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A bioinformatic analysis of T-cell
epitope diversity in SARS-CoV-2
variants: association with
COVID-19 clinical severity in the
United States population
Grace J. Kim1,2, Jacob H. Elnaggar2,3, Mallory Varnado2,
Amy K. Feehan4, Darlene Tauzier5, Rebecca Rose6,
Susanna L. Lamers6, Maya Sevalia2, Najah Nicholas2,
Elizabeth Gravois5, Daniel Fort4, Judy
S. Crabtree1 and Lucio Miele1*

1Department of Genetics, Louisiana State University Health Sciences Center, New Orleans,
LA, United States, 2School of Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, United States, 3Department of Microbiology, Immunology, and Parasitology,
Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States,
4Research and Development, Oschner Medical Center, New Orleans, LA, United States, 5Department
of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States,
6Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In

this computational study,we explored theCD8+epitopediversity estimated in 27 of the

most common HLA-A and HLA-B alleles, representing most of the United States

population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100,

AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1,

BQ.1.1, XBB.1, XBB.1.5)] in analyzedMHCclass I alleles revealed that SARS-CoV-2CD8+

epitope conservation was estimated at 87.6%–96.5% in spike (S), 92.5%–99.6% in

membrane (M), and 94.6%–99% in nucleocapsid (N). As the virus mutated, an

increasing proportion of S epitopes experienced reduced predicted binding affinity:

70% ofOmicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as

compared with ~3% and ~15% in the earlier strains Delta AY.100–AY.44 and Omicron

BA.1–BA.5, respectively. Additionally, we identified several novel candidate HLA alleles

that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01,

and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-

B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that

viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to

determining the clinical severity of acute COVID-19. Achieving long-term COVID-19

immunity will require an understanding of the relationship between T cells, SARS-CoV-

2 variants, and host MHC class I genetics. This project is one of the first to explore the

SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United

States population.
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GRAPHICAL ABSTRACT
1 Introduction

Since the emergence of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) in late 2019, the scientific

community rapidly developed several therapeutic monoclonal

antibodies and mRNA vaccines. Current vaccines elicit a short-

lived humoral response against the SARS-CoV-2 spike protein,

lasting an average of 3–4 months and requiring periodic boosters

(1–3). Intriguingly, coronavirus disease 2019 (COVID-19) patients

lacking humoral immune response due to treatment of

hematological malignancies did not exhibit increased disease

severity or mortality, suggesting that B-cell-mediated immunity

may not be sufficient to confer long-term immunity against SARS-

CoV-2 (4–6). In contrast, convalescent macaque models depleted of

CD8+ T cells exhibited loss of host protection following reinfection,

highlighting the importance of T-cell immunity in COVID-19

clinical presentation (7).

Cytotoxic CD8+ T cells are essential for the clearance of

intracellular viral pathogens, such as SARS-CoV-2 (8–10). T-cell

activation occurs through T-cell receptors binding to T-cell

epitopes, described as peptide antigens bound by a human

heterodimeric glycoprotein, known as a major histocompatibility

complex (MHC). CD8+ T-cell antigen recognition is determined by

MHC class I genes, which control antigenic peptide presentation on

MHC class I molecules (11). Unlike the invariant b2-microglobulin

subunit, the a subunit of MHC class I proteins is highly

polymorphic, with the most polymorphic genes being human

leukocyte antigens (HLA) HLA-A, HLA-B, and HLA-C; these

subunits have an estimated 1,939, 2,577, and 1,595 allotypes,

respectively (11, 12). Therefore, the considerable individual

diversity generated from HLA polymorphism is a proposed
Frontiers in Immunology 02
explanation for the differential clinical severity of COVID-19

variants seen between individuals, since the epitope repertoire

from one patient is likely to be substantially different from the

next (13–15). Select studies have sequenced the HLA alleles and

SARS-CoV-2 T-cell epitopes of convalescent patients (4, 15–18).

However, current research on T-cell response to COVID-19,

especially analysis exploring the relationship between HLA

molecules and viral CD8+ epitopes on a population/

epidemiological level, remains limited. Previously published

research has already identified several HLA alleles associated with

increased (HLA-A*25:01, HLA-B*46:01, and HLA-B*27:07) or

decreased (HLA-B*07:02, HLA-B*15:03, and HLA-B*51:01)

clinical severity in convalescent patients (Table 1) (13, 19–21),

but none have explored the entire epitope repertoire of variants

of concern (VOC) gene products in the most common

HLA allotypes.

SARS-CoV-2 VOC and subvariants accumulate mutations in

the genes for their protein products, such as spike, membrane, and

nucleocapsid proteins, potentially affecting the binding affinity and

immunogenicity of T-cell epitopes. These mutations and the

resulting alterations to MHC-I binding affinity may influence

COVID-19 clinical characteristics, such as viral transmissibility,

protection against neutralizing antibodies, risks of reinfection, and

disease severity (15, 22, 23), as well as the risk of post-acute sequelae

of COVID-19 infection (PASC or long COVID) (24–26). Given that

an estimated 3% of CD8+ T-cell epitopes are affected by mutations

conferred in various VOCs, certain HLA alleles may have more (or

less) propensity to be strongly affected by mutations in specific

VOCs (15).

This manuscript distinguishes SARS-CoV-2 variant-specific

CD8+ T-cell epitopes of spike, membrane, and nucleocapsid gene
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products for 27 of the most frequentHLA-A andHLA-B alleles. The

purpose of this computational study was to model the

immunogenic effects and clinical severity of SARS-CoV-2 variants

in the most common MHC class I alleles in the United States

population. Our bioinformatics approach integrates the use of

Ensembl’s COVID-19 genome browser, Immune Epitope

Database and Analysis Resource tool TepiTool, and ExPASy

translate tool (27–29).
2 Materials and methods

2.1 SARS-CoV-2 viral genome sequencing

Specimens were received by the LSUHSC Precision Medicine

Laboratory from various collection sites representing the Louisiana

patient population for public health screening purposes. RNA

extraction was performed using the Zymo Quick DNA/RNA

Viral MagBead kit automated on a Tecan Fluent liquid handling

workstation. The resulting viral RNA was used for library

generation and next-generation sequencing using the Illumina

COVID-Seq workflow as per the manufacturer’s instructions.

Libraries were pooled (up to 192 samples/run) and loaded on an

Illumina NextSeq550Dx in RUOmode, with 74 cycles of paired-end

sequencing using a 150-cycle mid output reagent cartridge and flow

cell. Initial data processing and QC was performed using the

DRAGEN COVID-Seq Test (EUA) v.1.2.2 application on the

cloud-based BaseSpace sequence analysis hub hosted by Illumina.

BaseSpace project share links were provided to BioInfoExperts, LLC

for sequence processing and analysis in FoxSeq software

(www.foxseqllc.com). Briefly, sequences were quality-filtered

using Trimmomatic (30) and mapped to the reference using

Bowtie2 (31). Variant calling and consensus sequence generation
Frontiers in Immunology 03
were performed using bcftools (32). Nucleotides at any position

were only assigned if the sequencing depth was >200 and the allele

frequency was 80%. Lineages were assigned using pangolin (https://

cov-lineages.org). Consensus sequences were uploaded to GISAID

and NCBI SARS-CoV-2 viral genome data repositories.
2.2 SARS-CoV-2 variant sequence
comparison and protein peptide
sequence generation

Genome sequences of SARS-CoV-2 variants were blasted

against the originally sequenced Wuhan strain (INSDC accession

CGA_009858895.3) using Ensembl’s (RRID: SCR_002344) SARS-

CoV-2 genome browser (29). Variant-specific cDNA sequences for

transcripts were generated from Ensembl’s SARS-CoV-2 genome

browser (RRID: SCR_024704). SARS-CoV-2 variant-specific cDNA

for spike, membrane, and nucleocapsid was converted to amino

acid (protein) sequences, using the ExPASy translate tool (RRID:

SCR_024703) (27).
2.3 TepiTool IEDB analysis of coronavirus
T-cell epitopes

The prediction of MHC-I epitope binding to variant-specific S, M,

and N was generated through the Immune Epitope Database and

Analysis Resource (IEDB) (RRID: SCR_006604), via TepiTool utilizing

the IEDB-recommended default prediction (33). Spike, membrane,

and nucleocapsid were selected because, for the most part, spontaneous

CD8+ responses against SARS-CoV-2 T-cell epitopes target the

proteins they encode (16). A panel of 27 most frequent A and B

alleles was used forMHC-I epitope binding analysis. The specific alleles
TABLE 1 Estimated DG for SARS-CoV-2 CD8+ peptides docked with HLA-B*15:01 by FOLDX.

Peptide
Covid
Strain

Mutation Type
Wuhan

Predicted
Binding

VOC
Predicted
Binding

DG (kcal/mol) Notes
(Altered from

X to Y)8elg 3c9n

ALPFNDGVY XBB.1.5
Spike

Increased Binding
0.76 0.59 -0.0995896 1.60678

VLPFNDGVY
to ALPFNDGVY

LERDLPQGF XBB.1.5
Spike

Decreased Affinity
0.12 0.82 0.445307 3.22076

LVRDLPQGF
to LERDLPQGF

GQTGNIADY XBB.1.5
Spike

Decreased Affinity
0.08 0.18 -2.00747 1.14488

GQTGKIADY
to GQTGNIADY

HQPYRVVVL XBB.1.5
Spike

Increased Binding
0.59 0.56 0.91709 -3.04112

YQPYRVVVL
to HQPYRVVVL

LVKQLSSKF XBB.1.5
Spike

Increased Binding
0.06 0.04 -1.11521 -0.832341

LVKQLSSNF
to LVKQLSSKF

CVADYSVIY XBB.1.5
Spike

Increased Binding
0.36 0.31 1.03023 0.182606

CVADYSVLY
to CVADYSVIY

NCYSPLQSY XBB.1.5
Spike

Increased Binding
0.7 0.42 1.82501 0.759358

NCYFPLQSY
to NCYSPLQSY

KLDDKGPNF BA.1.1
Nucleocapsid

Increased Binding
1 0.5 -0.580903 -1.76596

KLDDKDPNF
to KLDDKGPNF
Predicted binding values reflect predicted consensus percentile ranks generated from IEDB’s Tepitools, as described in the methods. Low scores correspond to high predicted binding affinities.
Highlighted letters indicate amino acid alterations from the original Wuhan sequence to the respective SARS-CoV-2 strain.
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included were as follows: HLA-A*01:01, HLA-A*02:01, HLA-A*02:03,

HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-

A*24:02, HLA-A*26:01, HLA-A*30:01, HLA-A*30:02, HLA-A*31:01,

HLA-A*32:01, HLA-A*33:01, HLA-A*68:01, HLA-A*68:02, HLA-

B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, HLA-B*40:01,

HLA-B*44:02, HLA-B*44:03, HLA-B*51:01, HLA-B*53:01, HLA-

B*57:01, and HLA-B*58:01. IEDB’s default prediction method

reflects consensus across ANN, SMM, and CombLib predictors and

was used to select peptides with predicted consensus percentile ranks

≤1 (28). Low scores correspond to high predicted affinities.
2.4 FoldX peptide docking of HLA-B*15:01

Molecular docking was adapted fromMazumder et al. (34). The

RepairPDB method from FoldX (RRID: SCR_008522) Suite 5.0 was

initially used to repair the structures obtained from the RCSB

Protein Data Bank (Supplementary Table S1) (35). This allows for

the use of the structures in downstream FoldX tools. BuildModel

was used to convert from the peptide in the structure to the original

SARS-COV-2 CD8+ peptide. BuildModel was used again to convert

from the original SARS-COV-2 CD8+ peptide to the mutated

peptide. The estimated ΔG (kcal/mol) was then used to create a

heatmap in R (v4.2.1) with the ComplexHeatmap function (36).

Python scripts used to run FoldX can be found at github.com/

elnaggarj/FoldX-PeptideDocking.
3 Results

3.1 Spike, membrane, and nucleocapsid
nucleotide alterations between one
pre-Alpha, one Alpha, five Delta, and nine
Omicron SARS-CoV-2 variants over time

B.1, Alpha (B.1 and B.1.1.7), five Delta (AY.100, AY.25, AY.3,

AY.3.1, and AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4,

BA.5, BQ.1, BQ.1.1, XBB.1, and XBB.1.5) VOCs were sequenced

from the Louisiana patient population between 9 April 2020 and

January 2023. Variant FASTAs were compared with the ancestral

Wuhan strain (NCBI: NC_045512.2) using BLAST to determine

nucleotide differences (Figure 1). Alpha and Delta strains displayed

minimal variance, with Delta exhibiting 12–15, 1, and 4–6

nucleotide (NT) variations in S, M, and N, respectively. B.1 and

B.1.1.7 showed alterations in spike (2 NT in B.1; 10 NT in B.1.1.7)

and nucleocapsid (5 NT in B.1.1.7) although M remained identical

to the original Wuhan strain. In comparison, Omicron variants

exhibited 37–55, 3–4, and 13–16 NT variations in S, M, and N,

respectively (Figure 1). Among the three protein products analyzed,

membrane and nucleocapsid sequences were highly conserved, with

M experiencing only 0–4 NT changes between the 16 variants

analyzed (M: 665–669/669 NT = 99.4%–100% conservation; N:

1,244–1,256/1,260 = 98.7%–99.8%; S: 3,830–3,776/3,831 = 98.5%–

99.9%). Additionally, there was limited mutational divergence seen

in Omicron variants between March 2022 and December 2022,
Frontiers in Immunology 04
suggesting a possible plateau in genetic drift within the Omicron

family of SARS-CoV-2.
3.2 Epitope differences between 16 variants
of spike, membrane, and nucleocapsid
when compared against the ancestral
Wuhan strain

We generated predictive estimates of MHC-I epitopes to

variant-specific S, M, and N using the IEDB Resource TepiTool,

utilizing the IEDB-recommended default prediction. A panel of 27

most frequent A and B alleles were used for MHC-I epitope binding

analysis, which encompassed 16 HLA-A (HLA-A*01:01, HLA-

A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-

A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-A*26:01, HLA-

A*30:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-

A*33:01, HLA-A*68:01, and HLA-A*68:02) and 11 HLA-B (HLA-

B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, HLA-B*40:01,

HLA-B*44:02, HLA-B*44:03, HLA-B*51:01, HLA-B*53:01, HLA-

B*57:01, and HLA-B*58:01) alleles. Utilizing the haplotype

frequency estimates provided by the National Marrow Donor

Program (37), the 16 HLA-A alleles make up 92.4% of the

population in Caucasians, 69.2% in African Americans, 74% in

Asian, and 83% in Hispanics. Similarly, the 11 HLA-B alleles

represent 67.7% of Caucasians, 44.8% of African Americans,

39.2% of Asians, and 39.8% of Hispanics. CD8+ epitope

repertoires, comprising the 27 most common HLA-A and HLA-B

alleles, were generated for 16 SARS-CoV-2 variants and the

ancestral Wuhan strain. The original S, M, and N protein

products resulted in a repertoire of 1,081, 237, and 289 predicted

CD8+ epitopes, respectively. From the 16 SARS-CoV-2 variant

spike proteins, we identified a range of 1,077–1,115 CD8+ T-cell

epitopes. Variant-specific membrane epitopes ranged between 236

and 241, with nucleocapsid CD8+ repertoires comprising 289–298

epitopes for the 27 HLA alleles analyzed.

Wuhan S, M, and N repertoires were compared against 16

variants (B.1, Alpha, five Delta, and nine Omicron) to identify

epitopes that were lost, gained, or altered in estimated HLA binding

affinity between variants (Figure 2). In general, a balanced number

of epitopes were lost and gained for all variants; however, BA.1.1 M,

BA.4 N, B.1.1.7 S, and BQ.1.1 S repertoires sustained greater epitope

loss than gain (Figures 2A–C, 3, bottom), which may contribute to

explaining the increased transmission and breakthrough cases seen

in these subvariants (39, 40). Additionally, spike epitopes in the

early variants (B.1 and B.1.1.7) and Omicron VOCs experienced a

greater number of epitopes predicted to have reduced binding

affinity than increased affinity.

3.2.1 Spike epitopes were the least conserved,
compared with membrane and nucleocapsid

Among the three viral proteins we examined, spike epitopes

were least conserved, with S, M, and N epitopes experiencing

87.6%–99.8%, 92.5%–100%, and 94.6%–100% conservation,

respectively. Across all the variants studied, Omicron BQ.1.1 S
frontiersin.org
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epitopes experienced the most loss, with 138/1,115 = 12.4% affected,

while strain B.1 only lost 2 epitopes out of 1,081 total (0.0019%)

compared with the original Wuhan strain. Among the 14 Delta and

Omicron spike proteins, the largest area of conservation, defined as

a region experiencing no epitope loss or gain, was found between

amino acids (AA) 987–1,205 within the 1273 AA protein (Figure 4).

As seen in the two other protein products, S epitopes that were lost

were generally replaced by alternate epitopes that were gained in the

same regions. However, all Delta variants lost two epitopes
Frontiers in Immunology 05
(VSSQCNLR and SQCVNLRTR), affecting HLA-A*31:01 and

HLA-A*68:01, without experiencing epitope gains (Supplementary

Figure 2). These epitopes spanned the AA 11–21 region, affecting

the tail end of the hydrophobic signal peptide and the S1 subunit in

the S protein.

As shown in Figure 2A, 41.4% of B.1.1.7 (Alpha VOC) spike

epitopes were estimated to have reduced immunogenicity, while

only 2.5% (27/1,092 epitopes) demonstrated increased predicted

HLA binding. As SARS-CoV-2 mutated, an increasing proportion
B

C

A

FIGURE 2

Spike (A), membrane (B), and nucleocapsid (C) epitope differences between variants of interest (B.1 labeled black, Alpha in orange, Delta in blue, and
Omicron in red) when compared against the ancestral Wuhan strain. Predicted binding of SARS-CoV-2 S, M, and N epitopes was generated using
the IEDB database TepiTool for the 27 most common HLA-A and HLA-B alleles.
FIGURE 1

Nucleotide (NT) variations of spike, membrane, and nucleocapsid over time between B.1 (colored black), Alpha (orange), five Delta (blue), and nine
Omicron (red) variants when compared against the original Wuhan strain.
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FIGURE 3

Membrane epitopes lost (regions colored red) and gained (colored blue) in Delta (top) and Omicron (bottom) when compared against the ancestral
Wuhan strain. Protein characteristics were generated using UniProt’s Feature Viewer (38).
FIGURE 4

Spike epitopes gained (top) and lost (bottom) when compared against the ancestral Wuhan strain. Colored regions and numbers refer to amino acid
locations of predicted epitope alterations, with red indicating changes seen in Omicron, blue for Delta, and yellow for epitopes affected in all 16
variants. Protein characteristics were generated using UniProt’s Feature Viewer (38).
Frontiers in Immunology frontiersin.org06
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of epitopes were predicted to have reduced HLA binding, with 70%

of Omicron BQ.1–XBB.1.5 S epitope repertoires experiencing

decreased predicted binding affinity (as compared with the

roughly 3% and 15% affected in Delta AY.100–AY.44 and

Omicron BA.1–BA.5 variants, respectively) (Figures 1, 2A). When

compared with the ancestral Wuhan spike, XBB.1 S epitopes

experienced the greatest decrease in predicted immunogenicity,

with 64.9% (720/1,109 epitopes; Figure 2A) of its CD8- T-cell

repertoire demonstrating a reduction in estimated binding

affinity, while only 37 epitopes (3.3%) were estimated to have

increased HLA binding. Additionally, all 27 HLA-A and HLA-B

alleles had decreased predicted binding affinity for B.1.1.7 and

BA.1–XBB.1.5 spike epitopes.

3.2.2 Membrane epitopes were most conserved
with balanced gain and loss maintained in
all variants

Membrane epitopes sustained minimal alterations, with BA.1.1

losing the most (18/241 = 7.5%) and AY.100–AY.44 losing the least

(1/237 = 0.04%) epitopes between Delta and Omicron variants

(Figures 1, 2B). Alpha membrane epitopes were conserved

unaltered from the original Wuhan variant sequenced. In general,

M epitope loss was accompanied by balanced epitope gains across

all VOCs, with similar patterns seen between epitopes with altered

predicted binding affinity (Figure 2A). For all Delta variants, HLA-

A*68:02 lost the ability to bind epitope TAMACLVGL, while HLA-

B*51:01 gained IAIAMCLV between AA 80 and 90. Likewise, for
Frontiers in Immunology 07
the nine Omicron variants, two membrane segments (AA 12–27

and AA 55–71) experienced balanced epitope loss and

gain (Figure 3).

BA.1.1 M protein lost significantly more epitopes than the other

variants, affecting 15/27 HLA alleles, while the other 8 Omicron

variants sustained epitope loss in only 5 HLA alleles (Figures 2B, 3,

bottom). Additionally, BA.1.1 M contained a third region between

117 and 129 AA wherein HLA-A*03:01, HLA-A*26:01, HLA-

A*30:02, HLA-A*31:01, and HLA-A*33:01 endured epitope loss of

NILLNVPLY and PLYGTILTR (Figure 3, bottom). Unlike other

regions, only HLA-B*08:01 gained an epitope within the AA 117–

129 segment. The region between AA 132 and 222 was found to be

conserved, with no predicted epitopes being lost or gained.

3.2.3 Unbalanced nucleocapsid epitope gain/loss
and alterations in predicted binding, with more
epitopes experiencing decreased
predicted binding

Like M, N epitopes were highly conserved, with the greatest loss

seen in BA.4 (16/298 = 5.4%) and conservation in AY.100/AY.25/

AY.44 (3/290 = 1%) among Omicron and Delta variants. N epitopes

experienced no loss or gain between AA 66–194 and AA 237–401 in

all VOCs. Although nucleocapsid epitopes experienced numerically

balanced gain and loss across VOCs (Figure 2C), further analysis

revealed AA 192–209 to be the only region where epitopes were

both gained and lost, including the Alpha variant (Figure 5). Within

this region, more HLAs sustained gain/loss in Omicron (6/27 HLA
FIGURE 5

Nucleocapsid epitopes lost (regions colored red) and gained (in blue) in Delta (top) and Omicron (bottom) variants when compared against the
ancestral Wuhan strain. Protein characteristics were generated using UniProt’s Feature Viewer.
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gain; 5/27 HLA loss) and Alpha (6/27 HLA gain; 5/27 HLA loss)

VOCs than Delta VOCs (1/27 HLA gain; 1/27 HLA loss) in this

region. Unlike the other two SARS-CoV-2 VOC families, Alpha

only experienced epitope loss/gain between the AA 195 and 237

region, wherein epitope SSRGTSPAR was gained in HLA-A:03:01,

HLA-A*11:01, HLA-A*30:01, HLA-A*31:01, HLA-A:33:01, and

HLA-A:68:01, while RNSTPGSSK and NSTPGSSKR were lost in

HLA-A*03:01, HLA-A*11:01, HLA-A*30:01, HLA-A*33:01, and

HLA-A*68:01.

Across all Delta N epitope repertoires, HLA-A*23:01 and HLA-

A*24:02 lost the ability to bind to QHGKEGLKF between 58 and 65

AA, while HLA-B*40:01 gained binding to GDAALALLL in AA

215–223 (Figure 4, top). Between the nine Omicron variants, HLA-

B*07:02 gained APTRITFGGP epitope binding between 12 and 20

AA, while HLA-A*31:01 gained two epitopes (RSGARSKQR and

SGARSKQRR) between AA 32 and 41. Omicron-specific N epitope

loss was found between AA 5 and 13, where HLA-B*07:02 and

HLA-B*08:01 lost the ability to bind to GPQNQRNAL. In addition,

SSRGTSPAR (AA 402–415) loss was found in BA.2–XBB.1.5 VOCs

for 5/27 alleles: HLA-A*03:01, HLA-A*11:01, HLA-A*30:01, HLA-
Frontiers in Immunology 08
A*33:01, and HLA-A*68:01. Omicron VOCs BA.1.1–XBB.1.5

sustained decreased predicted binding affinity in epitopes [4

epitopes (BA.1.1 N)–49 epitopes (BA.4 N)], with zero epitopes

gaining predicted binding (Figure 2C). BA.4 had 40 unique peptides

a f f e c t i n g 1 6 / 1 6 HLA -A a n d 8 / 1 1 HLA -B a l l e l e s

(Supplementary Figure 1).

3.2.4 Gained epitopes conserved in Omicron and
Delta variants

Several epitopes were gained or conserved across Delta and

Omicron families, including the spike epitopes, GVYYHKNNK,

QTNSPRRAR, VGGNYNYLY, NYNYLYRLF, and YNYLYRLFR,

as well as the nucleocapsid epitope RNSTPGSSR (Figures 6, 7). Of

the gained S epitopes, ASFSTFKCY encompassed the greatest

number of HLAs analyzed (9/27), estimated to affect 6/16 HLA-A

encompassing 31.2% of the population in Caucasian American

(EUR), 22.2% of African American (AFA), 30.3% of Asian

American and Pacific Islander (API), and 21.8% of Hispanic and

Latino Americans (HIS), and 3/11 HLA-B alleles (11% EUR, 5%

AFA, 11.3% API, and 5.5% HIS). Likewise, the nucleocapsid epitope
FIGURE 6

Spike epitopes gained in nine Omicron and five Delta variants, when compared against the original Wuhan strain. Figures were generated using
BioRender (RRID: SCR_018361).
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SSRGTSPAR was gained in 6/16 HLA-A alleles, comprising of

27.2% EUR, 23.5% AFA, 27.8% API, and 26.1% HIS population

in the United States (Figure 7).
3.3 Secondary in-silico structural epitope
binding using FoldX

Protein-peptide binding free energy of SARS-CoV-2 peptides

and HLA-B*15:01 (n = 7, Supplementary Table 1) was

computationally determined using FoldX (Tables 1, 2,

Supplementary Tables 1–3). HLA-B*15:01 was selected because

the allele is both common and has been the focus of recent

publications (Tables 3, 4) (47–49). Of the seven HLA-B*15:01

structures downloaded from the Protein Data Bank, only one

structure, 8ELG, was complexed with SARS-CoV-2 epitopes

(Supplementary Table 1). Protein-peptide binding analysis for all

seven HLA-B*15:01 structures returned a 58% match between

FoldX-generated binding free energy/DG and IEDB-predicted

consensus percentile ranks. The predicted binding match rate

jumped to 64% in HLA-B*15:01 complexed with Coronaviridae

peptides 8ELG and 3C9N (Tables 1, 2, Supplementary Table 1). The
Frontiers in Immunology 09
nucleocapsid peptide KLDDKGPNF, which had mutated from

KLDDKDPNF (Wuhan) to KLDDKGPNF (BA.1.1), exhibited the

greatest match rate (85.7% = 6/7; Figure 8, Supplementary Table 2).
3.4 Frequencies of affected HLA alleles in
B.1.1.7 S, BQ.1.1 S, BA.1.1 M, and BA.4 N

To estimate how much of the United States population was

potentially affected by the unbalanced epitope loss in BA.1.1 M,

BA.4 N, and BQ.1.1 S protein variants, we utilized the haplotype

frequencies cited by the US National Bone Marrow Donor Program

(Table 3) (37). BQ.1.1 S epitopes sustained loss in 16/16 HLA-A

alleles (making up approximately 92.3% population in EUR, 69.2%

of AFA, 74% of API, 83% of HIS) and in 10/11 HLA-B alleles (62%

EUR, 43.5% AFA, 31.2% API, and 38.5% HIS). BQ.1.1 S epitope

gain was seen in all 16 HLA-A and 8/11 HLA-B alleles (48% EUR,

36% AFA, 26.2% API, and 29% HIS), with HLA-B*44:02 and HLA-

B*44:03 experiencing only lost epitopes.

B.1.1.7 S and BA.4 N epitopes sustained decreased predicted

immunogenicity in all 27 HLA alleles analyzed (16/16 HLA-A =

92.3% EUR, 69.2% AFA, 74% API, and 83% HIS; 11/11 HLA-B =
FIGURE 7

Nucleocapsid (N) and membrane (M) epitopes gained in nine Omicron (colored red) and five Delta (blue) variants when compared against the
original Wuhan strain. Figures were generated using BioRender (RRID: SCR_018361).
TABLE 2 Estimated binding energy for SARS-CoV-2 CD8+ peptides docked with HLA-B*15:01 by FOLDX.

Peptide Covid Strain Mutation Type VOC Predicted Binding
DG (kcal/mol)

8elg 3c9n

CVADYSVLY XBB.1.5 Spike Gained 0.36 -1.63154 -0.598217

YNSASFSTF XBB.1.5 Spike Gained 0.96 -3.72574 -2.75697

ASFSTFKCY XBB.1.5 Spike Gained 0.21 -0.175898 0.447979

FQPTNGVGY XBB.1.5 Spike Gained 0.12 1.41429 -7.62166

YQPYRVVVL XBB.1.5 Spike Gained 0.59 -3.1373 4.41745

CVADYSVLY XBB.1.5 Spike Gained 0.36 -1.63154 -0.598217

YNSASFSTF XBB.1.5 Spike Gained 0.96 -3.72574 -2.75697

ASFSTFKCY XBB.1.5 Spike Gained 0.21 -0.175898 0.447979
Predicted binding values reflect predicted consensus percentile ranks generated from IEDB’s Tepitools, as described in the methods. Low scores correspond to high predicted binding affinities.
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TABLE 3 Summary of HLA haplotype United States population frequencies and clinical associations.

Hispanic and Latino
merican frequency

Hispanic and
Latino

American fre-
quency rank

Allele Xtotal

COVID-19
induced
clinical
associations

0.0271 13 HLA-A*32:01 -62

0.0289 11 HLA-A*26:01 -55

0.0281 12 HLA-A*30:02 -55 Infection in USA

0.0211 15 HLA-A*30:01 -48

0.1232 2 HLA-A*24:02 -46
Associated
with
autoimmunity*

0.0369 10 HLA-A*23:01 -42

0.0196 16 HLA-A*33:01 -36

0.0392 9 HLA-A*02:06 -34

0.0469 6 HLA-A*68:01 -26

0.0003 59 HLA-A*02:03 -25

0.0462 7 HLA-A*11:01 -19
Associated with
autoimmune* and
severe disease

0.0791 3 HLA-A*03:01 -18 Protected in Russia

0.0670 4 HLA-A*01:01 -17
Severe infection
in Russia

0.1940 1 HLA-A*02:01 -17 Protected in Russia

0.0479 5 HLA-A*31:01 -13

0.0246 14 HLA-A*68:02 -13
Associated with
reduced risk of
ICU admittance

0.8301
Sum of HLA-
A frequencies

(Continued)
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European American
ancestry frequency

European fre-
quency rank

African American
ancestry frequency

African American
frequency rank

Asian American
(AAPI) fre-
quency rank

AAPI
frequency

rank

0.0313 7 0.0141 21 0.0130 18

0.0295 8 0.0141 20 0.0390 8

0.0092 15 0.0622 6 0.0006 40

0.0134 13 0.0691 4 0.0206 12

0.0869 4 0.0221 15 0.1824 1

0.0168 12 0.1077 2 0.0023 27

0.0099 14 0.0212 16 0.0011 35

0.0020 21 0.0002 56 0.0483 6

0.0250 9 0.0368 11 0.0186 13

0.0000 NA 0.0002 48 0.0316 10

0.0564 5 0.0158 18 0.1790 2

0.1435 3 0.0813 3 0.0260 11

0.1718 2 0.0474 8 0.0508 5

0.2960 1 0.1246 1 0.0946 3

0.0235 10 0.0104 22 0.0325 9

0.0085 16 0.0651 5 0.0003 46

0.9237 0.6924 0.7405
A
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TABLE 3 Continued

AAPI
frequency

rank

Hispanic and Latino
American frequency

Hispanic and
Latino

American fre-
quency rank

Allele Xtotal

COVID-19
induced
clinical
associations

2 0.0578 3 HLA-B*51:01 -40
Associated with
severe disease

21 0.0445 6 HLA-B*08:01 -39
Associated
with
autoimmunity*

5 0.0635 1 HLA-B*35:01 -37
Associated with
Subacute thyroiditis

66 0.0155 21 HLA-B*53:01 -34

4 0.0145 23 HLA-B*58:01 -32

15 0.0545 4 HLA-B*07:02 -29
Associated with
severe disease

32 0.0333 9 HLA-B*44:02 -29

6 0.0608 2 HLA-B*44:03 -18

11 0.0288 10 HLA-B*15:01 -17
Survival in Egypt,
Asymptomatic
in USA

18 0.0118 29 HLA-B*57:01 -17

1 0.0135 26 HLA-B*40:01 -12

0.3985
Sum of HLA-
B frequencies

icted clinical severity with more negative values indicating greater predicted clinical severity (Equation 2). Allelic frequencies were adapted from

study.
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European American
ancestry frequency

European fre-
quency rank

African American
ancestry frequency

African American
frequency rank

Asian American
(AAPI) fre-
quency rank

0.0454 9 0.0218 16 0.0628

0.1253 2 0.0384 9 0.0164

0.0571 5 0.0649 3 0.0427

0.0032 32 0.1125 1 0.0009

0.0047 27 0.0351 11 0.0577

0.1399 1 0.0730 2 0.0263

0.0901 3 0.0212 17 0.0076

0.0496 7 0.0537 6 0.0424

0.0665 4 0.0098 23 0.0348

0.0383 10 0.0048 35 0.0207

0.0564 6 0.0133 21 0.0798

0.6767 0.4483 0.3922

Summary of allelic frequencies and clinical associations for the 27 HLA-A and HLA-B analyzed. Xtotal describes HLA-pre
Gragert et al. (37).
*Autoimmunity reflects new-onset autoimmune symptoms following COVID-19 infection.
Bolded numbers indicate estimated population coverage of the HLA-A (top) and HLA-B (bottom) alleles analyzed in thi
d
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TABLE 4 Summary of HLA CD8+ T cell epitope diversity and clinical associations.

Gained
Increased
Predicted
Binding

Xtotal
COVID-19 induced
Clinical Association

Reference

0 0 -17 Severe infection
in Russia

(41)

0 0 -17 Protected in Russia (41)

0 0 -25

0 0 -34

1 1 -18 Protected in Russia (41)

1 1 -19 Associated with
autoimmune and
severe disease

(42–44)

0 1 -42

0 1 -46 Associated with
autoimmune disease

(44)

0 0 -55

2 1 -48

0 0 -55 Infection in USA (45)

4 1 -13

0 1 -62

1 1 -36

1 1 -26

(Continued)
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Allele

Spike Membrane Nucleocapsid

Lost
Decreased
Predicted
Binding

Gained
Increased
Predicted
binding

Lost
Decreased
Predicted
Binding

Gained
Increased
Predicted
Binding

Lost
Decreased
Predicted
Binding

HLA-
A*01:01

9 29 7 16 0 0 0 0 0 2

HLA-
A*02:01

5 24 6 9 1 1 1 1 0 3

HLA-
A*02:03

6 32 4 11 0 0 2 0 1 3

HLA-
A*02:06

2 49 7 13 1 0 0 1 0 3

HLA-
A*03:01

11 28 5 18 1 0 0 0 2 1

HLA-
A*11:01

15 32 10 21 0 0 0 0 3 2

HLA-
A*23:01

15 40 5 10 0 0 0 0 1 2

HLA-
A*24:02

16 38 5 5 0 0 0 0 1 2

HLA-
A*26:01

22 55 5 20 2 0 1 0 0 2

HLA-
A*30:01

19 43 10 10 0 0 0 0 4 5

HLA-
A*30:02

16 53 8 12 2 1 0 0 0 3

HLA-
A*31:01

24 17 6 21 1 0 0 0 1 2

HLA-
A*32:01

21 66 10 19 2 2 1 0 0 2

HLA-
A*33:01

20 23 5 4 1 0 0 0 1 2

HLA-
A*68:01

13 33 6 14 0 0 0 0 1 1
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TABLE 4 Continued

ucleocapsid

st
Decreased
Predicted
Binding

Gained
Increased
Predicted
Binding

Xtotal
COVID-19 induced
Clinical Association

Reference

1 1 0 0 -13 Associated with
reduced risk of
ICU admittance

(46)

5 1 1 0 -29 Associated with
severe disease

(46)

1 1 1 0 -39 Associated with
autoimmune disease

(44)

0 0 0 1 -17 Survival in Egypt*,
Asymptomatic in USA

(47–49)

1 3 0 0 -37 Associated with
Subacute thyroiditis

(50)

0 2 1 0 -12

0 2 0 0 -29

0 0 0 0 -18

0 3 1 0 -40 Associated with
severe disease

(43, 46)

0 0 1 0 -34

0 0 0 0 -17

1 3 0 0 -32 Associated with severe (19)

total describes HLA predicted clinical severity for all SARS-CoV-2 VOCs and protein product, spike (S), membrane (M),
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Allele

Spike Membrane N

Lost
Decreased
Predicted
Binding

Gained
Increased
Predicted
binding

Lost
Decreased
Predicted
Binding

Gained
Increased
Predicted
Binding

L

HLA-
A*68:02

11 52 8 46 2 0 0 0

HLA-
B*07:02

6 26 4 9 0 0 0 0

HLA-
B*08:01

11 38 6 13 0 2 1 0

HLA-
B*15:01

18 41 9 31 0 0 1 0

HLA-
B*35:01

18 69 11 29 1 0 0 1

HLA-
B*40:01

4 10 2 5 1 0 0 0

HLA-
B*44:02

7 21 1 0 1 1 0 1

HLA-
B*44:03

6 17 1 2 0 0 0 1

HLA-
B*51:01

5 40 4 5 1 0 1 1

HLA-
B*53:01

8 47 8 14 0 0 0 0

HLA-
B*57:01

10 22 4 14 1 1 0 0

HLA-
B*58:01

11 28 3 10 1 1 0 0

Epitopes lost, gained, and altered in predicted binding affinity in 27 HLA class I alleles. Epitope values reflect the number of unique epitopes affected. X
and nucleocapsid (N) and was generated using Equation 2, with more negative values indicating greater predicted clinical severity.
*Survival noted only in HLA-B*15 alleles generally.
o
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67.6% EUR, 44.8% AFA, 39.2% API, and 39.8% HIS) although only

a fraction of HLAs analyzed experienced increased binding affinity

in both repertoires (8/16 HLA-A and 6/11 HLA-B alleles in

B.1.1.7 S). Likewise, only six HLA-A alleles (27.1% EUR, 23.5%

AFA, 27.7% API, and 26% HIS) and one HLA-B allele (18.5% EUR,

9.5% AFA, 8.9% APA, and 11.2% HIS) experienced increased

predicted binding in BA.4 N. BA.1.1 M repertoires lost epitopes

for 9/16 HLA-A alleles (55.3% EUR, 39.3% AFA, 25.5% API, and

19.4% HIS), while only 4/16 HLA-A alleles experienced gains

(35.7% EUR, 15.3% AFA, 17.8% API, and 2.9% HIS). Similarly, 6/

11 HLA-B (29.2% EUR, 16% AFA, 27% API, and 19.4% HIS) lost

epitopes, with only HLA-B*15:01 and HLA-B*08:01 gaining

epitopes (19.1% EUR, 4.8% AFA, 5.1% API, and 7.3% HIS).
3.5 Predicted HLA clinical correlates of
CD8+ T-cell epitope diversity

To summarize epitope difference between HLA and variant-

specific S, M, and N, the number of unique epitopes experiencing

loss, gain, and altered predicted binding was tabulated for the 16

HLA-A alleles and 11 HLA-B alleles analyzed (Table 1). The

following equation was utilized to predict clinical severity of the

27 HLA haplotypes analyzed for individual protein products

(Equation 1) and SARS-CoV-2 more broadly (Equation 2).

Equation 2 was structured to reflect that clinical characteristics

are affected by the net CD8+ T-cell epitope repertoire differences for

all protein products.

X½HLA allele�½protein product�

= n ½HLA allele�½protein product�unique epitopes gained

+n½HLA allele�½protein product�unique epitopes increased in immunogenicity 

−n½HLA allele�½protein product�uniqueepitopes lost

−n½HLA allele�½protein product�unique epitopes decreased in immunogenicity

(1)

Equation 1: Predicted clinical severity, X, of an HLA allele

specific for a SARS-CoV-2 protein product (spike, membrane, or
Frontiers in Immunology 14
nucleocapsid).

Xtotal½HLA allele�=X½HLA allele�S+X½HLA allele�M+X½HLA allele�N (2)

Equation 2: HLA predicted clinical severity for all SARS-CoV-2

VOCs and protein product, spike (S), membrane (M), and

nucleocapsid (N).

Utilizing Equation 2, HLA-A*32:01, HLA-A*30:02, HLA-

A*26:01, HLA-B*08:01, HLA-B*35:01, and HLA-B*51:01 were

predicted to have worse clinical correlates when infected with

SARS-CoV-2. Collectively, these six alleles are expected to affect

approximately 7.0% of EUR, 9.1% of AFA, 5.3% of API, and 8.4% of

HIS population for HLA-A and 22.8% of EUR, 12.5% of AFA,

12.2% of API, and 16.6% of HIS population for HLA-B alleles in the

United States. Favorable clinical outcomes were predicted in HLA-

A*01:01, HLA-A*02:01, HLA-A*31:01, HLA-A*68:02, HLA-B*15:01,

HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01 (Tables 2, 3) (HLA-

A: 50% EUR, 24.8% AFA, 17.8% API, and 33.4% HIS; HLA-B:

21.1% EUR, 8.2% AFA, 17.8% API, and 11.5% HIS). Our predicted

clinical severity matched the reported clinical observations (42–48,

50), excluding HLA-A*11:01, which is explored further in the

discussion (Table 1).
4 Discussion

Select studies have previously sequenced the HLA allele and

viral epitopes of convalescent patients (16, 51, 52), but to our

knowledge, none have explored the entire epitope repertoire of

multiple SARS-CoV-2 variants with respect to the most common

HLA allotypes. Although epitope screening has been conducted in

cell lines (53, 54), no analysis of the COVID-19 peptidome exists on

a population/epidemiological level. Therefore, our team utilized a

computational approach aimed to model the immunogenic effects

and clinical severity of SARS-CoV-2 variants in the most common

MHC class I alleles comprising the United States population. Our

bioinformatics analysis is consistent with the percentages of CD8+

epitope conservation (S: 87.6%–96.5%, M: 92.5%–99.6%, N: 94.6%–

99%) found by Tarke et al. (15) (97%). As the virus mutated, an
FIGURE 8

Heatmap of estimated DG (kcal/mol) values predicted for ligands docked with target SARS-CoV-2 epitopes with crystalized HLA-B*15:01 structures
(n = 7) by FoldX.
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increasing proportion of spike epitopes experienced reduced

predicted HLA binding, with 70% of Omicron BQ.1–XBB.1.5 S

epitope repertoires experiencing decreased predicted HLA binding

affinity (as compared with the roughly 3% and 15% affected in Delta

AY.100–AY.44 and Omicron BA.1–BA.5 variants, respectively)

(Figures 1, 2A). The changes experienced by spike CD8+ epitopes

highlight both the remarkable structural plasticity of the S protein

and the selective pressures experienced by its gene, particularly

following the widespread availability of vaccines in mid-2021

(Figure 1). Our findings suggest that viral genetic variation

affecting CD8 T-cell epitope immunogenicity contributes to

determining the clinical severity of acute COVID-19.

Our findings support the hypothesis that long-lasting immunity

against SARS-CoV-2 variants will be difficult to achieve through

vaccines based solely on the spike protein and using neutralizing

antibodies as an efficacy endpoint. One strategy to achieve long-

term immunity against COVID-19 is the development of T-cell

vaccines (9, 55). When designing such vaccines, it is important that

the epitopes selected are as invariant as possible and cover the

maximum number of HLA haplotypes with even affinity

distribution between HLA alleles (56). Our research identified

several predicted epitopes that were gained and conserved

between variants (Figures 6, 7), including highly conserved

nucleocapsid (n = 2) and membrane (n = 3) peptides predicted to

elicit immune response through multiple HLA alleles (Figure 7).

Additionally, the CD8+ T cell epitopes in this manuscript have been

evidenced in previously published datasets (Table 5). To develop a
T
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pan-coronavirus vaccine, epitopes affecting conserved protein

product regions should also be considered, such as AA 987–1205

in spike, AA 132–222 in membrane, and the AA 66–194 and 210–

401 regions in nucleocapsid described in our findings. Lastly,

considering that several HLA haplotypes, including HLA-A*11:01,

HLA-A*24:02, and HLA-B*08:01, are associated with COVID-

induced autoimmune disease (44), epitopes affecting these alleles

must be carefully considered to minimize the risk of autoimmune

adverse effects. In-silico and in-vitro experiments will be needed to

confirm the bioinformatically predicted epitope gains and remove

promiscuous peptides.

An alternative path to prevent or treat severe COVID-19

immunity is the development of personalized vaccines and/or

treatment strategies. This requires the identification of haplotypes

at risk of or protected from severe illness, which can be added to non-

genetic risk factors to estimate the overall risk of severe outcomes.

Our findings are significant because this study is one of the first to

explore SARS-CoV-2 CD8+ epitope diversity in the context of HLA

alleles found in most of the United States population. Our predicted

clinical severity, Xtotal (Equation 2), is consistent with previously

published findings (Tables 2–4, 6, 7) and identified several novel

candidate haplotypes that may be susceptible to severe disease,

notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and

relatively protected from disease, such as HLA-A*01:01, HLA-

A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01 (Tables 2,

3). All referenced clinical associations were consistent with our

predicted estimates, except HLA-A*11:01, which was reported to

have severe disease and COVID-induced autoimmune effects despite

a low Xtotal (−19), and HLA-A*01:01, which was reported to have

severe infection in Russia despite a low Xtotal (−17). The inconsistency

of predicted/reported severity seen inHLA-A*11:01may be explained

through a combination of factors, including an association with

COVID-induced autoimmune disease (42–44) and limited

availability of CD8+ hepatitis B epitopes, with some reports (66)

suggesting that chronic hepatitis B patients with this allele had less

than 10% of known HBV epitopes. Therefore, with these findings
ABLE 5 HLA-I peptides confirmed in other peptidomic datasets.

Peptide Parent Protein Allele Reference

HADQLTPTW Spike -A*24:02 (53)

TGSNVFQTR Spike -A*68:01 (54)

APRITFGGP Nucleocapsid -B*07:02 (54)
TABLE 6 Global summary of HLA Class I allele associated with severe COVID-19 infection.

Allele Analysis
Unadjusted
(95% CI)

Unadj.
p-

value

Adjusted
(95% CI)

Adjusted
p-value

Study
size

Study
location

COVID-19-
induced
clinical

association

Reference

HLA-A*01:01 Principal
component
analysis

1.5 × 10−4 539 Russia 5/8 deceased
patients
homozygous
for allele

(41)

HLA-A*03 Odds ratio 0.047 3,958 Spain Not significant
after corrections

(57)

HLA-A*11 Odds ratio 7.693
(1.06–55.6)

0.04 3,958 Spain *After controlling
for sequential
organ failure
assessment
(SOFA)

(57)

HLA-A*11 Odds ratio 3.8 (1.4–10.3) 0.004 3.7 (1.5–9.2) 0.001 200 Iran (58)

(Continued)
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TABLE 6 Continued

Allele Analysis
Unadjusted
(95% CI)

Unadj.
p-

value

Adjusted
(95% CI)

Adjusted
p-value

Study
size

Study
location

COVID-19-
induced
clinical

association

Reference

HLA-
A*11:01:01:01

Odds ratio 2.26
(1.27–3.91)

0.013 613 Japan
(42)

HLA-A*23:01 Odds ratio 0.002 >2.5
(2.7–220.6)

0.038 801 Sardinia
(Italy)

Exclusively
present in
moderate/
severe disease

(59)

HLA-A*26 Odds ratio 3.04 (1.5–6.13) 0.0076 10,388 UK (60)

HLA-A*30:02 Odds ratio 2.2 (1.4–3.6) 0.01 22,234 Midwest
US

*Associated with
African
Americans

(45)

HLA-B*22 Odds ratio 1.66 (1.06–2.59) 0.002 0.032 4,376 Hong Kong (51)

HLA-B*27 Odds ratio 0.045 4.63
(1.57–13.8)

0.005 578 Romania
(61)

HLA-B*27:07 Chi-squared
with Yates +
Bonferroni’s
correction

0.00001 0.004 1,116 Italy

(19)

HLA-B*41 Chi-squared 0.05 69 Egypt (47)

HLA-B*42 Chi-squared 0.01 69 Egypt (47)

HLA-B*50 Odds ratio 0.007 7.94
(1.25–70.1)

0.037 578 Romania
(61)

HLA-B*51 ANOVA +
Bonferroni
correction

0.027 95 South Asia More likely to be
fatal than mild (62)

HLA-
B*52:01:01:02

Odds ratio 2.22
(1.22–3.87)

0.021 613 Japan
(42)

HLA-B*58:01 Chi-squared
with Yates +
Bonferroni’s
correction

0.0131 1,116 Italy Not significant
after corrections

(19)

HLA-C*01 Odds ratio 11.182
(1.05–118)

0.04 3,958 Spain *After controlling
for sequential
organ failure
assessment
(SOFA)

(57)

HLA-C*04:01 Odds ratio 0.02 5.4 (1.3–21.6) 0.07 22,234 Midwest
US

*Associated with
Hispanic
Americans

(45)

HLA-C*04:01 Odds ratio 1.73
(1.20–2.49)

<0.021 299 Armenia
(63)

HLA-
C*04:01:01:01

Odds ratio 11.01
(1.38–87.4)

0.02 96 India
(52)

HLA-C*05 Multivariate
regression

4.7 × 10−6 R² = 0.37 0.00032 74
countries

(64)

HLA-
C*12:02:02:01

Odds ratio 2.13
(1.18–3.71)

0.043 613 Japan
(42)

HLA-C*17 Chi-squared 0.03 69 Egypt (47)

(Continued)
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being considered (66–68), HLA-A*11:01 patients with chronic,

untreated, or poorly managed hepatitis B co-infection may be at

greater risk of experiencing severe COVID-19 infection, even if the

allele alone may not confer an increased risk of clinical severity. It is
Frontiers in Immunology 17
also important to be mindful of the considerable diversity generated

from HLA polymorphism. A patient heterozygous for both HLA-A

and HLA-B loci would have to account for the predicted clinical

severity, Xtotal, of all four haplotypes to determine a true net predicted
TABLE 6 Continued

Allele Analysis
Unadjusted
(95% CI)

Unadj.
p-

value

Adjusted
(95% CI)

Adjusted
p-value

Study
size

Study
location

COVID-19-
induced
clinical

association

Reference

Haplotype
HLA-
A*30:02,
B*14:02,
C*08:02

Odds ratio 5.9 × 10−5 10.3
(2.9–46.3)

.022 801 Sardinia
(Italy)

(59)
OR, odds ratio; CI, confidence interval.
TABLE 7 Global summary of HLA Class I allele associated with low risk of or protection from COVID-19 infection.

Allele Analysis
Unadjusted
(95% CI)

p-
value

Adjusted
(95% CI)

Adjusted
p-value

Study
samples
size

Study
location

COVID-
19-

induced
clinical

association

Reference

HLA-
A*02

Odds ratio 0.0156 0.57
(0.36–0.90)

0.0468 10,388 UK (60)

HLA-
A*02:01

Principal
component analysis

0.0146 539 Russia (41)

HLA-
A*03:01

Principal
component analysis

7.5
× 10−³

539 Russia (41)

HLA-
A*32

Odds ratio 0.004 3,958 Spain Not significant
after corrections

(57)

HLA-
A*33

Odds ratio 0.11 (0.01–0.84) 0.010 0.03 (0–0.3) 0.006 578 Romania
(61)

HLA-
B*12

Odds ratio 0.14 (0.02–1.01) 0.015 4,376 Hong Kong Not significant
after corrections

(51)

HLA-
B*!5

Odds ratio 1,351.06
(4.5–405,445)

<0.001 69 Egypt (47)

HLA-
B*27

Odds ratio 0.34 (0.11–1.00) 0.047 4,376 Hong Kong Not significant
after corrections

(51)

HLA-
B*44

Odds ratio 0.0069 0.45
(0.25–0.80)

0.0138 10,388 UK (60)

HLA-
B*35

ANOVA +
Bonferroni
correction

0.050 95 South Asia More likely to
be mild
than fatal

(62)

HLA-
C*05

Odds ratio 0.0101 0.36
(0.17–0.78)

0.0404 10,388 UK (60)

HLA-
C*06:02

Chi-squared with
Yates +

Bonferroni’s
correction

0.0053 1,116 Italy Not significant
after corrections

(19)

HLA-
C*15

Odds ratio 0.37 (0.28–0.92) 0.014 0.13
(0.03–0.53)

0.004 578 Romania
(61)
Tables 6 and 7 heavily referenced Table 1 from Hoeseinnezhat et al. (65).
CI, confidence interval.
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effect (not including the other MHC class I loci, -C). Therefore,

clinical studies will be needed to confirm these findings. We hope that

our computation study will encourage groups with access to large

numbers of peripheral blood mononuclear cells from COVID-19

patients, such as the RECOVER cohorts, to analyze SARS-CoV-2

peptidomes in association with HLA haplotypes.
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