
Upregulate the expression of death
receptor on tumor cell surface

FAS, a member of the death receptor family and expressed on the

cell surface, is essential to initiate programmed cell death signaling

(43). The combination of FAS and its specific ligand FAS-L can enable

the recruitment of the death-inducing signaling complex and

proteolytic activation of effector caspases 3, 6 and 7 that mediate

apoptosis, resulting in cytotoxic signals and effectively promoting the

local and systemic anti-tumor immune response (43, 44). Studies have

shown that RT can activate the endogenous apoptotic signaling

pathway, upregulate the expression of FAS apoptotic receptors on

the surface of tumor cells, mediate the effective binding of CTLs and

FAS on tumor cells, and promote tumor cell apoptosis (45). Therefore,

the upregulationofFAS expression is oneof the criticalmechanismsby

which RT increases the susceptibility of tumor cells to immune

response-mediated cell death (43). In conclusion, local RT can exert

immune-activating effect through various ways, which has obvious

advantages and wider clinical application prospect. Specific

mechanisms are summarized in Figure 1.
Immunosuppressive effect of
radiation therapy

Induce chronic type I interferon and
interferon-stimulated gene expression

RT can cause accumulation of dsDNA in tumor cells, which

activates the cGAS/STING pathway and promotes the transcription

of type I interferon genes (46). STING can activate different

interferon-stimulated genes through its downstream signaling

pathway. However, in some cases, interferon signaling may also

have negative effects. For example, repeated irradiation of tumor

cells could induce chronic type I interferon and interferon-

stimulated gene expression, which could make effector T cells to

express more inhibitory factors and exhaust T cells, leading to

treatment resistance and tumor immune escape via multiple

inhibitory pathways (47). Studies have illustrated that prolonged

interferon signaling was synergistically associated with

programmed cell death ligand-1 (PD-L1)-dependent and

programmed cell death protein-1 (PD-1)-independent ICI

resistance, as well as resistance to radioimmunotherapy (48).
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Continued interferon signal transduction enables tumor cells to

acquire signal transducer and activator of transcription 1 (STAT1)-

related epigenomic changes and increase the expression of

interferon-stimulated genes and various T cell inhibitory receptor

ligands (48, 49). Moreover, both type I and type II interferons can

induce the above mechanisms of tumor resistance to treatments.
Upregulate expression of PD-L1 and IDO
on tumor cell surface

It is generally accepted that RT could activate the cGAS-STING

signaling pathway and thus promote the transcription of interferon-

stimulated genes. Nevertheless, interferon-gamma and type I

interferon could also upregulate the expression of PD-L1 on the

surface of tumor cells, which could increase the immune escape of

tumor cells and further induce T lymphocyte exhaustion, weakening

the anti-tumor immune response (50). In addition, research indicated

that RT not only upregulated the expression of PD-L1 on tumor cells,

but also could regulate the expression of multiple immune checkpoint

l igands on the surface of immune cells in the tumor

microenvironment, producing suppressive tumor immune effects

(51, 52). Furthermore, indoleamine 2,3-dioxygenase (IDO), a crucial

enzyme involved in the tumor proliferation and immune suppression,

could be upregulated by interferon-gamma and type I interferon as an

immune inhibitory factor (53–55). Previous studies demonstrated that

IDO could result in T cell exhaustion and further upregulate the

expression of inhibitory receptors and ligands (55). Meanwhile, the

overexpression of IDO on the surface of DCs was associated with

decreased T lymphocyte proliferation and poor clinical prognosis in

multiple cancer types (55, 56).
Promote and enhance the function of
inhibitory immune cells

The STING signaling pathway activated by RT can further

enhance the recruitment of regulatory T cells (Tregs) and facilitate
Frontiers in Immunology 04
the development of myeloid-derived suppressor cells (MDSCs),

consequently eliminating the tumor immunogenicity, counteracting

the immunostimulatory properties of radiation, and causing

immunosuppression (24, 52, 57). Both Tregs and MDSCs exert

immunosuppressive effects in immunological responses to cancers

and other diseases through various pathways and mechanisms (57,

58). MDSCs express Arg-1 and iNOS, produce ROS, and

downregulate anti-tumor immune activity via the release of

different chemicals and factors in vivo (59–61). Local irradiation of

tumor lesions could increase the production of chemokine ligand

(CCL)2 and CCL5, which are associated with the recruitment of

Tregs and monocytes (62, 63). Recruited monocytes activate Tregs

through the tumor necrosis factor-alpha (TNF-a) mediated pathway,

which suppresses anti-tumor immune responses and further reduces

therapeutic efficacy (64). Besides, by secreting interleukin-10 (IL-10),

transforming growth factor-beta (TGF-b), and other cytokines, Tregs
can not only enhance the immunosuppressive function of MDSCs,

but also inhibit the immune function of effector T cells (65–68).
Cause lymphopenia and depletion of
immune effector cells

Lymphopenia is one of the most common adverse events during

and after RT in a daily basis, and is deemed to be associated with

poorer survival prognosis for cancer patients (69, 70). Given that

hematopoietic stem cells are sensitive to ionizing radiation, even low-

dose irradiation may cause temporary bone marrow dysfunction,

while high-dose RT may result in irreversible damage to bone

marrow hematopoietic function and mesenchymal stromal cells

(71–73). In real-world clinical settings, patients are often given a

certain dose of irradiation which can achieve the purpose of killing

tumor cells, whereas some patients could experience severe bone

marrow dysfunction, resulting in a significant decrease in lymphocyte

count and accordingly decreased anti-tumor immune response (74).

Chen et al(75) found that lymphopenia post-RT could affect the

occurrence of abscopal responses and thus negatively influence

prognosis in patients treated with RT and immunotherapy.
FIGURE 1

Mechanisms of the immune-activating effect of radiotherapy.
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Similarly, monocytes in the peripheral blood circulation are highly

sensitive to ionizing radiation. Repeated conventional fractionated

RT for 5 consecutive days per week may cause potential cell toxicity

damage, deplete immune effector cells that migrate to the peripheral

circulation, accelerate aging-related clonal hematopoiesis, and

eventually lead to immunosuppressive effects (76). Another

potential mechanism for radiation-induced lymphocyte reduction is

the irradiation of lymphoid organs. Due to the extreme sensitivity of

immature T cells to RT, even low-dose irradiation of lymphoid

organs could contribute to rapid p53-mediated apoptosis, which is

related to reduced lymphocyte count, increased T cell apoptosis

activity, as well as poorer prognosis (62). Hence, lymphopenia,

cytotoxic effects on leukocytes, and depletion of immune effector

cells are also important reasons for the immunosuppressive effects

caused by RT. In brief, RT could also play a negative role in

modulating the systemic immune system, which is worthy of

further elaboration in future research. Detailed mechanisms of the

immunosuppressive effect are presented in Figure 2.
Abscopal effect of radiation combined
with immunotherapy

Clinical application and prospect of
abscopal effect

About 60 years ago, radiation oncologists discovered the “abscopal

effect” of RT, that is, the effective treatment response of tumor shrinkage

was observed at a distant site out of the radiation field (77). Although

there were merely 47 literatures regarding the abscopal effect reported

between 1960 and 2018, this number has rapidly surged after the advent

of immunotherapy,presumablybecause thecombinationofRTandICIs

could effectively promote anti-tumor effects of the immune system (78).

In 2012, Postow et al(79) first reported the abscopal effect of RT in

combination with immunotherapy in a case report: a patient with

melanoma who received local RT on oligometastatic sits and
Frontiers in Immunology 05
ipilimumab, a cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)

inhibitor, exhibited regression of distant lesions outside the radiation

field. Subsequently, mounting evidence has reported the abscopal effect

of combining RT with ICIs, and indicated the increased infiltration of

immune cells and the enhancement of anti-tumor immune response

outside the radiation field. In 2015, Golden et al(80) conducted a proof-

of-principle clinical trial in which the immunogenicity of granulocyte

macrophage-colony stimulating factor (GM-CSF) was regulated by

irradiation, and the effect of RT was validated in clinic for the first

time. This study adopted a Simon two-stage design and included a total

of 41 patients. In the phase I stage with 10 subjects, abscopal effects were

observed in 4 patients. In the phase II stage, 31 additional patients were

included, and 11 of the cumulative 41 patients (26.8%) developed

abscopal effects. Overall, this research is the first clinical evidence that

the combination of RT and immunotherapy can induce the abscopal

effect in solidmetastatic tumors, anddistant remissionofmetastatic sites

can predict better survival outcomes (80).

In 2018, Formenti et al(81) found that in advanced non-small-cell

lung cancer (NSCLC) patients with resistance to chemotherapy, RT

combined with CTLA-4 inhibitors effectively induced systemic T

lymphocyte anti-tumor responses. In this study, CTLA-4 inhibitor

alone or in combination with chemotherapy had unsatisfactory

efficacy, whereas CTLA-4 inhibitor plus RT showed significant anti-

tumor effects (81). Exploratory analysis of the peripheral blood

specimens from subjects indicated that the increase of serum

interferon b and the early dynamic change of T cell cloning after RT

were potent predictors of efficacy (81). Moreover, one patient with

complete response revealed a large expansion of CD8+ T cells and the

recognition of neoantigens encoded by genes upregulated after RT (81).

Hence, the mechanisms of the abscopal effect explained in this study

were as follows: After exposure to the systemic immune system of the

immunogenic mutation induced by RT, tumor cells in the irradiated

field were attacked by circulating immune cells and thus demonstrated

distant anti-tumor responses. At present, the exact mechanism and

principle of the abscopal effect of RT combined with ICIs observed in

clinic remain unclear and warrant further investigations (82).
FIGURE 2

Mechanisms of the immunosuppressive effect of radiotherapy.
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In recent year, the abscopal effect of RT in combination with

immunotherapy has attracted increasing attention from the public. In

the secondary analysis of theKEYNOTE-001 trial (83), patients treated

with pembrolizumab and RT exhibited significantly longer

progression-free survival (PFS; median 4·4 vs 2·1 months; hazard

ratio [HR] 0·56; P=0·019) and overall survival (OS; median 10·7 vs

5·3 months; HR 0·58; P=0·026) than patients without previous RT.

These data suggest that RT combined with pembrolizumab treatment

could bring the synergistic survival benefits to patients with advanced

NSCLC (83). In the randomized phase II PEMBRO-RT study (84),

compared with pembrolizumab alone, stereotactic body radiotherapy

(SBRT) prior to pembrolizumab brought a doubling of overall

response rate (36% vs 18%; P=0·070) and a significantly prolonged

PFS (median 6.6 vs 1.9months; HR 0·58; P=0·026). Subgroup analyses

further showed the largest benefit from the addition of RT in patients

with PD-L1-negative tumors, implying that RT may activate non-

inflamed NSCLC toward a more inflamed tumor microenvironment

(84). Additionally, a pooled analysis of the PRMBRO-RT (phase II)

and MDACC (phase I/II) trials demonstrated significantly improved

PFS (median 9·0 vs 4·4 months; HR 0·67; P=0·045) and OS (median

19·2 vs 8·7 months; HR 0·67; P<0·001) with pembrolizumab plus RT

than pembrolizumab alone in patients with metastatic NSCLC (85).

Meanwhile, both the best out-of-field (abscopal) response rate (41.7%

vs 19.7%; P=0·004) and best abscopal disease control rate (65.3% vs

43.4%;P=0·007)was significantly greaterwithpembrolizumabplusRT

versus with pembrolizumab alone, highlighting the significantly

increased antitumoral responses and augmented survival benefit

noted in the combination treatment (85). In hepatocellular

carcinoma, SBRT and ICI combinations were also found potentially

effective in inducing the immunomodulatory effects as an”in situ
Frontiers in Immunology 06
vaccine” to increase T-cell receptor diversity and further result in

out-of-field abscopal antitumor effects (86).
Limitations of abscopal effect

In clinical practice, there are many factors affecting the abscopal

effect of RT combined with ICIs, including radiation dose and

segmentation, irradiation sites, general condition of patients, disease

stage, tumor characteristics, the sequence of RT and ICIs, and the

selectionof different ICI agents (7, 82).While radiation can activate the

immune system, the optimal dose and timing of RT for the maximal

abscopal effect is not fully understood (87). In terms of the radiation

dose and segmentation, prior research implied that the positive

activating effects of RT on immune responses may be “dose-

dependent” within a certain range, and higher single dose RT of ≥15

Gy (12-18Gy) could lead to increased immunosuppressive effects, such

as the accumulation of CD4+ FoxP3+ Treg or Trex1 induction to

attenuate tumor immunogenicity (88–90). Nevertheless, other studies

suggested different RT doses and segmentations played various

immunomodulatory role (87). Some scholars considered low-dose

RT, which is commonly used for patients with metastatic diseases as

palliative care (91, 92), can better induce anti-tumor immune

activation at the molecular level, reshape TIME, and improve the

infiltration and function of effector immune cells in distant tumor foci

(9, 93–95). Therefore, anti-tumor responses outside the radiation field

strengthened by low-dose RT were termed the “RadScopal effect” by

them(9, 96). Positive andnegative responses of radioimmunotherapy-

induced abscopal effect are summarized in Table 1.
TABLE 1 Clinical evidence for radioimmunotherapy-induced abscopal response.

Study Study Type
Type
of
Cancer

Treatment Abscopal Response

Postow et al
(2012) (79)

Case report Melanoma SBRT (28.5 Gy/3 fractions/9.5 Gy) + Ipilimumab Positive

Golden et al
(2015) (80)

Proof-of-principle trial Metastatic
solid
tumors

RT (35 Gy/10 fractions/3.5 Gy) + GM-CSF Positive in 11/ 41 patients (26.8%);
Negative in 73.2%

Formenti et al
(2018) (81)

Two-satge phase I/II Metastatic
NSCLC

SBRT (30 Gy/5 fractions/6 Gy in phase I, 28.5
Gy/3 fractions/9.5 Gy in phase II) + Ipilimumab

Positive in 12/39 patients (31%);
Negative in 69%

Shaverdian et al
(2017)/KEYNOTE-
001 (83)

Phase I Metastatic
NSCLC

Previous RT + Pembrolizumab Positive (mPFS 4·4 ms, mOS
10.7 ms)

Theelen et al(2019)/
PEMBRO-RT (84)

Phase II Metastatic
NSCLC

Privious SBRT (24 Gy/3 fractions/8 Gy)
+ Pembrolizumab

Positive (12-week ORR 36%, mPFS
6.6 ms, mOS 15.9 ms)

Theelen et al
(2021) (85)

Pooled analysis of phase II
(PEMBRO-RT) and phase I/
II (MDACC)

Metastatic
NSCLC

PEMBRO-RT: Privious SBRT (24 Gy/3 fractions/
8 Gy) + Pembrolizumab
MDACC: Concurrent RT (50 Gy/4 fractions/12.5
Gy or 45 Gy/15 fractions/3 Gy)
+ Pembrolizumab

Positive (best ARR 41.7%, best
ACR 65.3%, mPFS 9.0 ms, mOS
19.2 ms)

Menon et al
(2019) (95)

Post-hoc analysis of two phase I/II
and one phase II

Metastatic
tumors

LDRT (1-20 Gy total) + Ipilimumab or
Pembrolizumab or other immunotherapy

Postive in 22/38 patients (58%);
Negative in 42%
SBRT, stereotactic body radiotherapy; Gy, gray; RT, radiation therapy; GM-CSF, granulocyte macrophage-colony stimulating factor; NSCLC, non-small-cell lung cancer; mPFS, median
progression-free survival; mOS, median overall survival; ms, months; ORR, overall response rate; ARR, abscopal response rate; ACR, abscopal disease control rate; LDRT, low-dose radiation
therapy.nical evidence for radioimmunotherapy-induced abscopal response.
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Taken together, the immunomodulatory effect of RT is two-sided.

On the one hand, it can enhance anti-tumor immune effect through

various mechanisms; on the other hand, it may have

immunosuppressive effect in certain cases. The key principles of RT to

promote local and systemic anti-tumor immune responses include:

inducing ICD to facilitate T lymphocyte proliferation; activating

cGAS-STING pathway to promote type I interferon response;

upregulating the expression of MHC-I on the surface of tumor cells;

and enhancing the immunogenicity and antigen visibility of tumor cells;

stimulating the release of various proinflammatory cytokines in tumor

cells and stromal cells to reshape TIME; increasing immune checkpoint

and FAS expression on tumor cell surface to enhance the anti-tumor

immune effect. On the contrary, the negative immunosuppressive

mechanism mainly includes: RT induced chronic type I interferon and

interferon-stimulated gene expression; upregulating PD-L1 and IDO

expression on tumor surface; promoting the inhibitory immune cell

functions; causing lymphocytopenia and depletion of immune effector

cells. At the same time, the abscopal effect of RT and the radscopal effect

of low-doseRTcombinedwith ICIs,whichconstitute an importantbasis

for the synergistic effect, brought substantial therapeutic benefits during

the clinical practice.Currently, thebest combinationmodality ofRTplus

ICIs remainsuncertainandwarrants further in-depth researchandmore

exploration in the future, which is expected to significantly improve the

survival prognosis of cancer patients, promote the scientific progress of

comprehensive treatments, and facilitate the development of accurate

cancer personalization.
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