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Multiple unfolded protein
response pathways cooperate to
link cytosolic dsDNA release to
stimulator of interferon
gene activation
Tiancheng Hu1†, Yiping Liu2†, Jeremy Fleck3, Cason King4,
Elaine Schalk2, Zhenyu Zhang4, Andrew Mehle4

and Judith A. Smith2,4*

1Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, NJ, United States,
2Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison,
WI, United States, 3Department of Immunology and Microbiology, University of Colorado, Aurora,
CO, United States, 4Department of Medical Microbiology and Immunology, University of Wisconsin,
Madison, WI, United States
The double-strandedDNA (dsDNA) sensor STING has been increasingly implicated

in responses to “sterile” endogenous threats and pathogens without nominal DNA

or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum

(ER) stress response, known as the unfolded protein response (UPR), activates

STING. Herein, we sought to determine if ER stress generated a STING ligand, and

to identify the UPR pathways involved. Induction of IFN-b expression following

stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation

required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS).

Furthermore, TPG increased cytosol ic mitochondr ia l DNA, and

immunofluorescence visualized dsDNA punctae in murine and human cells,

providing a cGAS stimulus. N-acetylcysteine decreased IFN-b induction by TPG,

implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial

oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand,

inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target

transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS

upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic

dsDNA and IFN-b, implicating ROS downstream of the IRE1-XBP1 pathway.

Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic

dsDNA release. The PERK-regulated apoptotic factor Bim was required for both

dsDNA release and IFN-b mRNA induction. Finally, XBP1 and PERK pathways

contributed to cytosolic dsDNA release and IFN-induction by the RNA virus,

Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors,

including viral pathogens without nominal STING or cGAS ligands such as RNA

viruses, trigger multiple canonical UPR pathways that cooperate to activate STING

and downstream IFN-b via mitochondrial dsDNA release.
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Introduction

During pathogen invasion, the endoplasmic reticulum (ER)-

resident pattern recognition receptor (PRR) Stimulator of

Interferon Gene (STING), induces type I interferon (IFN)

expression upon binding to cytosolic cyclic di-nucleotides (CDN)

(1, 2). CDN ligands derive from bacterial secretion of second

messengers, as in the case of Listeria monocytogenes produced

cyclic-di-AMP (3). STING also responds indirectly to cytoplasmic

DNA via cyclic GMP-AMP synthase (cGAS), a PRR for cytosolic

linear double stranded DNA (dsDNA) (4, 5). Upon dsDNA

binding, cGAS converts GTP and ATP to the second messenger

cyclic GMP-AMP (cGAMP) that potently activates STING (6).

Cytosolic DNA detection is critical in the recognition of viral

pathogens, as viruses inject their own DNA into host cells to

replicate and lack other pathogen associated molecular patterns

(PAMPs) which can be used to detect bacteria, such as flagellin,

peptidoglycan, or lipopolysaccharide (7). Upon activation, STING

binds to Tank Binding Kinase 1 (TBK1) and IkB kinase (IKKe),
which promote the phosphorylation of transcription factors such as

interferon regulatory factor 3 (IRF3) and nuclear factor kB (NF-

kB), ultimately leading to the transcription of IFNB1 (IFN-b) and
other NF-kB dependent inflammatory cytokines (2, 8, 9).

Beyond recognition of bacteria and DNA viruses, STING plays

a role in a broader array of pathologic conditions, including “sterile”

responses to self-DNA, derived from either the nucleus or

mitochondria (10–14). For example, one study showed STING-

deficient mice were more resistant to inflammation driven

carcinogenesis when exposed to carcinogenic material that

released nuclear DNA into the cell (15). Aberrant mitosis due to

DNA damage can drive genomic DNA into the cytosol in

“micronuclei”, stimulating cGAS and STING (16, 17). In lupus,

oxidized mitochondrial DNA is released into the extracellular

milieu, and taken up by bystander cells, leading to STING

activation and pathogenic type I IFN production (18, 19). STING

also participates in responses to RNA virus infections through

unclear mechanisms, though mitochondrial DNA has been

implicated in these settings as well (20, 21). Thus, elucidating

STING activation is important for understanding inflammation in

the broader infectious context and in “sterile” diseases including

cancer, cardiovascular disease, kidney diseases, neurodegeneration,

aging and autoimmunity (10, 13, 22–25).

While previously exploring the relationships between an ER

stress response known as the unfolded protein response (UPR),

STING, and IFN production, we found that ER stress alone

activates innate immune responses as evident by the

phosphorylation and nuclear translocation of IRF3, even in the

absence of a nominal PRR agonist (26). Furthermore, the UPR

inducer thapsigargin (TPG) induced co-clustering of STING and

TBK1 and IRF3 activation was STING-dependent (26). Interestingly,

only some of the methods for inducing ER stress, particularly those

that mobilized calcium (ionophore, TPG, and oxygen-glucose

deprivation) required STING activation for IRF3 phosphorylation

and subsequent IFN-b induction. While ER stress alone induces IFN-

b expression at a very low level, ongoing ER stress dramatically
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synergizes with PRR agonists (26, 27). Since this work, ER stress has

been linked to STING activation and inflammation in diverse

diseases such as alcoholic liver disease, ischemic brain injury,

cardiac hypertrophy, and intracellular bacterial infections (28–31).

Moreover, studies have identified two-way crosstalk between ER

stress and STING. In Listeria infection, STING was critical for

inducing UPR-related “ER-phagy” (32). During Brucella infection,

the UPR augments STING induced cytokine production and

conversely, STING plays a vital role in enhancing the pathogen

induced UPR (33). Indeed, a “UPR motif” encompassing STING

amino acids 322-343 has been identified, which appears critical for

STING regulation of calcium homeostasis and associated ER stress

(34). Although these studies have supported the idea of UPR-STING

crosstalk, the exact mechanism(s) by which ER stress activates

STING remains unclear.

The UPR encompasses three canonical signaling pathways

stemming from the activation of ER-stress sensors inositol

requiring enzyme 1 (IRE1), activating transcription factor 6

(ATF6) and PKR-like ER kinase (PERK) (35, 36). IRE1 is both a

kinase and endonuclease that splices X-box binding protein 1

(XBP1) mRNA, thus generating the active XBP1 transcription

factor. PERK activation transiently decreases protein translation.

Together these pathways enhance ER function and capacity through

new gene transcription and decrease protein load to cope with

stress. If stress persists, the UPR initiates apoptosis. Both IRE1 and

PERK pathways also regulate re-dox status in the cell through

multiple mechanisms (37). For instance, the inducible nitric oxide

synthase (iNOS) gene is an XBP1 transcriptional target. PERK

induces oxidating folding chaperones and anti-oxidant responses

(38). Previous work had implicated XBP1 in promoting IFN-b
expression (26, 27). Sen et al. identified PERK-dependent pathways

regulating type I IFN production during traumatic brain injury (29).

On the other hand, the ATF6 pathway was not involved in TPG-

induced IRF3 activation or IFN-b induction (26). It is not clear how

these different UPR pathways impact STING activation.

In this study, we investigated the mechanism of ER stress-

dependent STING activation, first determining if ER stress

generated nominal cGAS/STING ligands (cytoplasmic dsDNA).

We further interrogated the roles of IRE1 and PERK-dependent

pathways in regulating cytoplasmic dsDNA release and ER-stress-

dependent IFN-b induction. Finally, we determined the effect of IRE1

and PERK inhibition on RNA virus (vesciular stomatitis virus, VSV)

induced IFN-b and dsDNA release. Together, our results suggest

these two ER stress pathways cooperate to generate cytosolic dsDNA,

likely mitochondrial in origin, that triggers cGAS/STING activation.
Materials and methods

Cell culture and treatment

Human HeLa H1 cells (American Type Culture Collection)

were maintained in DMEM/high glucose (Mediatech, Manassas,

VA, USA) with 10% FBS and antibiotic-antimycotic solution.

Murine bone marrow derived macrophages were immortalized
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with V-raf/V-myc as previously described (39) and maintained in

10% FBS (Hyclone, Logan, Utah, USA) and antibiotic-antimycotic

solution (Mediatech) supplemented RPMI 1640 media (Mediatech).

Macrophages were isolated from bone marrows of Bim (Bcl2l11)-/-

mice (gift of Christine Sorenson), STING (Tmem173)-/-, Cgas-/-

mice (gifts of Sergio Costa Oliveira), STING mutant Golden Ticket

mice (Tmem173gt, gift from Russel Vance (40)), CHOP (Ddit3)-/-

(Jackson), or C57BL/6 mice (Jackson). A549MAVS-/- cells (41) (gift

from Craig McCormick) were generated using CRISPR/Cas9 and

maintained in DMEM.

To induce ER stress, H1 HeLa cells were treated with 1mM
thapsigargin (TPG) or cultured in OGD (oxygen glucose

deprivation) conditions: glucose-free DMEM in a hypoxic

incubator filled with mixed gas containing 1% O2, 5% CO2, and

94% N2 at 37°C. For synergy experiments, immortalized

macrophages (iMacs) were cultured with 1 mM TPG for one hour

and then 10ng/mL lipopolysaccharide (LPS) for a further 3h or poly

I:C for another 6h prior to harvest. For MitoTEMPO experiments,

iMacs were treated 1h with MitoTEMPO (1, 2 or 5 mM) and then a

further 3h with TPG. N-acetylcysteine was added at 0.1 mM for 30

minutes prior to TPG. Thapsigargin (cat #T9033), LPS (cat#L7770),

MitoTEMPO (Cat#SML0737), N-Acetyl-L-cysteine (cat# A9165),

PERK Inhibitor I, GSK2606414 (cat# 516535), and the IRE1

inhibitor III, 4m8C (cat#412512) were purchased from Sigma;

poly I:C and ODN1585 were from In vivogen (31852-29-6, tlrl-

1585); 1400W dihydrochloride (cat # 1415) was purchased from

R&D; MitoTracker™ Red CMXRos (cat # M7512) was

from Thermofisher.
Transfection with siRNA

HeLa cells were transfected with 200 pM scrambled control or

target siRNA (Thermofisher) using Lipofectamine RNAiMax

(Invitrogen) according to the manufacturer’s instructions. Assays

were performed at least 24h post-transfection.
Quantitative PCR

Cells were lysed with TRIzol (Invitrogen) and processed as

previously described. Briefly, RNA was extracted with chloroform

and precipitated with isopropanol. RNA quality (260/280 ratio) and

quantity were assessed by NanoDrop 1000 (Thermo Scientific,

Wilmington, DE, USA). Total RNA was treated with DNase I

(Invitrogen) prior to reverse transcription using a superscript kit

(Invitrogen). Gene expression in cDNA was quantitated by SYBR

Green (Invitrogen) fluorescence detected on a StepOne real time

PCR system (Thermofisher). Reaction efficiency was assessed using

a serially diluted standard curve and product by melting curve.

Relative mRNA expression was normalized to the 18S rRNA

housekeeping gene using the standard DCt/DCt method. Primers

were designed using Beacon design software (Premier Biosoft, Palo

Alto, CA, USA) or identified from the literature:

h18S rRNA, F: GGACACGGACAGGATTGACAG3;

R: ATCGCTCCACCAACTAAGAACG
Frontiers in Immunology 03
h IFNB1 , F: TGGCTAATGT CTATCATCA; R: CTT

CAGTTTCGGAGGTAA

h NOS2, F: CCTGGTACGGGCATTGCTCC, R: GCTCATGC

GGCCTCCTTTGA

m 18S F: GGACACGGACAGGATTGACAG; R: ATCG

CTCCACCAACTAAGAACG

m Ifnb1 F: ACTAGAGGAAAAGCAAGAGGAAAG; R: CCA

CCATCCAGGCGTAGC

h XBP1 F: TAGTGTCTAAGGAATGAT; R: CCAGTAA

TATGTCTCAATA

m Xbp1 ( s ) : F : GAGTCCGCAGCAGGTG; R :GTG

TCAGAGTCCTCCATGGGA

VSV (42) P/M intergenic region: 5’-TCCTGCTCGGCCTG

AGATAC-3’

VSG M/G intergenic region: 5’-TCCTGGATTCTATCAGCC

ACTT-3’
Mitochondrial DNA detection

MtDNA was isolated and quantified using standard methods

(43, 44). Briefly, cell pellets were resuspended in lysis buffer with

150 mM NaCl, 50mM HEPES pH7.4 and 20mg/mL digitonin. After

10 min, samples were spun down in a refrigerated microfuge at

1000g for 10 min. Supernatants were transferred to fresh tubes and

centrifuged another 10 min at 17000g. DNA in these supernatants

was concentrated and cleaned with a kit (Zymo). Whole cell lysates

from matched samples were analyzed in parallel for normalization.

MtDNA was isolated using Dneasy Blood and Tissue kits (Qiagen).

qPCR was perfomed on these cytosolic supernatants and whole cell

extracts using the following mtDNA primers:

F: CCTAGGGATAACAG GCAAT; R: 5: TAGAAGAGCGA

TGGTGAGAG (45, 46). Cytosolic mtDNA was normalized to

whole cell extracts, and the value in the vehicle control was set to 1.
Immunofluorescence studies

Cells were plated on coverslips in 60-mm dishes for 24h prior to

treatment. After treatment, cells were washed with PBS and then

fixed in 4% paraformaldehyde 30 minutes (min) at room

temperature. Cells were then washed with PBS, Tris A buffer (0.1

M [pH 7.6] Tris and 0.1% Triton X-100), and Tris B buffer (0.1 M

[pH 7.6] Tris, 0.1% Triton X-100, and 0.2% BSA) 3x 5 min each and

incubated with 10% goat serum in Tris B buffer for 1h. Primary

antibodies (Ab) were added in Tris B buffer and cells incubated at 4°

C overnight. After washing the cells with Tris A 3x 5 min, secondary

fluorescence-conjugated Ab was added and samples incubated 1h at

room temperature. Cells were washed with PBS 3x 5 min and the

coverslips mounted on slides with ProLong Gold antifade reagent

with DAPI nuclear stain (Invitrogen). For negative controls, the

same concentration of primary mouse IgG (Sigma-Aldrich) or

rabbit IgG (Sigma-Aldrich) was added. Images were acquired on

a Nikon A1Rs confocal fluorescent microscope (Nikon). Primary

antibodies: STING (D2P2F) Rabbit mAb (Cat#13647 Cell Signaling

Technology-CST, Danvers, MA, USA), dsDNA mouse mAb (cat#
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sc-58749 Santa Cruz biotechnology, Santa Cruz, CA USA); mouse

anti-RVC VP1 (ref); MitoTracker™ Red CMXRos (cat#M7512,

Thermofisher scientific, USA). Secondary antibodies: rabbit anti-

mouse IgG Alexa Fluor 488, or rabbit anti-mouse IgG Alexa Fluor

594 were from Thermofisher.
Quantification of cytosolic dsDNA

Fluorescence microscopy images were analyzed using Image J to

remove the nuclear DNA. Original and nucleus-free images were

then edited in ImageJ by changing the threshold color setting to

B&W and analyzed through the “Analyze Particles” tool to identify

spots with a size of 0-100 and a circularity of 0.00-1.00, ensuring

measurement of only cytoplasmic dsDNA. Cytosolic dsDNA

“density” = proportion of total fluorescence accounted for by

speckles ((Total fluorescence – nuclei)/cell number per field).
Statistics

Multiple sample comparisons were made with ANOVA and

two-way comparisons were performed using Student’s T-test. Bars

represent mean expression of one representative experiment in

triplicate, or means of at least 3 independent experiments, and error

bars denote STD/SEM accordingly. In Figures *p<0.05, **p<0.01,

***p<0.005, ****p<0.001.
Vesicular stomatitis virus infection

Vesicular stomatitis Indiana virus carrying GFP was described

previously (42). Virus was diluted in OptiMEM supplemented with

0.2% BSA and 1x Pen/Strep and applied to HeLa or A549 cells at an

MOI=1. Following inoculation, cells were grown in DMEM

supplemented with 10% FBS for 4h prior to fixation with 4%

paraformalin to visualize dsDNA. IFN-b mRNA expression was

detected after 6h and protein in viral supernatants at 8h using an

R&D ELISA kit (cat#DIFNB0).
Results

ER stress induced IFN-b mRNA requires
cGAS and STING

Previous work had shown ER stress induces STING clustering

and the association of STING with TBK1 (26). However, it was not

known whether ER stress activates STING directly, in the absence of

self-ligand, or via a cGAS-generated intermediate. Treating

immortalized macrophage (iMac) cells with TPG, which inhibits

SERCA pump function and depletes ER calcium stores (47),

significantly induced IFN-b mRNA expression (Figure 1A) and

promoted STING clustering (Figure 1B) (8, 48). To determine if
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STING and cGAS were required for TPG-induced IFN-b (Ifnb1)

mRNA, we used immortalized macrophages (iMacs) derived from

Tmem173-/- and Cgas-/- mice. IFN-b mRNA induction was

completely abrogated in Cgas-/- and Tmem173-/- macrophages

(Figure 1C). These requirements were then tested in another

model of ER stress, oxygen glucose deprivation (OGD). In

contrast to wild type (WT) macrophages (Figure 1D), Tmem173-/-

and Cgas-/- macrophages were unable to upregulate Ifnb1

transcripts during OGD. It was possible, given the known effects

of STING on the UPR, that the profound inhibition with cGAS or

STING deficiency simply reflected an abrogated UPR. Preliminary

data (Supplementary Figure S1) suggests this is not the case. ER

stress induces very low levels of IFN, but synergizes dramatically

with PRR agonists such as lipopolysaccharide (LPS) to upregulate

IFN expression and protein secretion (26, 27). Both cGAS and

STING were required for full ER stress-dependent synergism with

LPS (Figure 1E), consistent with previously reported STING

knockdown data (26). Extending these findings to other UPR-

TLR stimulations, maximal TLR9 and UPR induction of ifnb1

required cGAS and STING (Supplementary Figure S2). In

contrast, Poly I:C-TPG synergism did not require cGAS and

STING (Supplementary Figure S2), possibly reflecting alternative

mechanisms of synergy. The requirement for cGAS in TPG and

OGD induced IFN induction supports the idea that ER stress

activates STING via a cytosolic dsDNA intermediary, rather

than directly.
ER stress results in the release of
cytosolic dsDNA

The TPG model of ER stress is “sterile”, performed in the absence

of nominal pathogens or PAMPs, suggesting that the DNA ligand

activating cGAS and STING is endogenous.Whereas dsDNA appeared

primarily restricted to the nucleus using immunofluorescence

microscopy in control settings, following TPG stimulation dsDNA

was evident in small clusters (green speckles) throughout the

cytoplasm, outside of the nucleus in HeLa and iMac cells

(Figure 2A). The close spatial and functional relationships between

the ER andmitochondria suggested mitochondria might be sensitive to

ER stress and thus a source of the DNA speckles (22, 25). To determine

if the extra-nuclear puncta of dsDNA co-localized with mitochondria,

we used MitoTracker dye. In TPG, but not vehicle treated cells,

mitochondrial staining overlapped with the small dsDNA speckles

(yellow, Figure 2B). Also, the contours of the nucleus still appeared

intact in all experiments, without evident micronuclei. Furthermore,

quantitative PCR of cytosolic extracts confirmed an increase in

mitochondrial DNA following TPG (Figure 2C), which correlated

well with the dsDNA cytoplasmic immunofluorescence signals.

Previous work using this dsDNA antibody also showed a correlation

of the fluorescent punctae with increased cytosolic mitochondrial DNA

and DNAse sensitive ISRE-reporter stimulating cytoplasmic nucleic

acid (44). Together, these results suggest the endogenous dsDNA
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release stimulated by ER stress is mitochondrial in origin, rather

than nuclear.
The role of the IRE1 axis of the UPR in
cytosolic dsDNA release

In addition to the canonical UPR signaling cascades, ER stress

causes derangements in intracellular calcium and generates

oxidative stress, which may impact mitochondrial stability. To

determine if oxidative stress contributes to ER-stress induced

IFN-b, we pre-treated cells with the antioxidant N-acetylcysteine

(NAC). Indeed, NAC significantly reduced induction of IFN-b
mRNA by TPG (Figure 3A).

Reactive oxygen and nitrogen species derive from multiple

cellular locations including the ER, cytosol, and mitochondria. To

determine if mitochondrial ROS contributed to TPG-induced IFN,

we pre-treated cells with MitoTEMPO, which suppresses

mitochondrial ROS (19). However, MitoTEMPO (1-5 mM) had
Frontiers in Immunology 05
no effect on TPG- induced IFN-bmRNA induction (Supplementary

Figure S2), suggesting mitochondrial ROS are not a major source of

STING activation in our experimental system.

Therefore, we further investigated a canonical UPR pathway

(the IRE1-XBP1 pathway) previously implicated in IFN induction

and re-dox regulation (27, 49). We confirmed that inhibiting the

XBP1 transcription factor with either small interfering RNA

(siRNA) or the IRE1 endonuclease inhibitor 4m8c (Supplementary

Figure S3) blocked ER stress-induced IFNB1 expression (Figures 3B,

C) (27, 50). The addition of 4m8C also reduced the number of TPG-

induced dsDNA cytoplasmic clusters (Figure 3E). These results

suggested XBP1 contributed to ER stress-induced dsDNA release.

4m8c significantly attenuated iNOS induction, as expected,

supporting the requirement for XBP1 upstream of iNOS (38).

(Figure 3D). To determine if XBP1-dependent iNOS was required

for dsDNA release, we used 1400W, an iNOS inhibitor (51). A

significant decrease in both IFN-b expression and cytosolic dsDNA

was observed with 1400W pre-treatment as compared to TPG

treatment alone (Figures 3E–G).
B

C D

E

A

FIGURE 1

ER stress-dependent Ifnb1 (IFN-b) mRNA expression during TPG treatment and oxygen glucose deprivation (OGD) requires both STING and cGAS.
(A) iMacs were treated with 1mM TPG (black bars) or DMSO vehicle control (open bars) for the specified times. Ifnb1 mRNA expression was
determined by quantitative (q) PCR, normalized to 18S RNA and to vehicle treated control (set=1). *P<0.05 and **p<0.01 comparing TPG and DMSO
samples within time points. (B) HeLa cells were treated with 1mM TPG for 3h, fixed, and incubated with anti-STING followed by anti-mouse IgG Alexa
Fluor 488 (green), and then stained with DAPI (blue nuclei). Visualization was by immunofluorescence microscopy. Scale bars are 5 mm (C) Wild type
(WT, open bars) STING (Tmem173)-/- (black bars) and Cgas-/- (gray bars) iMacs were treated with 1mM TPG for 3h and Ifnb1 mRNA quantified as
above. ****P<0.001 in treated WT vs. all knockouts and vehicle control. RNA levels were normalized to vehicle treated WT control (set=1) (D) iMacs
were subject to oxygen glucose deprivation (OGD) for 2h and IFN-b expression was quantitated with qPCR as above, with fold RNA vs WT control.
****p<0.001, ***p<0.005 and **p<0.01. (E) WT, Cgas-/- or STING null mutant (Golden Ticket, Tmem173gt) macrophages were stimulated with 1mM
TPG for 1h and then 10ng/mL LPS for 3h prior to harvest for RNA. RNA levels were normalized to 18S RNA. Bars represent means of 2-3 (E), 3 (A, D)
or 5 (C) independent experiments and errors are SEM.
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The PERK pathway and downstream Bim
contribute to ER stress-mediated
dsDNA release

Treatment with 4m8C or NAC only partially inhibited dsDNA

release, prompting further investigation into the role of another

UPR branch, the PERK pathway. During chronic ER stress, PERK

leads to apoptosis in part through the induction of C/EBP

homologous protein (CHOP) and CHOP-dependent Bim

expression. Bim, in turn, regulates Bax-Bak dependent changes in

mitochondrial permeability (52–54). Bax-Bak mitochondrial pores

may allow for mitochondrial DNA release into the cytoplasm (53,

55). Treating HeLa cells with the PERK inhibitor I (GSK2606414,

Supplementary Figure S4) significantly reduced TPG-induced IFN-

b mRNA expression (Figure 4A) and decreased cytosolic mtDNA

(Figure 4B). Whereas both 4m8C and PERK I attenuated dsDNA

release to a similar extent, the combination decreased the cytosolic

dsDNA back down to vehicle control levels (Figures 4C, D). The

PERK I inhibitor also decreased TPG-induced Bim (BCL2L11)
Frontiers in Immunology 06
mRNA (Figure 4E). TPG treatment of Bim (Bcl2l11)-/- murine

macrophages elicited less cytosolic dsDNA release (Figure 4F)

and abrogated Ifnb1 up regulation (Figure 4G), suggesting a

critical role for Bim in ER stress-dependent IFN-b induction.
ER stress pathways regulate cytosolic
dsDNA release and IFN-b production
during vesicular stomatitus virus infection

Several studies have shown that RNA viruses, which lack

nominal STING/cGAS ligands, cause mitochondrial damage and

release of mtDNA (56, 57). In this regard, we recently showed

influenza A virus triggers increases in cytosolic mtDNA (44).

Moreover, some RNA viruses such as VSV, Dengue virus and

West Nile virus are restricted by STING expression and many

have developed mechanisms to counteract STING (21, 58, 59).

Evidence also supports STING-RNA sensing PRR crosstalk (60).

Although viral mediators have been identified that threaten
B

CA

FIGURE 2

TPG treatment results in the release of cytoplasmic dsDNA. (A) HeLa cells (left) or iMacs (right) were treated with 1mM TPG or DMSO vehicle control
for 1h. Cells were then fixed and incubated with anti-dsDNA followed by anti-mouse Alexa Fluor 488 antibodies. (B) HeLa cells were stained with
MitoTracker for 30 min and treated with DMSO vehicle control (left panels) or 1mM TPG (right panels) for 1h. Fixed cells were stained with DAPI
(nuclei) and anti-dsDNA as above. Visualization was by immunofluorescence microscopy. Scale bars are 10 mm (C) HeLa cells were treated with
DMSO (vehicle) or TPG for 1h as above. Mitochondrial DNA (mtDNA) was quantitated by qPCR with normalization of the cytosolic fraction to whole
cell extract. N=2 and ****p<0.001.
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mitochondrial integrity and trigger cytosolic DNA release, the role

of UPR pathways in virus-dependent cytosolic dsDNA release are

unknown (43, 61, 62).

We investigated UPR-STING pathways in the context of RNA

viral infection using an in vitro VSV infection model. STING has

been reported to restrict VSV replication in murine embryonic

fibroblasts (MEFs) and in mice (8, 58). We confirmed that in
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STING mutant macrophages, VSV replicates to a greater extent

(Figure 5A). Reciprocally, VSV induced IFN-b expression was

decreased in Tmem173-/- macrophages (Figure 5B). To test the

hypothesis that VSV elicits a STING-stimulating agonist beyond

RNA, we used MAVS-/- bronchial epithelial cells (Figure 5C), which

revealed residual IFNB1 mRNA induction of at least one log. As

previously seen with influenza (13), VSV also triggered an increase
B

C

D

E

F G

A

FIGURE 3

XBP1 and iNOS contribute to UPR induced cytosolic dsDNA release. (A) iMacs were treated with DMSO vehicle control only or pre-treated with 0.1
mM N-acetylcysteine (NAC) for 30 min and then 1mM of TPG for 3h. IFN-b expression was quantitated using qPCR (Fold RNA) with vehicle set=1.
Results are from N=3 experiments. ****P-values are in comparison to vehicle or TPG+NAC treatments. (B) HeLa cells were transfected with siRNA
targeting XBP1 (XBP1-si) or scrambled control (C-si). 24h later cells were stimulated with TPG for 3h. qPCR determined expression levels of IFNB1
mRNA. N=2 experiments. **p<0.01 vs. all other conditions, *p<0.05. (C, D) iMacs were treated with pre-treated with 10 mM 4m8C 30 min then 1mM
TPG for 3h as indicated and IFN‐b (Ifnb1) mRNA (C) or iNOS (Nos2) mRNA (D) quantitated as above. N=4 experiments. ****p<0.001 comparing TPG
with all other conditions and TPG+4m8c with 4m8c. (E, F) HeLa cells were pre-treated with 4m8C or 1mM 1400W followed by 1h TPG as indicated,
then fixed and incubated with anti-dsDNA and anti-mouse IgG Alexa Fluor 488 antibodies. dsDNA particles were imaged using confocal microscopy
(E) and cytosolic fluorescence quantitated using ImageJ Scale bars are 10 mm (F). ****p<0.001 comparing TPG alone with other conditions,
***p<0.005 vs DMSO vehicle control. Results are from 3 fields in one experiment and representative of N=2. (G) HeLa cells were pre-treated with
1400W for 1h followed by TPG for 3h. RNA was processed for qPCR and analyzed for IFNB1 expression. N=3. ***p<0.005 vs vehicle only or 1400W
+TPG treatment.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1358462
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2024.1358462
in anti-dsDNA antibody detected cytosolic punctae in infected

cultures (Figure 5D, top 2 rows). Interestingly, dsDNA speckles

were evident in some cells where VSV-GFP was not detected.

To further examine the roles of IRE1 and PERK pathways in IFN

induction and cytsolic dsDNA release, A549 bronchial cells were pre-

treated with the 4m8c and PERK inhibitors prior to VSV infection.

Treatment with these inhibitors reduced IFNB1 expression in A549

and HeLa cells following infection (Figure 5E; Supplementary Figure

S5), with the PERK inhibitor exhibiting a greater effect. IFNB1mRNA

expression correlated with secreted IFN-b protein (Figure 5F).

Consistent with these results, VSV induction of Ifnb1 mRNA was

also decreased in CHOP (Ddit3)-/- cells (Figure 5G). MAVS-/- cells
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also displayed decreased IFN expression in the presence of UPR

inhibitors, supporting an RNA sensing-independent effect of UPR

pathway inhibition (Figure 5H). Treatment with 4m8c and PERK I

also decreased dsDNA release from VSV treated cells, (Figures 5D, I).

The inhibition of cytosolic dsDNA release by UPR inhibitors was

consistent with an upstream role generating STING ligands during

VSV infection. PERK and IRE1 pathways have pleiotropic effects on

viral replication beyond IFN expression, and different viruses both

induce and inhibit various UPR signaling pathways to enhance their

success (63–67). In the case of VSV, inhibition of IRE1 produced a

net neutral effect and PERK inhibition was deleterious to viral

replication (Supplementary Figure S6).
B

C

D E

F G

A

FIGURE 4

PERK and Bim regulate TPG-dependent IFNB1 induction and cytoplasmic dsDNA release. (A) iMac cells were pre-treated with 10mM of PERK I
(GSK2606414) for 30 min before stimulation with DMSO vehicle or 1mM of TPG for 3h. Ifnb1 mRNA was quantitated using qPCR. N=3 exp and
****p<0.001 comparing TPG with other conditions. Fold RNA is vs. vehicle control. (B) HeLa cells were pre-treated with 4m8c or PERKI prior to
stimulation with TPG for 1h. mtDNA in cytosolic fractions were quantitated by qPCR and normalized to mtDNA in whole cell extracts. N=3. *p<0.05
and ***p<0.005 in pairwise comparisons. (C) HeLa cells were treated as in (B) and dsDNA was visualized using immunofluorescence. (D) The dsDNA
fluorescence densities were quantitated with ImageJ. Results are averages from 3 fields and are representative of 3 independent experiments.
*p<0.05 comparing TPG with all other conditions and TPG+4m8c with TPG+Both (E) HeLa cells were treated as in (A) and Bim (BCL2L11) mRNA
quantitated by qPCR as above. ****p<0.001 for TPG vs. all other conditions and ***p<0.005 comparing vehicle only vs PERK I treated cells. (F) WT or
Bim (Bcl2l11)-/- iMacs were stimulated with 1 mM TPG for 1h prior to fixation and dsDNA staining for immunoflourescence. Scale bars are 10 mm.
(G) or 3h prior to harvesting for RNA extraction and qPCR. ****P-value compares TPG treated WT iMacs and either untreated cells or TPG-
stimulated Bcl2l11-/- cells. N=3.
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FIGURE 5

Both PERK and IRE1 UPR pathways regulate VSV-induced dsDNA release and IFNB1 induction. (A) Wild type (WT) or STING mutant (Tmem173gt)
iMacs were infected with VSV (MOI=1) for 24h, harvested for RNA and VSV detected by qPCR (42) with normalization to 18S rRNA. NI=non-infected
WT iMacs. ***p<0.005 for WT vs NI and infected STING mutant cells. N=2 independent experiments. (B) WT or Tmem173-/- iMacs were uninfected
or infected with VSV for 6h prior to harvest for mRNA and Ifnb1 expression quantifed and normalized as above. *P<0.05 comparing WT and
Tmem173-/- infected macrophages. N=3. (C) MAVS-/- A549 cells were uninfected (NI, open bars) or infected (black bars) with VSV for 6h prior to
harvest for mRNA, and IFNB1 expression quantified as above. N=4, with fold change vs uninfected WT set=1. ****p<0.001, *p<0.05 vs WT NI. N=3.
(D) HeLa cells were pretreated with vehicle or UPR inhibitors and then infected with VSV-GFP for 4h. Cells were fixed and examined for VSV and
dsDNA using immunofluorescence microscopy. A rabbit anti mouse Alexa-fluor 594 secondary antibody was used to visualize dsDNA. Results are
representative of 3 independent experiments. Scale bars are 10 mm (E) A549 cells were pre-treated with vehicle (Veh), the IRE1 inhibitor 4m8c, or the
PERK inhibitor (PERKI) then infected with VSV for 6h prior to harvest for RNA. IFNB1 expression was quantified by qPCR with normalization to 18S
rRNA and VSV infected vehicle treated control (set=100% for maximum mRNA). N=7. ***p<0.005 for VSV infected DMSO vs 4m8c and ****p<0.001
for all other pairwise comparisons. (F) A549 cells were treated and infected as in (E) for 8h, and then IFNb in supernatants quantified using ELISA.
*p<0.05, ****p<0.001. N=3. (G) WT or CHOP (Ddit3) iMacs were infected with VSV for 6h prior to harvest for mRNA and Ifnb1 expression quantified
by qPCR as above. *p<0.05 vs WT. N=3. (H) MAVS-/- A549 bronchial cells were pretreated with DMSO vehicle control (Veh), 4m8c or PERKI for 30
minutes, then infected with VSV for 6 hours. IFNB1 mRNA was quantitated by qPCR with normalization to 18S rRNA and non-infected vehicle treated
control (set=1). Results are from N=3 and ***p<0.005 vs. VSV infected vehicle control. (I) The cytoplasmic dsDNA fluorescence densities from (D)
were quantitated with Image J. Results are averages from 3 fields and are representative of 3 independent experiments. *p<0.05 comparing vehicle
pre-treated VSV with UPR inhibitors and with uninfected cells.
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Discussion

STING has been increasingly recognized to play a role in non-

infectious pathologies such as cancer, autoimmunity and ischemia

as well as in infections lacking a nominal STING agonist such as

RNA virus infections (22). However, the mechanisms by which ER

stress activates STING in the absence of nominal ligands have been

unclear. In this study we have shown specific ER stressors induce

IFN-b mRNA in both a STING and cGAS-dependent manner.

Furthermore, stimulation of cells with ER stress-inducing

pharmacologic agents, OGD, or viral infection resulted in the

appearance of abundant dsDNA particles in the cytoplasm, which

could serve as agonists to stimulate cGAS, and thus STING. These

particles were clearly evident during both pharmacologic UPR and

viral infection, despite cytoplasmic DNases, suggesting a robustly

induced process. Independent canonical UPR pathways stemming

from activation of IRE1 endonuclease/XBP1 and PERK both

contributed to dsDNA release (diagram, Figure 6). Downstream

of XBP1, one pathway involves iNOS induction, though the XBP1-

iNOS contribution to dsDNA release and IFN induction appears

partial. PERK and Bim also regulated cytoplasmic dsDNA release.

Inhibiting both XBP1 and PERK pathways together was additive in

suppressing dsDNA release. However, the 2 pathways may also

work together. For instance, one might envision that the XBP1-

iNOS pathway generates mitochondrial stress, but Bim induction is

required for increased dsDNA release from the stressed

mitochondria. In this scenario, interfering with either XBP1 or

PERK signaling diminishes the dsDNA release. Together the data

from these studies suggests that during non-infectious pathologies

or infections associated with ER stress, canonical UPR pathways

cooperate to stimulate STING-dependent immune responses.
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Endogenous DNA from the nuclei or mitochondria can serve as

cGAS stimuli that generate cGAMP for STING activation. Nuclear

DNA seems to be important in the setting of cancer, where DNA

damage causes aberrant mitoses and generation of cytosolic

micronuclei (16, 17). In our studies, the nuclei appeared smooth

and intact, without obvious micronuclei. Moreover, the rapid time

frame of IFN-bmRNA induction (within a few hours) argues against

a cell division requirement. Here we showed the ER stressors TPG

and OGD, as well as VSV infection, generated numerous cytoplasmic

dsDNA speckles. Both the co-localization of cytoplasmic DNA with

mitochondria and increase in cytoplasmic mtDNA also suggested

these DNA speckles are mitochondrial in origin. It is not clear why

the mtDNA was not readily visible prior to stimulation; the antigen

recognized by our dsDNA antibody may require dissociation from

genome packaging proteins present in intact mitochondria such as

mitochondrial transcription factor A (TFAM) (18, 68, 69). Another

possibility is that cytosolic release results in clumping or clustering of

the tiny mitochondrial genomic material.

The partial effect of XBP1 inhibition prompted examination of

the other UPR arms. In other studies, the PERK pathway plays both

positive and negative roles in regulating type I IFN, depending upon

context (29, 70–73). As an example, during infection, PERK may

antagonize IFN sensing by supporting IFNAR1 degradation (74). In

our in vitromodels, PERK-dependent pathways supported cytosolic

dsDNA release and IFN induction. However, the net effect of PERK

inhibition in suppressing VSV replication suggests multiple roles for

the PERK pathway during infection. Previous work had implicated

PERK in ER stress-regulated IFN-b in dendritic cells (75).

GADD34, downstream of PKR (and PERK) was critical for IFN-b
and IL-6 responses to dsRNA and Chikungunya virus (76). NF-kB
and IkB (NF-kB inhibitor) have disparate protein half-lives, thus
FIGURE 6

IRE1 and PERK-dependent pathways cooperate to generate cGAS/STING activating dsDNA release. During ER stress, the UPR activates PERK and
IRE1 pathways. PERK induces the expression of CHOP and Bim, which influence mitochondrial integrity. IRE1 endonuclease activation results in the
translation of the full length XBP1 transcription factor and thus induction of iNOS. Together, these 2 pathways both contribute to the ER stress-
induced increase in cytosolic dsDNA, which may serve as a nominal stimulus for cGAS/STING dependent IFN-b induction. Bak/Bax placement within
this schematic (in gray) derive from the literature (52), whereas black font molecules were addressed in this study. This Figure was made
using BioRender.
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PERK also contributes to IFN‐b mRNA transcription during

translation inhibition via the relative decrease in cytosolic ikB

(77). Our study adds to this roster of mechanisms implicating the

PERK pathway in IFN control through the suggestion that PERK

regulates mitochondrial release of dsDNA during ER stress. In a

previous study, PERK deficiency in murine embryonic fibroblasts

(MEFs) did not hinder synergism between LPS and ER stress (27).

This may have been a cell type issue, as in the current study a PERK

inhibitor decreased both dsDNA release and IFN-b mRNA

induction in response to both virus and TPG in HeLa and A549

epithelial cells.

Although there are multiple ways in which PERK could affect

mitochondria, we focused on a proximal regulator of mitochondrial

permeability. During classical apoptosis, the Bak-Bax pores in

mitochondria allow egress of cytochrome c (78). These pores

have also been implicated in dsDNA release (53, 55). Although

ER stress does not regulate Bak/Bax directly, it does regulate

upstream Bim, increasing Bim mRNA expression by ~2-fold

(confirmed in this study) and protein by ~5 fold (52). The CHOP

transcription factor, induced by PERK is essential both for Bim

upregulation as well as for ER stress-induced apoptosis in

macrophages and tunicamycin-induced renal injury in vivo (52).

In these same settings, Bim is also required for ER stress induced

apoptosis. In the current study, CHOP deficiency negatively

impacted VSV-induced IFN-b. Furthermore, Bim deficiency

significantly decreased ER stress-induced dsDNA release in

macrophages and was absolutely essential for TPG-stimulated

IFN-b mRNA induction. Interestingly, the cells in these studies

appeared healthy, even with abundant dsDNA in their cytoplasm

and the implication of pro-apoptotic molecules, suggesting

mitochondrial dsDNA release may be uncoupled from apoptosis

induction, or at least significantly precede apoptosis. Of note, the

time frames for the ER stress experiments was short (2-3 hours),

whereas continued lower dose TPG exposure has been reported to

induce apoptosis in macrophages after 48 hours (79).

Finally, it was essential to explore the relevance of XBP1 and

PERK pathway activation outside of pharmacologic ER stress

induction or laboratory oxygen glucose deprivation. Viral

infections trigger and modulate the UPR (20, 63, 80). Moreover,

an increasing literature has identified RNA virus-STING

interaction: multiple RNA viruses have evolved mechanisms for

targeting both cGAS and STING, including Dengue virus, Zika

virus, West Nile virus and Japanese encephalitis virus (recently

reviewed in (59)). The list of RNA viruses that stimulate mtDNA

release is growing, suggesting that this may be a general property of

RNA viral infection: Dengue virus directly targets mitochondria

causing perturbations in structure and function (56, 81). Influenza

virus and encephalomyocarditis virus cause mtDNA leakage via M2

and 2B proteins, respectively (43). Chikungunya virus generates

cytosolic DNA (82). Recently, SARS-CoV2 has also been suggested

to trigger mtDNA cytosolic release via viral proteins NSP4 and

ORF9b (57, 83). Thus, RNA viral infection appeared a good

opportunity to assess the roles and interactions of the UPR,

dsDNA release and STING.
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Inhibition of either XBP1 or PERK pathway significantly

decreased VSV-induced IFNB1 expression. We had previously

described direct binding of XBP1 to an enhancer element 7kb

away from the Ifnb1 gene (50). Thus, there are other explanations

for how XBP1 and PERK might be regulating IFN-b mRNA

transcription. However, this study suggests an additional

mechanism, in that both XBP1 and PERK contribute to stress-

mediated dsDNA release in response to infection with the RNA

VSV virus. Induction of the IFN-b gene is highly cooperative,

possibly underlying the capacity of multiple mechanisms or

agonists to synergize in promoting expression (84).

The dsDNA release by most of the cells in the culture, even

those without GFP evidence of viral infection was surprising. Two

possibilities are that these neighboring cells either had low level viral

infection (insufficient for visible GFP) or that the infected cells were

communicating ER stress (or another message) to uninfected

neighbors to begin rallying anti-viral responses. So called

“transmissible ER stress” has been described in the cancer

literature, in which cancerous cells are able to induce ER stress in

invading innate immune cells. Proposed mechanisms include

communication via extracellular vesicles, specific protein secretion

or metabolites (e.g. lactic acid) (85). More recently ER stress has

been documented to transmit between hepatocytes via CX43 gap

junctions (86). Interestingly, influenza virus-dependent STING

signals have also been noted to propagate intercellularly by CX43

gap junctions (43). Whether these gap junctions or other

mechanisms described in the literature play a role in dsDNA

release from neighboring cells remains to be determined.

It is not clear whether the UPR inhibition directly impacts MAVS

or STING dependent signaling. Although we confirmed a critical role

for MAVS in VSV-stimulated IFN production, there was residual

IFN induction inMAVS-/- cells and STING deficiency decreased IFN

induction by over 50%. Furthermore, consistent with previous

reports, STING deficiency permitted increased VSV replication (8,

58). In the setting of interferonopathies or other conditions where

cytosolic DNA clearance is impaired, STING indirect recognition of

mitochondrial DNA might play an even more prominent role,

beyond stimulation of MAVs-depenent signaling (44, 87). The

effect of UPR inhibition in the absence of MAVS would suggest at

least some MAVS ©. However, given multiple cross-talk mechanisms

between STING and RIG-1/MAVS signaling, this question is difficult

to tease apart further (21, 60).

Together, our results demonstrate that the activation of

multiple UPR pathways during certain types of ER stress and

viral infections contributes to the generation of cytosolic dsDNA.

Ultimately, ER stress induced dsDNA release and subsequent

STING activation may be critical for marshaling innate immune

responses. On the other hand, in the setting of non-infectious

processes generating ER stress, STING may contribute to tissue

damage. ER stress-dependent STING activation also potentially

alters neoplastic responses. Moving forwards, it will be important

to determine the role of the ER stress-STING axis in these disease

processes as ER stress is becoming an increasingly modifiable factor

(36, 88–90).
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