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Human tissue-resident
peritoneal macrophages
reveal resistance towards
oxidative cell stress induced by
non-invasive physical plasma
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Theresa Braun3,4, Felix Schäfer-Ruoff3, Jürgen Andress1,
Cornelia Bachmann1, Markus Templin3, Sara Y. Brucker1,
Katja Schenke-Layland2,3 and Martin Weiss1,3*

1Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany, 2Institute of
Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University
of Tübingen, Tübingen, Germany, 3Natural and Medical Sciences Institute (NMI) at the University of
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In the context of multimodal treatments for abdominal cancer, including

procedures such as cytoreductive surgery and intraperitoneal chemotherapy,

recurrence rates remain high, and long-term survival benefits are uncertain due

to post-operative complications. Notably, treatment-limiting side effects often

arise from an uncontrolled activation of the immune system, particularly

peritoneally localized macrophages, leading to massive cytokine secretion and

phenotype changes. Exploring alternatives, an increasing number of studies

investigated the potential of plasma-activated liquids (PAL) for adjuvant

peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy

tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-

toxicity of PAL, we isolated primary human macrophages from the peritoneum

and subjected them to PAL exposure. Employing an extensive methodological

spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest

protein analysis, we observed a pronounced resistance of macrophages towards

PAL. This resistance was characterized by an upregulation of proliferation and

anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell

death. The observed cellular effects of PAL treatment on human tissue-resident

peritoneal macrophages unveil a potential avenue for PAL-derived

immunomodulatory effects within the human peritoneal cavity. Our findings

contribute to understanding the intricate interplay between PAL and

macrophages, shedding light on the promising prospects for PAL in the

adjuvant treatment of peritoneal cancer.
KEYWORDS

non-invasive physical plasma (NIPP), cold atmospheric plasma (CAP), plasma-activated
media (PAM), plasma-treated solutions (PTS), human primary macrophages, immune
response, peritoneal cavity, peritoneal cancer
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357340/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357340/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357340/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357340/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357340/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1357340&domain=pdf&date_stamp=2024-03-05
mailto:martin.weiss@med.uni-tuebingen.de
https://doi.org/10.3389/fimmu.2024.1357340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1357340
https://www.frontiersin.org/journals/immunology


Schultze-Rhonhof et al. 10.3389/fimmu.2024.1357340
1 Introduction

Non-invasive physical plasma (NIPP), a highly reactive gas at

near room temperature, can be applied directly to solids (direct

treatment) or transferred from gas to liquid phase (indirect

treatment) to propagate plasma-activated liquids (PAL) (1, 2).

Biologically active reagents (e.g., reactive oxygen and nitrogen

species, RONS) are formed at the interface of plasma discharge,

surrounding air and the target (3), inducing dose-dependent anti-

proliferative, selective anti-tumoral and wound healing or

regenerative effects at a cellular and tissue level (4–7).

Research on human tissue-resident macrophages is scarce due

to the increased difficulty of isolation and culture (e.g., surgical

procedures, low cell counts) (8). Findings, therefore, largely

originate from in vitro monocyte-derived or murine macrophages

(9), of which fate-mapping studies revealed that in a homeostatic

state, the population of tissue-resident macrophages primarily

comprises large peritoneal macrophages (LPMs) (10). One-tenth

of the population consists of small blood monocyte-derived

peritoneal macrophages (SPMs). Differently from SPMs, LPMs

stem from yolk-sac progenitors and have self-renewal potential

with GATA-binding protein 6 (GATA-6), a transcription factor,

responsible for their differentiation and survival (11). Owing to

their high plasticity, tissue-resident macrophages can initiate an

immune response, regulate wound repair and modulate tumor

expansion (12). “Classically” activated (M1) macrophages exert

cytotoxic effects, express CD86, a co-stimulatory molecule

required for the activation of T cells, and release pro-

inflammatory cytokines (e.g., IL-6, IL-17) (13–15). “Alternatively”

activated (M2) macrophages can be phenotypically characterized by

the scavenger receptor CD163 and have pro-tumoral properties

(15–17). The M1/M2 model, however, largely applies to the in vitro

culture of monocyte-derived macrophages activated with specific

factors, whereas in vivomacrophages may express a larger spectrum

of phenotypes with overlapping properties (12, 18). Polarization of

murine macrophages towards an M1-like phenotype demonstrated

cytotoxic effects and slowed tumor progression in peritoneal tumor

models (19), whereas M2-like macrophages were shown to promote

tumor dissemination in gastric cancer via EGFR signaling

pathways (20).

Peritoneal macrophages are thus a promising target for PAL-

derived immunomodulatory effects. Further research is required for

the clinical use of PAL within the human peritoneal cavity for the

treatment of cancerous and non-cancerous lesions including

inflammatory diseases.
2 Materials and methods

2.1 Isolation and culture of human
peritoneal macrophages

Peritoneal lavages were obtained after written informed consent

from patients undergoing surgical procedures at the University

Women’s Hospital in Tübingen. The use of human donor cells was
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approved by the ethics committee of the medical faculty at the

Eberhard Karl’s University Tübingen (495/2018BO2). Cells were

isolated from these peritoneal lavages as previously reported by

Ruiz-Alcaraz et al. (21). 2 - 4 x 105 cells were then seeded onto 48-

well plates and left to adhere for 2 h at 37 °C and 5% CO2. Non-

adherent cells were aspirated and removed. The plastic-adherent

macrophages were washed with warm DPBS and cultured in

DMEM Glutamax™ supplemented with 100 mg/mL streptomycin,

100 U/mL penicillin, 20 ng/mL macrophage-colony stimulating

factor (M-CSF), 2 mM L-glutamine and 10% heat-inactivated FBS

(all from ThermoFisher Scientific, OR, USA).
2.2 Generation of PAL and cell treatment

2 mL of Minimal Essential Medium (MEM) without pyruvate

(ThermoFisher Scientific, OR, USA, #31095029) supplemented with

100 mg/mL streptomycin, 100 U/mL penicillin, 2 mM L-glutamine

and 10% heat-inactivated FBS was activated by plasma exposure

using an ambient pressure argon plasma jet (kINPen MED, neoplas

med, Germany) for 120 s. Following operating conditions were

applied: argon gas flow 4.0 L/min, frequency 1MHz, line voltage 2-3

kV, power 1 W. 2 mL MEM were treated with pure argon gas and

used as a control. An argon-treated control, 1:2-diluted and

undiluted PAL were performed for experiments (excluding

immunostaining and flow cytometric characterization of

macrophages). In a 48- well plate, cells were incubated with 200

µL PAL for 4 h at 37 °C and 5% CO2 before further propagation in

culture media for 24 h in total.
2.3 Immunofluorescence microscopy

Macrophages were harvested with Accutase (BioLegend, San

Diego, CA, USA, #423201) and reseeded in glass bottom imaging

dishes (m-dish 35 mm, high glass bottom, ibidi, Germany, #81158).

Cells were cultured for 24 h prior to fixation with 4% PFA for

10 min. Cells were washed three times with cold DPBS and

permeabilized with ice-cold 100% methanol for 20 min at -20 °C.

Cells were rinsed with cold DPBS for 5 min and blocked with a

blocking buffer (0.5 g BSA + 30 mL Triton + 10 mL DPBS) for

60 min at room temperature (RT) in dark. After the blocking buffer

was removed, cells were incubated overnight at 4 °C with a primary

antibody diluted in antibody dilution buffer (0.1 g BSA + 30 mL
Triton + 10 mL DPBS). The following primary antibody was used:

Rabbit (Rb) CD68 (clone D4B9C-specific antibody, Cell Signaling

Technology, Netherlands, #76437, 1:800 dilution). Cells were

washed three times with DPBS and incubated with diluted

secondary antibody for 60 min at RT in dark. The following

fluorochrome-conjugated secondary antibody was used: Cy™3

AffiniPure Goat Ant i -Rabbi t IgG (H + L) ( Jackson

ImmunoResearch, UK, #111-165-003, 1:500 dilution). Cells were

washed three times with DPBS and were incubated with the diluted

nuclei-specific dye Hoechst 34580 (ThermoFisher Scientific, OR,

USA, #H21486, dilution 1:1000) for 20 min on a plate shaker
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covered in aluminum foil. Cells were washed with DPBS prior to

image acquisition with a Cell Observer fluorescent microscope

(Zeiss, Germany).
2.4 Flow cytometric characterization

Macrophages were harvested with Accutase, washed and

resuspended in 500 mL DPBS containing 0.5 mL Zombie NIR, a

fixable viability dye, for 20 min at RT in dark. After washing cells

twice with FACS buffer (DPBS + 2% FBS + 0.05 mM NaN3 + 0.1

mM EDTA), cells were resuspended in 50 mL of surface marker

antibodies diluted at a 1:50 dilution ratio in FACS buffer

supplemented with 10% sterile-filtered, human male AB serum

(H2B, France, #21001PM) for 30 min on ice in dark. The following

fluorochrome-conjugated antibodies targeted against surface

markers were used: CD14-PE (clone HCD14-specific antibody,

BioLegend, CA, USA, #325605, dilution 1:50), CD14-FITC (clone

HCD14-specific antibody, BioLegend, CA, USA, #325603, dilution

1:50) and CD16-BV605™ (clone 3G8-specific antibody, BioLegend,

CA, USA, #302039, dilution 1:50). After washing, cells were

resuspended in 100 mL Cytofix/Cytoperm (Fixat ion/

Permeabilization Solution Kit, BD Bioscience, Germany,

#554714). Cells were then washed twice with 1 mL 1x Perm/

Wash and incubated with 100 mL blocking reagent (10% human

male AB serum in 1x Perm/Wash) for 20 min on ice in dark.

Intracellular antibodies were added directly to the blocking reagent.

Cells were incubated with intracellular antibodies for 30 min on ice

in dark. The following fluorochrome-conjugated antibodies

targeted against intracellular markers were used: GATA-6-PE

(clone D61E4-specific antibody, Cell Signaling Technology,

Netherlands, #26452, dilution 1:50) and CD68-PE-eFluor 610

(clone Y1/82A-specific antibody, ThermoFisher Scientific, OR,

USA, #61-0689-42, dilution 1:50). Cells were washed once with 1x

Perm/Wash and resuspended in 100 mL FACS buffer for data

acquisition using LSRFortessa™ Cell Analyzer (BD Biosciences,

NJ, USA). Single-color compensation controls were performed with

UltraComp eBeads™ (ThermoFisher Scientific, OR, USA, #01-

3333-41) for software-based automatic compensation and

adjustment of PMT voltages. Data was analyzed with FlowJo™

10.4.2 software (Tree Star, OR, USA). Gating strategy included the

removal of cell debris (FSC vs SSC), doublets (FSC-A vs SSC-A) and

dead cells (FSC vs Zombie NIR) to determine positive cell

populations (Supplementary Figure S1). FC staining of only

surface markers is reported below (section 3.8).
2.5 Raman microspectroscopic analysis

Macrophages were harvested with Accutase and reseeded in

glass bottom imaging dishes. 24 h after PAL treatment cells were

fixed with 4% PFA for 10 min. Raman imaging was performed using

a customized inverted WITec Raman system (alpha 300 R, WiTec

GmbH, Ulm, Germany) equipped with a green laser (532 nm) and a

charged-coupled device spectrograph with a grating of 600 g/mm.

Large area scans were acquired of 9-10 single cells for each argon-
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treated control, 1:2-diluted and undiluted PAL-treated

macrophages with a 63 x apochromat water dipping objective

(N.A. 1.4; Olympus, Japan), an integration time of 0.1 s, a pixel

resolution of 1 x 1 mm and a laser power of 50 mW. Image analysis

was performed with the Project FIVE 5.1 software (WITEC GmbH,

Germany), including baseline correction, removal of cosmic rays

and cropping of spectra from 300 to 3045 cm-1. True component

analysis (TCA) identified prominent spectral components, of which

single spectra were extracted using TCA-generated masks from

intensity distribution heat maps. Principal component analysis

(PCA) was performed as previously reported with the

Unscrambler x 14.0 software (Camo Software, AS, Norway) to

improve interpretability of the spectral data (22, 23).
2.6 Apoptosis; Apotracker/7-AAD
co-staining

Macrophages were harvested with Accutase 24 h after PAL

treatment, washed and incubated with 400 nM Apotracker staining

solution (BioLegend, CA, USA, #427401) diluted in 100 mL FACS

buffer for 20 min at RT in dark. After washing cells twice with FACS

buffer, cells were resuspended in 100 mL FACS buffer. Cells were

stained with 5 mL of 7-AAD viability dye (BioLegend, CA, USA,

#420403) for 10 min at RT in dark, which was added directly to the

cell suspension prior to data acquisition with LSRFortessa™ Cell

Analyzer. Data was analyzed using FlowJo™ 10.4.2 software.

Apotracker/7-AAD co-staining allowed for the discrimination of

early and late apoptotic, necrotic and viable cells as a percentage of

total cells.
2.7 Protein expression analysis by DigiWest
multiplex protein profiling

Macrophages were harvested with Accutase 24 h after PAL

treatment. Cell pellets were frozen at -80 °C prior to DigiWest

multiplex protein profiling. The high-throughput bead-based

Western blot was performed as previously reported by Ruoff et al.

(24). Antibody fluorescence intensities were analyzed with the

Luminex™ FlexMAP 3D™ Instrument System (Luminex

Corporation, TX, USA). An Excel macro-based algorithm

identified peaks at the respective molecular weight of the primary

antibodies. Streptavidin conjugates were recorded as loading

controls to normalize antibody signals.
2.8 FC surface marker expression analysis

Macrophages were harvested with Accutase 24 h after PAL

treatment, washed and stained. Following fluorochrome-conjugated

specific antibodies targeted against surface markers were used:

CD86-PE (clone IT2.2-specific antibody, BioLegend, CA, USA,

#305405), HLADR-FITC (clone Tü36-specific antibody,

BioLegend, CA, USA, #361603), CD206-BV421™ (clone 15-2-

specific antibody, BioLegend, CA, USA, #321125) and CD163-PE/
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1357340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schultze-Rhonhof et al. 10.3389/fimmu.2024.1357340
Cy7 (clone GHI/61-specific antibody, ThermoFisher, OR, USA,

#25-1639-42). Antibodies were diluted with FACS buffer

supplemented with 10% human male AB serum at a 1:50 dilution

ratio for 30 min on ice in dark. After washing, cells were

resuspended in 100 mL FACS buffer. 1 mL 7-AAD viability dye

was added. Cells were incubated with 7-AAD for 10 min on ice in

dark prior to FC analysis. In addition to single-color compensation

controls, FMO (fluorescence minus one) controls were performed.

Gating strategy included the removal of cell debris (FSC vs SSC),

doublets (FSC-A vs SSC-A) and dead cells (FSC vs 7-AAD) to

determine MFIs.
2.9 Cell culture supernatant analysis

Cell culture supernatants were collected 24 h after PAL

treatment, centrifuged at 3000 x g for 3 min and stored at -80 °C

until analysis. Levels of 13 different cytokines and chemokines were

determined using the LEGENDplex™ HU Essential Immune

Response Panel (BioLegend, San Diego, USA, #740930). The

bead-based immunoassay was performed as reported in the

manufacturer’s instructions. MFIs and absolute concentrations of

the cytokines/chemokines were measured as technical replicates

(duplicates) using LSRFortessa™ Cell Analyzer and analyzed with

the LEGENDplex™ data analysis software.
2.10 Statistical analysis

Statistical comparison was performed with the Student’s t-test

or Mann-Whitney U test against the argon-control group

(GraphPad Prism 9.2.0. GraphPad Software Inc., San Diego, CA,

USA). The data is shown as mean ± standard deviation of a

minimum of three independent experimental approaches. P-

values of < 0.05 were referred to as statistically significant.
3 Results

3.1 Human tissue-resident peritoneal
macrophages reveal a heterogenous
cellular morphology and co-expression of
pro- and anti-inflammatory
surface markers

Human peritoneal macrophages were characterized with IF

microscopy, FC staining and Raman microspectroscopy. IF

microscopy with the intracellular, pan-macrophage marker CD68

demonstrated a heterogenous cellular morphology of the isolated

peritoneal macrophages (Figures 1A, B). These became increasingly

adherent after isolation, adopting either a round shape or a spindle-

shaped elongation. FC staining with CD68 demonstrated that

peritoneal macrophages represented the largest population of

isolated cells (Figure 1C), of which co-staining with CD14, CD16

and GATA-6 showed that the majority had a high expression of

CD14 and CD16 (Figure 1D). GATA-6 was highly expressed,
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Simultaneous FC staining of the following surface markers, CD86,

HLA-DR (M1), CD206 and CD163 (M2), showed that peritoneal

macrophages co-express pro- and anti-inflammatory surface

markers in a homeostatic environment (Figure 1E). Peritoneal

macrophages showed a higher basal expression of M1 surface

markers. 99.9 ± 0.1% of the peritoneal macrophages expressed

CD86, while 90.2 ± 5.1% of the cells were positive for HLADR. The

basal expression of M2 surface markers was lower with 58.1 ± 18.9%

of the cells expressing CD206 and 82.7 ± 11.1% expressing CD163.

Label-free Raman microspectroscopy further characterized cellular

components of peritoneal macrophages, including nucleic acids,

proteins and lipids. Representative Raman images of the false color-

coded heat maps are shown in Figure 1F. Nuclei-specific peaks in

Figure 1G showed characteristic peaks at 785 cm- 1 (25), 1458 cm -1

(26) and 1655 to 1680 cm-1 (25), while protein-specific spectra were

identified based on peaks at 1008 cm -1 (27), 1308 cm -1 (27) and 1667

cm-1 (28, 29). Characteristic peaks of lipids in Raman spectra are

related to the hydrocarbon chain (e.g., 1250 to 1300 cm -1, 1400 to

1500 cm -1) (30). The C-H stretching, which is found in the bands of

the higher wavenumber region, is also distinctive of lipid spectra (30).

A detailed molecular assignment of the nuclei-, protein- and lipid-

specific peaks is summarized in Table 1.
3.2 PAL-treated peritoneal macrophages
maintain resistance towards oxidative
cellular death by upregulating anti-
oxidative mechanisms

Cellular factors related to apoptosis, necrosis and pro-survival

pathways were analyzed in PAL-treated macrophages using FC and

DigiWest protein profiling. FC staining of PAL-treated

macrophages with Apotracker and 7-AAD demonstrated

marginal, non-significant levels of apoptosis and necrosis

(Figure 2). Consistent with the low levels of apoptosis and

necrosis, PAL-treated macrophages showed a high viability for

the 1:2-diluted and undiluted PAL compared to the argon-treated

control (argon-treated control: 94.1 ± 4.9%, 1:2-diluted: 92.9 ± 7.3%

and undiluted PAL: 91.2 ± 7.8%). Representative dot plots of one

donor for the argon-treated control, 1:2-diluted and undiluted PAL

are shown in Figures 2C–E. Quadrant 1 (Q1) shows necrotic (Apo-,

7-AAD+), Q2 late apoptotic (Apo+, 7-AAD+), Q3 early apoptotic

(Apo+, 7-AAD-) and Q4 viable cells (Apo-, 7-AAD-). Additional

apoptosis markers, including the expression of caspases 3 and 9,

also showed no significant increase (Figure 3). Signal proteins

related to immune response control and proliferation, such as

proto-oncogene tyrosine-protein kinase (Src, 1:2-diluted: p =

0.0981; undiluted PAL: p = 0.0661), S6 ribosomal protein (rpS6,

1:2-diluted: p = 0.4141; undiluted PAL: p =0.0231) and phosphatase

and tensin homolog (PTEN, 1:2-diluted: p = 0.3242; undiluted PAL:

p = 0.0306) showed an increased expression. The absence of

significant spectral changes at a nuclei level in Raman

microspectroscopy further supports the PAL-treated

macrophages’ resistance towards oxidative stress-induced cell

death (Supplementary Figure S2). Superoxide dismutase, a redox-
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related enzyme, was mildly upregulated for undiluted PAL

compared to the argon-treated control (1:2-diluted: p = 0.5827,

undiluted: p = 0.1008), which may explain the increased anti-

oxidative potential of peritoneal macrophages.
3.3 PAL-treated peritoneal macrophages
show a moderate pro-inflammatory shift
by alteration of their molecular
composition and cytokine release

PAL-derived RONS did appear to affect molecular composition,

cytokine release and surface marker expression as shown by marker-

independent Raman microspectroscopy and FC staining. Two
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separate PC analyses were performed for the lipidome profile of

PAL-treated macrophages, as the higher wavenumber region (2700 to

3100 cm-1) concealed spectral differences in the fingerprint region

(600 to 1800 cm-1). Score plots of the fingerprint and higher

wavenumber region in Figure 4 demonstrated distinct clusters of

argon-treated and undiluted PAL-treated macrophages (fingerprint:

1:2-diluted: p = 0.9965, undiluted: p <0.0001; higher wavenumber

region: 1:2-diluted: p = 0.9273, undiluted PAL: p <0.0001). Raman

peaks at, for example, 1270 cm-1 (31), 1440 cm-1 (32, 33), 1655 cm-1

(34), 2844 cm-1 (30) and 3010 cm-1 (31) in the loading plots explain

spectral differences (Table 1). The aforementioned peaks can be

assigned to PAL-treated macrophages, indicating the C=C double

bond found in unsaturated fatty acids. Further relevant peaks are

summarized in Supplementary Table S1 (35–41). Changes in fatty acid
A B

D E F

G

C

FIGURE 1

Characterization of human tissue-resident peritoneal macrophages with IF microscopy, FC staining and Raman microspectroscopy.
(A, B) Representative IF microscopy (63 x) after staining with specific antibodies against CD68 (orange) and Hoechst, a nuclear-specific dye (blue),
five days after isolation. Macrophages show round shapes and spindle-like elongation. Scale bar represents 20 µm. (C–E) FC analysis was used to
characterize surface and intracellular markers of peritoneal macrophages. (C, D) shows the percentage of cells positive for the surface markers CD14
and CD16 and the intracellular pan-macrophage marker CD68 (C) and peritoneal macrophage-specific marker GATA-6 (D). (E) shows the
percentage of cells positive for M1 (CD86, HLADR) and M2 (CD206, CD163) surface markers. Statistical comparison was performed with paired
Student’s t-tests. Shown are the mean ± SD, n = 3. (F, G) Raman microspectroscopic analysis was used to characterize peritoneal macrophages at a
nuclei, lipid and protein level. (F) True component analysis (TCA) based on specific Raman peaks facilitated identification of nuclei (blue), lipids (red)
and proteins (green) by producing false color-coded intensity distribution maps. Scale bar represents 7 µm. (G) Average spectra of cellular structures.
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composition and turnover in PAL-treated macrophages may have

contributed to a moderate release of pro-inflammatory cytokines. 24 h

after PAL treatment seven of the 13 analytes measured, including IL-2,

IL-6, IL-8, IL-10, IL-17, IP-10 and MCP-1, were detectable in the cell

culture supernatants of the PAL-treated macrophages using a bead-

based immunoassay (Figures 5A–G). MFIs of the individual analytes

measured were averaged (duplicates) and their respective absolute

concentrations are summarized in Supplementary Table S2. Pro-

inflammatory cytokines, including IL-6, IL-17 and IP-10, showed a

moderate increase (undiluted PAL: IL-6: p = 0.2837; IL-17: p = 0.4288;

IP-10: p = 0.1426). However, chemokine and cytokine release of PAL-

treated compared to argon-treated macrophages was not significant

due to a high donor-dependent variance. Further pro-inflammatory

cytokines, including IL-2, IL-8 and MCP-1, showed no PAL-derived

changes. The anti-inflammatory cytokine, IL-10, demonstrated a small

decrease, which was higher for undiluted (p = 0.1757) compared to the

1:2-diluted PAL (p = 0.2762). IL-8, IP-10 and MCP-1 were the

analytes with the highest absolute concentrations (Supplementary

Table S2). FC staining of surface marker expression was also

performed to analyze changes in polarization (Figure 5H). CD86

(M1) and CD206 (M2) showed no changes in MFI. However, the

expression of CD163 (M2) (1:2-diluted: p = 0.9049, undiluted PAL: p

= 0.1556) and HLA-DR (M1) showed a moderate, non-significant

downregulation compared to the argon-treated control (1:2-diluted: p

= 0.3346, undiluted PAL: p = 0.0889).
A B

D EC

FIGURE 2

FC analysis of viability, apoptosis and necrosis of PAL-treated peritoneal macrophages. Apotracker-FITC and 7-AAD staining was performed 24 h
after PAL treatment of peritoneal macrophages. (A) Bar graph shows high viability of the 1:2-diluted and undiluted PAL-treated macrophages. (B) Bar
graph shows small, non-significant increase in early (black), late (light grey) apoptosis and necrosis (white) of PAL-treated macrophages.
(C–E) Representative dot plots of one donor for the argon-treated control (C), 1:2-diluted (D) and undiluted PAL (E). Shown are mean ± SD, n = 4.
TABLE 1 Identified Raman peaks [cm−1] and their
molecular assignments.

Peaks
[cm−1]

Assignment Reference

Nuclei

785 uracil, thymine, cytosine, O-P-O backbone (25)

1458 nucleic acid modes (26)

1655-80 thymine, guanine, cytosine (ring
breathing modes)

(25)

Proteins

1008 phenylalanine (27)

1308 C-N asymmetric stretching in
aromatic amines

(27)

1667 protein bands (28, 29)

Lipids

1270 C=C groups (unsaturated fatty acids) (31)

1440 (CH2) (lipids), CH2 bending (lipids) (32, 33)

1655 C=C (lipids; not amide I) (34)

2844 vs(=CH2) (30)

3010 unsaturated =CH stretch (31)
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4 Discussion

Recent research has shown that plasma-derived oxidative stress

is not only limited to selectively killing cancer cells but further

modifies the tumor microenvironment, including stromal host and

immune cells, and may trigger immunogenic cell death by which

dying cancer cells release damage-associated molecular patterns

(42–45). A NIPP-modulated immune response may thus restore
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immunogenicity by boosting adaptive immunity against cancer

cells. Bekeschus et al., for example, revealed that NIPP treatment

of CT26 colorectal cancer cells was related to a higher expression of

immunogenic surface-exposed molecules (e.g., calreticulin) (46).

Van Loenhout et al. further showed that as NIPP-treated pancreatic

stromal host cells released less immunosuppressive signaling

molecules (e.g., TGF-ß), more pro-inflammatory immune cells

infiltrated the tumor microenvironment (47). These pro-
A B

D E F

G H

C

FIGURE 3

Multiplex protein profiling of PAL-treated peritoneal macrophages. Protein profiling using DigiWest technology was performed with samples frozen
24 h after PAL treatment. Antibody fluorescence intensities of the analytes were normalized to the argon-treated and their respective streptavidin
loading control. (A–C) show cellular factors related to proliferation, immune response and survival. (D–G) show cellular factors and signaling
pathways related to apoptosis. (H) shows superoxide dismutase, a redox-related enzyme. Statistical comparison was performed with paired Student’s
t-tests. Shown are mean ± SD, n = 3, * p < 0.05.
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inflammatory M1-like macrophages are responsible for

phagocytosis of cancer cells, antigen presentation and release of

cytokines (e.g., IL-6) to recruit natural killer and CD8+ T cells

essential for tumor control (17). In addition, Takeda et al. showed

that intraperitoneal PAL administration significantly reduced

metastatic nodules within mice’s peritoneal cavity without toxic

effects (48). Also, ovarian cancer dissemination was suppressed in

vitro and in vivo via lower MMP-9 expression, leading to better

long-term survival in a mouse model (49). Compared with

intraperitoneal chemotherapy (i.e., HIPEC), which may lead to

severe postoperative complications (e.g., sepsis, digestive fistula and

adhesive ileus) (49–51), intraperitoneal PAL administration may

serve as an adjuvant treatment alternative for peritoneal metastasis

with fewer adverse events and minimal cytotoxicity to healthy tissue

(4, 48). This study thus aimed to identify PAL-derived molecular

and immunomodulatory effects on mature human tissue-resident

peritoneal macrophages. While cellular effects due to long-lived

nitrates (NO3-), nitrites (NO2-), and hydrogen peroxide (H2O2)

formed by plasma-liquid interactions are shown (45), other effects

due to direct treatment (e.g., short-lived species, UV radiation,

electromagnetic fields) could not be observed (1).

FC characterization revealed co-expression of M1 and M2

surface markers of the isolated GATA6+ macrophages. Co-

stimulatory molecules, CD86 and HLADR, responsible for

antigen presentation and T cell activation, are frequently

identified with M1 macrophages (13, 17). Higher expression of

scavenger receptors CD163 and mannose receptors CD206 indicate

an M2-like phenotype (13, 16, 17). Tumor-associated macrophages
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strongly express CD163, and the density of these macrophages

negatively influences gastric cancer growth and metastasis (52). FC

characterization of the isolated macrophages showed higher

expression of M1 surface markers compared to M2 surface

markers. Expression of the surface markers HLADR and CD163

was moderately reduced in PAL-treated macrophages, whereas

CD86 and CD206 did not differ notably from the argon-treated

control. Possibly, no distinct phenotype shift was observed because

of the maturity of the tissue-resident macrophages. Wang et al.

demonstrated the different biological characteristics of murine

macrophages derived from the peritoneal cavity, spleen and bone

marrow, indicating that peritoneal macrophages with high levels of

MHC II and CD86 surface marker expression were the most mature

and showed lower proliferative potential (53). Alternatively,

damage to the cellular membrane via PAL-derived lipid

peroxidation may explain reduced surface marker expression.

Superoxide radicals (O2
•−) can interfere with hydrogen peroxide

(H2O2) and nitric oxide (NO) to trigger lipid peroxidation, leading

to altered cellular membrane permeability and fluidity (54, 55).

PAL-treated macrophages further showed a high resistance

towards PAL-derived oxidative stress and cellular death. Although

PAL-derived RONS may alter cell membrane integrity and promote

apoptosis in cancer cells (56–58), the majority of PAL-treated

macrophages maintained high levels of viability and minimal,

non-significant levels of apoptosis in FC Apotracker/7-AAD co-

staining. Apotracker identifies externalized phosphatidylserine

residues in apoptosis (59), whereas viable cells with intact cellular

membranes are impermeable to 7-AAD (60). Equipped with
A B
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FIGURE 4

Raman and multivariate analysis of lipid composition in PAL-treated macrophages. Raman and multivariate analysis reveal spectral differences at a
lipid level within the fingerprint (600 to 1800 cm-1) and higher wavenumber region (2700 to 3100 cm-1) in PAL-treated macrophages. (A) Score plot
of fingerprint region demonstrated separation in PC-1 vs PC-2 of argon-treated control (blue) and undiluted PAL (yellow). (B) Average score values
of fingerprint region show significant differences of PC-1 for argon-treated control compared to undiluted PAL-treated macrophages.
(C) Corresponding PC-1 loading plot of fingerprint region indicates changes in lipidome profile for undiluted PAL-treated macrophages. (D) Score
plot of higher wavenumber region demonstrated separation in PC-1 vs PC-2 of argon-treated control (blue) and undiluted PAL (yellow). (E) Average
score values of higher wavenumber region show significant differences of PC-1 for argon-treated control compared to undiluted PAL-treated
macrophages. (F) Corresponding PC-1 loading plot of higher wavenumber region indicates changes in lipidome profile for undiluted PAL-treated
macrophages. Shown are statistical comparisons using an unpaired Student’s t-test or Mann-Whitney U test of average score values ± SD for 28
single cells, n = 3, * p < 0.05.
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increased GSH redox signaling, higher levels of DNA repair

proteins and ROS reductase, macrophages have been described to

be less sensitive towards higher intracellular ROS levels, which are

also present in oxidative burst during phagocytosis (61, 62). As

such, NIPP-treated macrophages were demonstrated to be less

susceptible to oxidative stress compared to other PBMC-derived

leukocyte populations (63). Protein profiling also revealed that
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PAL-treated macrophages mildly increased their expression of the

anti-oxidant enzyme superoxide dismutase, which can catalyze the

dismutation of the superoxide radical (O2
•−) to hydrogen peroxide

(H2O2) and molecular oxygen (O2) (64). Hwang et al. showed that

superoxide dismutase supplementation attenuated uncontrolled

inflammatory response and apoptosis via blocking of p38-MAPK/

NF-kB pathways (64). Upregulation of superoxide dismutase may
A B

D E F
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C

FIGURE 5

FC analysis of cytokine/chemokine release and surface marker expression of PAL-treated macrophages. FC analysis of cytokine/chemokine release
and surface marker expression was performed 24 h after PAL treatment. Mean fluorescence intensities (MFIs) of cytokine/chemokine levels were
measured using a bead-based immunoassay. (A–C) Tendential increase in pro-inflammatory cytokines and chemokines (IL-6, IL-17 and IP-10).
(D–F) Other pro-inflammatory cytokines (MCP-1, IL-2 and IL-8) showed no PAL-derived changes. (G) Release of anti-inflammatory cytokine, IL-10,
showed a moderate decrease. Shown are the mean ± SD, n = 4. (H) FC analysis of surface marker expression was performed and surface protein
levels are shown as MFIs. HLADR (M1) and CD163 (M2) expression were moderately reduced for the argon-treated control compared to the
undiluted PAL-treated macrophages. Shown are mean ± SD, n = 3.
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also reduce apoptosis by decreasing mitochondrial release of

cytochrome c (65). Further apoptosis markers and pathways (e.g.,

casp3, casp9 and p38-MAPK) demonstrated no significant

upregulation in protein profiling of PAL-treated macrophages.

Rather cell signaling and regulation pathways relevant for

immune response and proliferation showed significant

upregulation. PTEN, for example, promotes inflammatory

responses via the release of pro-inflammatory cytokines (e.g., IL-

6) (66). Src kinase, also relevant for immune response control of

macrophages, is involved with their functional activation (67).

Multivariate analysis of spectral data allowed for the biomolecular

characterization of cellular structures, including nuclei, proteins and

lipids, of PAL-treated macrophages. The potential of Raman imaging

to determine PAL-derived changes has already been analyzed in

cervical tissue, peritoneal fibroblasts and mesothelial cells (6, 68).

Proteins and lipids were previously identified as cellular structures

most reactive to demonstrate macrophage activation in Raman

imaging (69). Analysis of their lipidome profile revealed that

Raman peaks at 1270 cm-1 (31), 1440 cm-1 (32, 33), 1655 cm-1 (34)

and 3010 cm-1 (31) may explain the clustering behavior of the argon-

treated control and PAL-treated macrophages in the score plots.

These aforementioned peaks can be assigned to (undiluted) PAL-

treated macrophages and describe the C=C double bond of

unsaturated fatty acids, thereby indicating an altered degree of

saturation in fatty acid composition. Montenegro-Burke et al.

demonstrated that macrophage phenotypes have different fatty acid

compositions (70). M1 macrophages are characterized by higher

intensities of cholesterol esters, diacylglycerols and triglycerides,

including a higher proportion of unsaturated triglycerides,

especially polyunsaturated fatty acids (71). Cholesterol and

triglyceride ester-containing lipid droplets are relevant for

inflammatory response and may be utilized as a substrate pool for

pro-inflammatory cytokines (e.g., IL-1ß, IL-6) (71, 72). Changes in

lipids and their metabolites may affect macrophages’ polarization and

response to pathogens, phagocytosis and inflammation (73).

Distinguishing in-depth between structural and molecular, as well

as transient and permanent damage of cell membranes, requires

further studies (i.e., mass spectrometry, electron microscopy, protein

profiling) to reveal structural damage and up-/downregulation of

lipid-metabolism-related factors due to PAL treatment. Nonetheless,

changes in the lipidome profile of PAL-treated macrophages were

consistent with observations of a tendential increase of pro-

inflammatory cytokines/chemokines (IP-10, IL-6 and IL-17) and a

decrease of the anti-inflammatory cytokine IL-10 in the bead-based

immunoassay. However, these PAL-derived changes in the cytokine/

chemokine release were not significant due to the high donor-

dependent variance of primary isolated human tissue-resident

peritoneal macrophages. IP-10 (CXCL10), for example,

demonstrated immunomodulatory potential to recruit APCs in

glioma and melanoma murine tumor models (74). However, IP-10

may also partake in tumor expansion if the receptor CXCR3 is

overexpressed in cancer cells. The aforementioned PAL-derived

changes in cytokine/chemokine release align with other findings

(75, 76). Cheng et al., for example, showed a higher release of IL-2

and IL-6 and a lower IL-10 release in NIPP-treated peritoneal elicited

murine macrophages (75).
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Our findings suggest that human tissue-resident peritoneal

macrophages are extremely resistant towards PAL-derived oxidative

stress via upregulated pro-survival and anti-oxidative pathways.

NIPP may modulate a moderate pro-inflammatory response by

modifying their lipid composition and cytokine release, thereby

complementing the aforementioned anti-tumoral activity of NIPP.

However, the present study is limited to a 2D cell culture model. 3D

cell models (e.g., organoids, spheroids, or tumor-on-a-chip) or

murine models better represent the in vivo environment and are

more predictive of PAL-derived immunomodulatory effects on solid

tumors. These must validate the 2D cell culture in vitro findings

under more in vivo (-like) conditions.
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