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Introduction: Middle East respiratory syndrome coronavirus (MERS-CoV) has

emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV

can cause severe respiratory tract disease and multiorgan failure. Therefore,

therapeutic vaccines are urgently needed. This intensive review explores the

human immune responses and their immunological mechanisms during MERS-

CoV infection in the mucosa of the upper and lower respiratory tracts (URT and

LRT, respectively).

Objective: The aim of this study is to provide a valuable, informative, and critical

summary of the protective immune mechanisms against MERS-CoV infection in

the URT/LRT for the purpose of preventing and controlling MERS-CoV disease

and designing effective therapeutic vaccines.

Methods: In this review, we focus on the immune potential of the respiratory

tract following MERS-CoV infection. We searched PubMed, Embase, Web of

Science, Cochrane, Scopus, and Google Scholar using the following terms:

“MERS-CoV”, “B cells”, “T cells”, “cytokines”, “chemokines”, “cytotoxic”, and

“upper and lower respiratory tracts”.

Results: We found and included 152 studies in this review. We report that the

cellular innate immune response, including macrophages, dendritic cells, and

natural killer cells, produces antiviral substances such as interferons and

interleukins to prevent the virus from spreading. In the adaptive and humoral
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immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and

plasma cells protect against MERS-CoV infection in URT and LRT.

Conclusion: The human nasopharynx-associated lymphoid tissue (NALT) and

bronchus-associated lymphoid tissue (BALT) could successfully limit the spread

of several respiratory pathogens. However, in the case of MERS-CoV infection,

l imited research has been conducted in humans with regard to

immunopathogenesis and mucosal immune responses due to the lack of

relevant tissues. A better understanding of the immune mechanisms of the

URT and LRT is vital for the design and development of effective MERS-

CoV vaccines.
KEYWORDS

MERS-CoV, immune cells, mucosal, lung, tonsils, cytokines, chemokines, upper and
lower respiratory tracts
1 Introduction

Coronaviruses (CoVs) pose a serious global health threat to

humans and animals. Four different genera of CoVs have been

described: alphacoronaviruses (aCoVs), betacoronaviruses

(bCoVs), gammacoronaviruses (gCoVs), and deltacoronaviruses

(dCoVs) (1). Currently, seven main CoVs are known to infect

humans: HCoV-NL63, HCoV-OC43, HCoV-HKU1, HCoV-229E,

severe acute respiratory syndrome coronaviruses (SARS-CoV and

SARS-CoV-2), and Middle East respiratory syndrome coronavirus

(MERS-CoV) (2, 3). The hCoV strains cause the common cold and

infect only the upper respiratory tract (URT), while SARS-CoV,

SARS-CoV-2, andMERS-CoV also infect the lower respiratory tract

(LRT), leading to severe complications, including death (4). MERS-

CoV was first isolated in 2012 from the saliva of an elderly Saudi

patient with severe acute pneumonia and renal failure (5). Since

2012, it has been detected in 27 countries, resulting in 2,622

laboratory-confirmed cases, including 950 deaths, with a

mortality rate of up to 36.2% (1–5). MERS-CoV is a zoonotic

pathogen that has several potential mechanisms of transmission (6).

Transmission is likely to occur directly via contact with any infected

patients or animals and indirectly, such as contact with camel waste

through cleaning camel corrals or the consumption or use of camel

urine, unpasteurized milks, and raw meats. Indirect transmission of

MERS-CoV can also occur through contact with contaminated

surfaces in hospitals, laboratory, public places, or homes (7). MERS-

CoV primarily infects the respiratory tract in humans,

predominantly infecting and replicating in the respiratory

epithelium in the URT and LRT (8).

An effective MERS-CoV vaccine should protect humans and

animals and prompt a long-lasting immune response, characterized

by neutralizing antibodies (Nabs) and cellular immunity. Several

experimental MERS-CoV vaccines are in development. The

chimpanzee adenovirus developed at Oxford University, vector
02
version 1 MERS-CoV (ChAdOx1-MERS-CoV) vaccine, is the

furthest advanced, and a phase 1b trial has been successfully

completed in healthy Middle Eastern adults (9–11).

Currently, no licensed MERS-CoV vaccines exist, representing a

matter of great public health concern. The understanding of the

acquired immune responses and their underlying mechanisms will

facilitate the design of safe and effective vaccine platforms.

Additionally, limited information is available on the T- and B-cell

response and mucosal cytokine and chemokine production during

MERS-CoV infection. This extensive review aims to provide a

critical summary of potential protective mechanisms and the

immunity elicited in the URT and LRT to assist in the design of a

safe, effective, and protective vaccine regimen.
2 Structure of MERS-CoV

MERS-CoV is classified as a Group IV virus based on the

Baltimore Classification System (BCS) (12). It is a positive-sense,

linear single-stranded RNA (ssRNA) virus with an enveloped

genome ranging from 26 to 32 kilobases. The virus particle is

spherical and symmetric, ranging from 77 to 131 nm in size. It

contains at least 11 predicted open reading frames (ORFs; ORFs-1a,

-1b, -S, -3, -4a, -4b, -5, -E, -M, -8b, and -N) and 16 functional non-

structural proteins (NSPs) (kb) (13, 14). The MERS-CoV genome

encodes for four structural proteins, the nucleocapsid (N) protein,

membrane (M) protein, envelope (E) protein, and spike (S)

glycoprotein, and five accessory proteins (15–17) (Figure 1).

The life cycle of MERS-CoV begins with the binding of the S

glycoprotein to dipeptidyl peptidase-4 (DPP4), the host cell

receptor, through the receptor-binding domain (RBD) on the S1

subunit of the S glycoprotein (19). This binding triggers a

conformational change in the S2 subunit, which results in a close

association of the viral particle and the cell membrane, facilitating
frontiersin.org
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membrane fusion and virus entry into the cytoplasm (20).

Following the fusion of viral particles and cellular membranes,

MERS-CoV RNA genomes are disassembled inside the target cells,

releasing the N protein and genetic materials into the cytoplasm

after the translation of ORF-1a and ORF-1b to pp1a and pp1ab,

respectively, and the replication of genomic RNA. The replicated

viral genome, N, and genomic RNA are assembled to form a helical

N, which then cooperates with the S glycoprotein, M protein, and E

protein to produce an aggregated virion (21). The viral structural

proteins S, M, and E are then translated and use the secretory

pathway system to transfer proteins across the endoplasmic

reticulum–Golgi intermediate compartment (ERGIC) (22). N

protein encapsulates viral genomes to form a mature virion after

budding into the membranes of the ERGIC. Following assembly,

the budded vesicles containing mature virions are transported to the

host cell surface and released (23, 24). After releasing the new

MERS-CoV progeny, the host innate immunity utilizes multiple

strategies to detect and target viral particles (25, 26).
3 The host innate immunity in
response to MERS-CoV infections

The main MERS-CoV receptor, DPP-4, is broadly expressed on

human URT/LRT cells, including submucosa glands, nasal passages,

pharynx, and sinuses, as well as in lungs, bronchi, bronchioles, and

alveoli (19–29). Therefore, the host innate immune response at the

site of infection is directly triggered during virus particle attachment,

mainly through the S glycoprotein to its target cell receptors and

entry into the appropriate cell. The primary effector cells of innate

immunity are mainly antigen-presenting cells (APCs), such as

macrophages and dendritic cells (DCs), which identify the virus

components (27–29). The pattern recognition receptors (PRRs) in

APCs play a key role and act as crucial mediators of host innate

immunity, capable of identifying the pathogen-associated molecular

pattern receptors (PAMPs) initiated by viral replication, which result

in the rapid endorsement of distinct antiviral signaling pathways in
Frontiers in Immunology 03
response to the invasive infection (30–32). They are vital in

recognition of structural components of MERS-CoV RNA particles

(33). TLRs recruit two different adaptor molecules at the site of viral

detection: toll/interleukin-1 receptor (TIR-1) domain-containing

adapter-inducing interferon-b (TRIF) and myeloid differentiation

primary response-88 (MyD-88). These intracellular adaptor

proteins play a vital role in activating the mitogen-activated

protein kinase (MAPK) and NF-kB pathways responsible for

enhancing the production of pro-inflammatory cytokine markers

(Figure 2) (32, 35–40).

Type II IFNs (IFN-II), chiefly interferon-gamma (IFN-g), also
possess specific antiviral activity by signaling through the JAK/

STAT pathway via the release of specific major histocompatibility

complex (MHC) proteins to block virus distribution (41, 42). IFN-g
plays a critical role by stimulating CD8+ cytotoxic T cells and

natural killer cells (NKCs) that rapidly eliminate virus particles (43).

According to Mahallawi et al. (44), IFN-g levels are significantly

higher in MERS-CoV-infected patients than in healthy individuals.

Thus, elevated IFN-g is important for eliciting immune responses

against MERS-CoV and preventing severe illness and death (45, 46).

DCs and their cytokine expressions also play a key role in

enhancing immunity via activating T cells after migrating from

the peripheral tissues to the lymphoid tissue (47). Therefore, it is

vital to fully understand the signaling of IFN-g because of its

significant implications in host immunity.
4 The host adaptive immunity in
response to MERS-CoV infection

4.1 T cell-mediated immune response to
MERS-CoV

T cells are key essential immune factors for targeting and

clearing viral infections. Following MERS-CoV infection, antigens

are processed and presented to immune effector cells, chiefly helper

(CD4+) T cells, facilitating virus-specific antibody production. T
FIGURE 1

Schematic structure of the MERS-CoV genome (18). (A) Schematic structure of the MERS-CoV virion (ssRNA) and its major structural proteins; N
protein, M protein, E protein, and S glycoprotein. (B) MERS-CoV genomic structure, with the untranslated region (UTR) 5′ and 3′; open reading frame
regions ORF1a, ORF1b, ORF3, ORF4a, ORF4b, ORF5, and ORF8; S glycoprotein; E protein; M protein; and N protein.
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helper cells can also activate the antigen-binding B cells to

differentiate into antibody-secreting plasma cells. This process is

referred to as T-dependent B-cell activation (34, 48–50).

Virus-specific effector CD8+ cytotoxic T cells also produce high

levels of immune effector cytokines, such as IFN-g, TNF-a, and IL-

2; chemokines, such as chemokine (C-X-C motif) ligand-9 and -10

(CXCL-9 and -10); and cytotoxic granules, mainly perforin and

granzyme B, after the virus peptide is recognized on target cells at

the site of infection (51–54). Ying et al. (50) and Manni et al. (51)
Frontiers in Immunology 04
found that CD4+ T-helper and CD8+ cytotoxic T cells are important

immune cells in fighting MERS-CoV infection.
4.2 B cell-mediated immune response to
MERS-CoV

Following MERS-CoV infection, defensive and lasting immune

responses to viral infections typically result from a combination of
FIGURE 2

Schematic representation of the extra/intracellular immune response to MERS-CoV infection (34). The communications (interactions) between
invading viruses and host cells lead to the generation and release of robust immune effective mediators. (A) Extracellularly, MERS-CoV binds its
target DPP4 receptors on the cell membrane of the target cells, leading to the presence of genomic materials in the Th-0 cells. Consequently, the
CD4+ T lymphocytes are activated and differentiate into Th-1, Th-2, and Th-17 subsets that secrete high amounts of subset-specific cytokines
valuable in immune response enhancement. The cytotoxic effect of CD8+ T cells for the clearance of MERS-CoV is supported by the production of
IFN-g and the cytolytic granules containing mainly perforin and granzyme B. Plasma cells are responsible for the production of MERS-CoV-specific
antibodies, some of them being able to neutralize the virus, stopping its dissemination. The duration of virus-specific antibody responses is not yet
known. The binding of MERS-CoV S protein to DPP4 receptors on the target host cells causes the release of virus genomic RNA in the cell
cytoplasm. (B) Intracellularly, host immune responses to double-stranded ribonucleic acid (ds-RNA) can be partially produced during viral
replication. The presence of ds-RNA activates the endosomal TLR-3, which prompts the signaling pathways to activate NF-kB via TRAF-6 and IRFs
via TRAF-3 to produce both IFN-I and pro-inflammatory cytokine markers. The production and activation of IFN-I plays a key role by enhancing and
releasing specific antiviral proteins to warn and protect un-infected cells during MERS-CoV infection. The activation of pro-inflammatory cytokines
through the MyD-88-dependent signaling pathway may occur via the interactions between the TLR-4 and MERS-CoV S protein. The production and
secretion of large amounts of cytokines and chemokines, such as IP-10, IL-10, and MCP-1, are stimulated to intracellularly target the MERS-CoV
infection. Consequently, lymphocytes and leukocytes are recruited by these cytokine and chemokine markers to the site of infection to clear
the virus.
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immune effector cells: B cells after their differentiation into

plasmablasts and plasma cells and their subsequent production of

specific and Nabs and T cells that are responsible for cellular

immunity and for supporting the humoral immune responses.

Some antibodies neutralize the virus and prevent viral infectivity,

which is critical in preventing virus entry into target host cells (6, 34).

MERS-CoV-specific antibody responses have been detected

between post-infection days 14 and 21. Choe et al. (55) and Park

et al. (56) found robust anti-MERS-CoV antibody responses

persisting for over 1 year in all MERS-CoV survivors who

experienced severe clinical symptoms. This finding was also

supported by Alshukairi et al. (57), who found increasing anti-

MERS-CoV antibody concentrations among recovered healthcare

workers over 18 months after infection. The persistence of their

antibody responses was also related to disease severity. Anti-SARS-

CoV-specific antibody responses in SARS-CoV survivors have been

shown in another study to persist for approximately 2 years post-

infection before slowly reducing and disappearing entirely by 6

years post-infection (58, 59).

While anti-MERS-CoV-specific antibody responses can persist

for at least 2 years, such responses among survivors of MERS

disease have been found in numerous studies to be lower and short-

term in asymptomatic or mildly ill patients than those in severely ill

patients (60–63).
5 Immune mechanisms in the URT
(mucosal immunity, e.g., tonsil
mucosal immune responses)

5.1 Innate immune responses in the URT

The URT epithelial cells of the airway are considered the first

line of defense against invasive viral infection, providing a

mucociliary escalator mechanical barrier that uses mucus, cilia,

and coughing mechanisms to expel particles and infectious

microorganisms (64, 65). This mechanical barrier consists of DCs,

tissue-resident macrophages, and URT epithelium cells. The DCs

and tissue-resident macrophages express PRRs that recognize viral

particles presented by receptors, like PAMPs and damage- or

danger-associated molecular patterns (DAMPs) (66). The

recognition of the virus leads to the recruitment of effector

immune cells to the infection site, resulting in controlling the

spreading of the virus or killing it.

The nasopharynx-associated lymphoid tissue (NALT), known

as the mucosal immune component in the URT, enhances the

production of a wide range of immune effector cells against several

respiratory pathogens, and the nasal cavity has long been

recognized as an immune barrier in bony vertebrates. Mucosal

immune responses are generally regulated via myeloid cells (MCs)

with specific functions to control infectious pathogens, comprising

macrophages, monocyte-derived dendritic cells (moDCs),

conventional dendritic cells (cDCs), and plasmacytoid dendritic

cells (pDCs) (67, 68). The NALT plays crucial roles in the

production of the innate and acquired immune responses at the
Frontiers in Immunology 05
mucosal site, accelerating the induction of Th-1 and Th-2 polarized

lymphocytes and stimulating a high rate of immunoglobulin A

secretion by immunoglobulin A (IgA)-committed B cells (67, 69).

Tonsillar cells express various cytokines with antiviral activities,

such as TNF-a, IFN-a, IFN-b, IFN-g, transforming growth factor

b-1 (TGF b-1), IL-1b, IL-6, IL-17, IL-28, and IL-29, in response to

viral infection (70).
5.2 Adaptive immune responses in the URT

Tonsillar T cells are essential for the defense against MERS-CoV

infections in the URT; CD4+ T cells facilitate the production of

virus-specific antibodies by activating B cells in a T-dependent

manner, while cytotoxic CD8+ T cells are killing MERS-CoV-

infected cells and interact with the humoral antibody for

eliminating the initial infection (71–77).

Tonsillar IgG, secreted by plasma cells, is the predominant

antibody in the nasopharyngeal and palatine tissues (71, 72).

Scadding (71), Wohlford et al. (72), and Boyaka et al. (73) found

that the tonsils contained up to 109 lymphoid cells, of which over

60% were B cells and up to 50% were T cells. CD4+ T cells are the

largest subset, comprising approximately 80% of the total T-cell

population (71–73).

IgA antibody is abundant in the saliva, respiratory secretions, and

mucosal glands (74). It plays a crucial role in preventing respiratory

viral infections and stimulating mucosal immunity. Secretory IgA

(SIgA) protects mucosal surfaces by directly cross-linking viral

particles (S glycoprotein) to prevent their contact with the surface

of epithelial cells and facilitating their elimination by peristalsis or

mucociliary movement, a mechanism known as immune exclusion

(75). The induced antiviral mucosal antibody responses, consisting

mainly of the SIgA isotype, play a direct role in antibody-mediated

interactions with the receptors for the virus, preventing its

attachment in this manner (76, 77). Recent studies have revealed

that SIgA can stimulate monocyte chemoattractant protein-1 (MCP-

1), granulocyte-macrophage colony-stimulating factor (GM-CSF),

IL-6, and IL-8 production via normal human lung fibroblasts

(NHLFs). SIgA and IgG antibodies may also promote antibody-

dependent cellular cytotoxicity (ADCC) by synergistically enhancing

mucosal immunity to accelerate the process of eradicating the

invasive respiratory viral infection (78–80).
6 Immune system mechanisms in
combatting MERS-CoV in the
LRT (lungs)

6.1 Innate immune responses in the lungs

Respiratory tract cells are constantly exposed to external

pathogens, making the lungs the most susceptible site for

microbial infection. MERS-CoV can commonly infect and spread

into the bronchi and bronchioles, resulting in cellular variations and

localized tissue inflammation, similar to URT infections (81).
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Almost all human cells use PRRs to locate viruses by identifying the

PAMPs or molecules related to the infectious agents (81). MERS-

CoV infection triggers and activates PRRs expressed on DCs,

macrophages, and respiratory epithelial cells. This activation

facilitates the production and release of IFNs-I, IFNs-II, IFNs-III,

and other pro-inflammatory mediators, such as cytokines,

chemokines, and antiviral products, which prompt the host’s

defense mechanism by initiating host innate and adaptive

immunity (81). The innate lymphoid cells (ILCs) are considered

innate immune cells that reside in both lymphoid and non-

lymphoid mucosal tissues, and all three subsets (ILC1, ILC2, and

ILC3) play a protective role in respiratory infections (82).

Specifically, ILCs are the first line of defense important for

blocking respiratory infection (82).

IFNs-I (for instance, IFN-a and IFN-b) play a key role in

enhancing the functional activities of the lymphocytes and directly

induce the production and release of IFNs-II, chiefly IFN-g, which
motivates the macrophages and phagocytosis processes and

promotes antigen presentation by DCs (83, 84). IFNs-I also

activate the CD8+ T cells and NKCs, hence destroying the

infected cells and inhibiting viral spread (83). Generally, IFNs

fulfill the critical function of directly and indirectly stimulating

the humoral cells through T-cell and DC activation and endorse a

strong, potent cellular and humoral immune response (81, 84).

IFNs-III, such as interferon-lambda1 (IFN-l1) [interleukin-28A

(IL-28A)], interferon-lambda2 (IFN-l1) [interleukin-28B (IL-

28B)], and interferon-lambda3 (IFN-l1) [interleukin-29 (IL-29)],

activate the JAK/STAT signaling pathway and thereby provoke

intrinsic and extrinsic antiviral immunological markers in human

airway epithelium cells. The more IFNs-III are secreted by the

respiratory epithelia cells, the more likely they are to combat

respiratory viral infection (81, 83–85). Generally, IFNs are

widespread throughout the human body and positively affect the

host immune responses in addition to playing the critical functions

of directly and indirectly stimulating the humoral cells through T-

cell and DC activation and endorse a strong, potent cellular and

humoral immune response (81, 83–85). However, they might

inadvertently increase lung inflammation and damage,

particularly through acute and severe virus infection (81, 83–85).

Following MERS-CoV infection, airway epithelial cells release a

wide variety of host cytokines beyond the IFNs that are formed by

the interior airway epithelium tissues, including GM-CSF, the

granulocyte colony-stimulating factor (G-CSF), TNF-a, and IL-6.

GM-CSF and G-CSF stimulate the differentiation and production of

MC lineage (86). TNF-a stimulates cytokine production and

cytotoxic activity to diminish and impair viral replication by

activating the leukocytes and endothelial cells (87). IL-6 assists

innate immunity to become adaptive immunity through reducing

the activity of the neutrophils, alongside enhancing the recruitment,

production, proliferation, differentiation, and activation of the T

cells and monocytes (88). GM-CSF elicits the activation,

proliferation, and differentiation of T and B cells and of

monocytes (89).

Respiratory epithelium cells release various antiviral and

antimicrobial products that prevent MERS-CoV infection.

Antiviral products, such as lactoferrin, secretory leukocyte
Frontiers in Immunology 06
proteinase inhibitor (SLPI), and lysozyme, are abundant in the

mucosal epithelial tissues. These tissues also produce several

chemokine molecules that induce the migration of innate and

adaptive immune cells to the infection site in the lungs (90). In

the lungs, the IL-8/chemokine (C-X-C motif) ligand-8 (CXCL-8)

recruits neutrophils and enhances degranulation, which leads to the

secretion of pro-inflammatory and cytotoxic mediators that may

increase the life span of the neutrophils. The production of those

pro-inflammatory markers prompts the migration of innate and

adaptive immune cells to the infection site for controlling MERS-

CoV infection.

IP-10/chemokine (C-X-C motif) ligand-10 (CXCL-10) is

another inflammatory marker that can activate the chemotaxis of

NKCs, monocytes, DCs, and T cells in coordination with several

cytokine molecules. In addition to conferring protection against

respiratory viral infection, it contributes to the recruitment of

leukocyte cells, initiates a heightened inflammatory response, and

induces dysfunctional immune-mediated lung damage (91).

Chemokine (C-Cmotif) ligand-5 (CCL-5), also called Regulated

upon Activation, Normal T-cell Expressed, and Secreted

(RANTES), plays a crucial role in recruiting and activating several

cell types expressing CCR-5, such as monocytes, macrophages,

neutrophils, DCs, T, B, and NK cells that could prevent and

control MERS-CoV infection, as reported for ex vivo MERS-CoV-

infected human lung tissues (92–94). Similarly, mice infected with

respiratory syncytial virus (RSV) also displayed protective immune

responses in the lungs (93).

Alveolar epithelial cells (AECs) and broncho-alveolar cells

(BACs) produce and release four surfactant proteins, SP-A, SP-B,

SP-C, and SP-D. SP-A and SP-D function as secreted collectins and

soluble PRRs that identify several viral and microbial PAMPs and

enhance pathogens’ opsonization (81). Collectins stimulate

neutrophils and macrophages and can facilitate viral detection,

phagocytosis, and clearance (81). The release of those proteins

plays key roles in the immune defense by recruiting immature DCs,

immune effectors, and memory cells; enhancing cytokine and

chemokine production; promoting pro-inflammatory immune

responses; and disrupting the envelopes of invasive viruses such

as MERS-CoV in addition to neutralizing their particles (81, 94–96).

Endothelial cells play a critical role in regulating immune

responses, predominantly primary innate immune responses

against invading viruses, and facilitating the migration of the

leukocytes, leading to the release of various pro-inflammatory

cytokines and chemokines, including IFN-a, IFN-b, IFN-g, IL-6,
TNF-a, monokine induced by gamma (MIG)/CXCL-9, IP-10/

CXCL-10, and MCP-1/chemokine nomenclature C-C motif

chemokine ligand-2 (CCL-2) (97, 98). The expression of those

pro-inflammatory cytokines and chemokines plays an important

function of signaling pathways and regulating the movement and

localization of effector immune cells at the site of infection for

destroying MERS-CoV.

Respiratory alveolar macrophages (AM) and interstitial

macrophages (IM) directly respond to pathogens in the lower

airways due to their unique position within the airspaces in the

alveoli. Following the encounter with an invasive virus, such as

MERS-CoV, the lung alveolar macrophages are responsible for early
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cytokine release and IFN production, besides their role in

modulating and regulating secretion of pro-inflammatory markers

helping to initiate immune responses able to annihilate the virus

(85, 94). These cells can also inhibit unsuitable inflammatory

immune responses during MERS-CoV infection as they regularly

encounter harmless pathogens (90).

Lung neutrophils also contribute to eradicating MERS-CoV-

infected cells by phagocytosing virus-containing apoptotic bodies

and dead cells (99). Neutrophils possess intracellular granules

containing antimicrobial peptides, such as lactoferrin, defensins,

cathelicidins LL-37, lysozyme, and neutrophil extracellular traps

(NETs), comprising histones, decondensed chromatin,

antimicrobial proteins, and proteases; these products are released

to immobilize, inactivate, or kill MERS-CoV and thus inhibit

further propagation (81). These cells are able to regulate both

primary and secondary immune responses and release several

chemokine molecules that can recruit further neutrophils to the

site of infection for eradicating MERS-CoV.

Airway NKCs are an essential part of the innate immune

response. They can be activated and proliferated within a few

days in response to viral infection, such as MERS-CoV. These

cells trigger cytotoxic activity and release substantial quantities of

IFN-g to consolidate the adaptive immune response, controlling

and clearing virus-infected cells and inhibiting viral dissemination

(21, 81). Besides cytokines with antiviral activity, NKCs secrete

cytolytic granules that engage death receptors expressed on target

cells to mediate cytolysis or contain perforin and granzymes that

enter the target cell and trigger apoptosis through caspase-mediated

signaling pathways. Moreover, NKCs, through their Fc receptors,

play an important effector role in inducing ADCC, which involves

an irreversible lytic change of MERS-CoV-infected cells recognized

by specific antibodies (81). Overall, NKCs seem to serve several

beneficial functions against MERS-CoV infection through

supporting the immune response of cytotoxic T lymphocytes

(CTLs), clearing viral infection, and facilitating cell growth and

normal tissue repair (81, 100).

Respiratory gamma-delta T cells (gd T cells) play the vital roles of

initiating and regulating immune responses, reducing inflammation,

and defending against viral infections, such as SARS-CoV and

MERS-CoV, by alleviating severe lung damage, inhibiting

pulmonary fibrosis, and enhancing tissue healing and repair (99,

101). In recovered patients with SARS-CoV, there were elevated

numbers of memory gd T cells’ populations that can produce IFN-g
markers to recruit additional immune effectors cells and, thereby,

directly destroy SARS-CoV-infected cells and prevent patients to

succumb due to SARS-CoV infection (81, 99, 102).

DCs are considered the fundamental orchestrator cells of the

host immune system in the lung due to their capability to release

numerous cytokine and chemokine molecules, activate T cells, and

enhance defensive adaptive immune responses. They can be

triggered indirectly, via the resident immune cells or respiratory

epithelial cells that secrete various pro-inflammatory cytokine and

chemokine markers, and directly by the invading virus, such as

MERS-CoV, through PRRs (Figure 3) (103, 104). A balanced

response by DCs that supports the effector cells’ responses to

clear the virus without producing severe inflammation and lung
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tissue damage is possibly the key to controlling the virus infection or

immune-mediated pulmonary damage (81, 104, 105).

The existence of viral infection, for example, MERS-CoV in the

lungs, facilitates the migration of inflammatory monocytes from the

blood circulation to the lungs with the assistance of the chemokine

receptor, CCR-2. Monocytes yield pro-inflammatory cytokines,

chiefly IFNs-I, and chemokines, and are also able to differentiate

into DCs and macrophages, which enhance cytotoxic activity and

T-cell activation and accelerate viral clearance (81, 106). The

presence of inflammatory mediators in the lungs restricts the

inflammatory responses and immune-mediated lung damage in

addition to clearing viral particles of MERS-CoV (81, 106).
6.2 Adaptive immune responses in
the lungs

The humoral and cellular adaptive immune response is critical

for viral destruction, preventing viral replication and the production

of newly infectious virions (107).

6.2.1 Humoral immune response
Humoral immunity is critical for eliminating CoV infections,

but little information is available about the underlying

mechanisms (107). During viral infection of the LRT, plasma

cells produce virus-specific antibodies that act directly to kill

invading pathogens via several mechanisms, including

neutralization, opsonization, inactivation of virion particles, and

initiation of viral-infected cell clearing (107). The transmission of

infectious virions from infected to non-infected cells must be

inhibited to control virus spreading. Nabs efficiently bind to the

surface proteins of infectious virions, preventing viral attachment

to the target host’s cell receptors and subsequent entry (81). Nabs,

although short-lasting, have been shown to elicit a protective

response against the S glycoprotein of MERS-CoV in virus-

infected cells (56, 61, 108). Corman et al. (109) found, in the

analyzed serum samples, that over half of patients who died from

MERS-CoV and all surviving patients developed IgG and Nabs

responses against the virus. The existence of the MERS-CoV-

specific antibodies plays a major role of eradicating the viral

particles and in the development of memory B cells that that

may be long-lasting, thus providing prolonged protection.

6.2.2 Cellular-mediated immune responses:
CD4+ T cells

The human LRT cellular immune response to MERS-CoV

infection is not well-defined (110). Thus, whether CD4+ T cells,

mainly Th-1 and Th-2 cells, can enhance the production of pro-

inflammatory cytokines and chemokines in response to MERS-CoV

infection remains uncertain (110). Few studies investigated the

mechanisms of the T cells in response to MERS-CoV infection in

animal models (52, 111). In response to virus infection, T cells,

primarily CD4 cells, are important in facilitating the recruitment,

proliferation, and differentiation of B cells into antibody-producing

plasma cells or long-lasting memory cells in response to viral

infection as well as for virus-infected cells’ elimination. The LRT
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memory CD4+ T cells can enhance robust protective responses

against MERS-CoV and other CoV infections (81, 112, 113). The

LRT memory CD4+ T cells, by targeting MERS-CoV and other

CoVs, are able to produce cross-reactive, protective responses (81,

112, 114, 115). The LRT memory CD4+ T cells provide vital

protection against a CoV challenge, as reported for SARS-CoV

and MERS-CoV lung-infected transgenic mice (114). These

protective immune responses are based on both IFN-g secretion

and the early, rapid initiation of strong innate and adaptive immune

responses such as virus-specific CD8+ T cells for the purpose of

inhibiting viral replication (114). In addition, Zhao et al. (114)

found that CD4+ and CD8+ T cells are able to persist and eliminate

MERS-CoV-infected cells in the lung tissues of virus-infected
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BALB/c human leukocyte antigen (HLA)-DR2 and -DR3

transgenic mice.

6.2.3 Cellular-mediated immune responses:
CD8+ cytotoxic T cells

Cell-mediated immune responses, specifically involving CD8+

cytotoxic T cells, are essential for clearing intracellular pathogens

(116). During respiratory viral infections, CD8+ cytotoxic T cells

use numerous immune mechanisms to induce apoptosis and

eliminate virus-infected cells in the lungs (Figure 3). CD8+

cytotoxic T cells directly bind to Fas death receptors (FasRs) on

the cell surface of virus-infected cells and secrete cytotoxic granules,

chiefly perforin and granzymes. These granules form pores in the
FIGURE 3

Schematic representation of the host immunity to MERS-CoV infection in the human lung (80–90). This figure shows the potential
immunopathogenesis during MERS-CoV infection. Initially, host–viral entry was found at alveoli epithelial. The initial virus entry into the lung was
observed in alveolar epithelia after binding of S glycoprotein RBD to the DPP4 receptor. The presence of the MERS-CoV particles leads to pro-
inflammatory cytokine production from several ILCs, resulting in regulation of both innate and adaptive immune cells and accelerating the
recruitment of immune effector cells at the site of infection for controlling and clearing the viral infection. CD4+ T cells and CD8+ cytotoxic T cells
are recruited to the site of infection to kill virus-infected cells in the lungs. Activated B cells differentiate into plasma cells that can produce MERS-
CoV-specific antibodies efficient in the lung not only by stopping the virus dissemination, but also by entering into blood circulation, thus conferring
protection to other mucosal sites.
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membranes of target, virus-infected cells and induce intrinsic and

extrinsic signaling apoptotic pathways. In SARS-CoV infection, for

example, CD8+ cytotoxic T cells can control viral replication in

infected cells and destroy pathogens (81). Zhao et al. (49), Zhao

et al. (113), and Wang et al. (115) found that CD8+ cytotoxic T cells

contribute to the elimination of lung-invading MERS-CoV virions

in different animal models and provided permanent protection

against subsequent infection. Another study, by Channappanavar

et al. (52), illustrated that MERS-CoV-specific CD8+ T cells are also

able to clear MERS-CoV virions in the lungs of both C57BL/6 and

BALB/c mice that have been adenovirus 5 (Ad5) transduced with

hDPP4 receptors to be susceptible to viral infection (52). The

highest numbers of MERS-CoV-specific CD8+ T cells detected in

the lungs of both hDPP4 transgenic C57BL/6 and BALB/c mice

occurred 7 days post-infection (52). T cells, which are considered

effective cellular immune responders, are the key defense of the

immune system in combating and preventing respiratory virus

infections (52, 81, 112).
7 Available MERS-CoV vaccines

The emergence of MERS-CoV has highlighted the urgent need

for the development of effective vaccines, which are crucial for

halting the spread of infection (117, 118). Although many MERS-

CoV vaccine candidates are being investigated, none are currently

licensed for human use. Several approaches for developing and

evaluating MERS-CoV vaccines have been identified. These include

the use of recombinant viral vectors, such as chimpanzee

adenoviruses, adeno-associated viruses, MVA, pox-viruses, and

measles viruses that can express a full-length S glycoprotein or an

extracellular S1 domain and have been experimentally engineered,

modified, and tested in animal models (119). These recombinant

viral vector vaccines have been shown to induce an anti-S

glycoprotein antibody response in addition to CD4+ and CD8+

cytotoxic T-cell responses in examined animal models (120). Based

on safety and strong immunogenicity results, recombinant viral

vector vaccines, including replication-deficient chimpanzee simian

adenovirus vectors (ChAds) developed at Oxford University, are

considered a promising human vaccine platform (121). The

ChAdOx1-MERS-CoV vaccine contains the RBD of the MERS-

CoV S glycoprotein (proteins stabilized trimer) that has been

developed and evaluated in dromedary camels and mice,

d i sp lay ing promis ing outcomes , inc luding exce l l ent

immunogenicity (a high titer of anti-MERS-CoV Nabs and robust

CD8+ cytotoxic T-cell responses) and safety when encoding either

adenovirus-human DPP4 (AdV‐hDPP4) or Rift Valley Fever viral

(RVFV) S glycoproteins (122–124). Another study by Munster et al.

(125) revealed that a single dose of the ChAdOx1-MERS-CoV

vaccine could safely generate high IgG antibody levels and inhibit

virus replication in the respiratory tract, decreasing the disease

severity and providing protective immune responses in rhesus

macaques. Thus, the ChAdOx1-MERS-CoV vaccine is well-

tolerated, safe, and able to provoke both humoral and cellular

responses in addition to inducing potent Nabs in mice and camel

models (126). Another viral vector vaccine is the recombinant
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modified vaccinia virus Ankara (MVA) expressing the full-length

MERS-CoV S glycoprotein (MVA-MERS-CoV S), and it is a

stabilized trimer protein. This vaccine generated a substantial

Nabs response in vacc inated BALB/c mice in jec ted

intramuscularly (i.m.) or subcutaneously (s.c.). In animal models,

the MVA-MERS-CoV S vaccine also induced a specific IFN-

producing CD8+ cytotoxic T-cell response against MERS-CoV

infection through both routes (i.m. and s.c.) (127, 128). Based on

the positive results obtained in the preclinical animal experiments,

two human phase 1a and 1b clinical trials [Folegatti et al. (129) and

Alharbi et al. (130)] were conducted to test the ChAdOx1-MERS-

CoV vaccine, in healthy adults, aged between 18 and 50 from the

Middle East and the United Kingdom. A single dose from the

ChAdOx1-MERS-CoV vaccine was able to enhance both cellular

and humoral immune responses against MERS-CoV. Therefore, the

vaccine was deemed safe, well-tolerated, and highly immunogenic

at all examined doses and has been moved forward to phase 2

human clinical trials for further evaluation (130). The ChAdOx1-

novel coronavirus-19 (ChAdOx1-nCoV-19) vaccine has been

granted an emergency use authorization during the coronavirus

disease 2019 (COVID-19) pandemic. The vaccine showed high

efficacy against infection and a very high level of protection against

disease severity, hospitalization, and death (131, 132).

Recently, scientists developed another vaccine platform that

utilizes genetic material termed messenger RNA (mRNA), which is

introduced into the cell to express a viral protein for triggering the

immune system (133). mRNA vaccines are encoding for a specific

protein (e.g., RBD of S glycoprotein of CoV) and direct cells to

produce copies of a desired protein of interest (e.g., the RBD of S

glycoprotein of CoV) on their cell surface, allowing immune cells to

recognize them and develop rapid immunity that protects against

invasive pathogens. Currently, three mRNA vaccines for protection

against COVID-19, the disease caused by SARS-CoV-2 infection,

are approved for emergency use [e.g., Moderna, Janssen (Johnson &

Johnson), and Pfizer-BioNTech]. In clinical trials, these vaccines

have shown over 90% efficacy in preventing COVID-19 disease-

related hospitalization. Both ChAdOx1-nCoV-19 and mRNA

vaccines exhibit safety and high immunogenicity and are well-

tolerated, with adequate and manageable reactogenicity in tested

individuals (131, 132).

The MERS-CoV-RBD S glycoprotein-based subunit vaccine (a

stabilized trimer protein) is another option, which is very effective,

well-tolerated, and safe and can stimulate robust immune responses

(134). The i.m. immunization of mice with a SARS-CoV-RBD

protein-based vaccine showed long-term protection and could

prevent viral replication in the infected animal (135). The MERS-

CoV-RBD-based subunit vaccine is considered another potential

strategy for controlling, managing, and preventing MERS-CoV

infection. Thus, the subunit vaccine was capable of strong

immunogenicity and of inducing, in vaccinated mice, high titers

of Nabs that inhibit and block the binding of virus to target

receptors and prevent the virus replication. This is a positive

advance toward the development of efficient and safe MERS-

CoV vaccines.

A strong neutralizing mucosal IgA antibody response against

the RBD and MERS-CoV S glycoproteins was elicited by
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administering the MERS-CoV-RBD-based subunit vaccine

intranasally (i.n.) (136). The i.n. administration induced a sound

immune response in mice and generated Nabs in immunized

rabbits that reduce the severity and lethality of the disease. Thus,

i.n. vaccination is important to consider when developing an

effective vaccine candidate that can eradicate MERS-CoV infection.
8 Potential adjuvants for the
development of MERS-CoV vaccines

Immunizations with vaccines including specific adjuvants result

in high Nabs production. Administration of MERS-CoV S

glycoprotein together with an adjuvant resulted in a strong

immune response and high levels of Nabs in vaccinated mice.

When tested in animals, both alum and microfluoridized

adjuvant 59 (alum- and MF59-containing adjuvants) when

combined with MERS-CoV subunit vaccine induced cell-

mediated and antigen-specific antibodies’ responses and

protective immunity (137). However, another adjuvant,

glucopyranosyl lipid A (a synthetic TLR-4 agonist), must be used

in conjunction with alum to produce a strong cellular Th-1 immune

response. These adjuvant–vaccine combinations will improve the

strength and effectiveness of the MERS-CoV vaccines under

development. Consequently, using proper adjuvants will play a

key role in enhancing immunogenicity and safety as well as

accelerating the development of a safe, well-tolerated, and

effective MERS-CoV vaccine (137, 138).

Vaccines are one of the most effective measures to combat

infectious disease, and as such, the ability to rapidly develop MERS-

CoV vaccines is critical to public health. The considerable progress

in establishing and designing a variety of vaccine platforms

targeting MERS-CoV will play a key role in managing the

infection (139). The development of effective and safe MERS-CoV

vaccines has progressed, and some vaccine candidates have now

reached human studies. These vaccines are based on viral vector

platforms (ChAdOx1 and modified vaccinia Ankara [MVA]) and

deoxyribonucleic acid (DNA) platforms (GLS-5300) that

incorporate the MERS-CoV S glycoprotein antigen (140). The

morbidity and mortality rates of MERS might be significantly

reduced by an effective MERS-CoV vaccine. In order to address

future MERS-CoV outbreaks, policymakers could implement a

variety of approaches, one of which could be as straightforward

as reactively vaccinating healthcare providers who are at high risk to

contracting MERS-CoV infection during outbreaks (140).

Preventing transmission of respiratory pathogens including

MERS-CoV in hospitals and other places is important and

requires the implementation of standard precautions of infection

control procedures and protocols such as environmental and

administrative controls in addition to personal protective

equipment (PPE) and safer work practices (141). Effective

intervention strategies have been established and are being

maintained by public health agency in South Korea to combat

MERS-CoV infection. These strategies include large-scale

epidemiological research, rapid lab diagnosis, isolation, mass
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quarantine, and clinical categorization of severe patients and

treatment with suitable medical therapies (142). Currently,

numerous therapeutic options have been used, such as

intravenous immunoglobulin (IVIG), convalescent plasma (CP),

whole blood therapy, monoclonal antibodies, and the repurposing

of clinically approved treatments (143). These MERS therapies are

urgently required due to the prerequisite for an efficient therapeutic

approach to effectively block MERS-CoV S glycoprotein-mediated

cell attachment, entry, and membrane fusion. Antimicrobial

peptides (AMPs) are another potential alternative therapeutic

agent for treating MERS-CoV infection because of their ability to

inhibit viral protein–protein interactions (143). The development of

potent antiviral vaccinations able to induce strong immune

responses has been greatly facilitated by the developments of

nanotechnology platforms. It has been demonstrated that

antigen-specific activation of the humoral and cell-mediated

immune responses is induced by antigen delivery via

nanoparticle-based vaccines (144). Several nanoparticle vaccines

such as liposomes, chitosan, and microspheres–nanoparticles have

been developed and evaluated, and they show strong

immunological responses in animal models (144). Several studies

by Khan et al. [(139, 144, 145)] have demonstrated that Nabs, viral

protease inhibitors, and interferons are considered crucial

therapeutic approaches for the management of MERS-CoV

infection. It has been proposed that liposomes and nanoparticles

are active and potent vaccine adjuvants when tested in animal

models (mostly mice) for biomedical research and vaccine efficacy

studies (139, 144, 145). The encapsulated antigens can be delivered

by liposomes to the APCs’ cytoplasmic compartment, where they

are able to activate the immune system through cell-mediated

mechanisms. It has been demonstrated that the liposomes and

nanoparticle vaccines can induce robust cellular-mediated (e.g.,

CD4+ T cells, CD8+ T cells, DCs, and NKCs) and humoral

(antibody-mediated) responses and increase the production of

MERS-CoV-specific antibody in combating viral replication in

examined mice (139, 144, 145).
9 Conclusion and further
research prospects

Exploring the human mucosal immune responses and

immunological mechanisms during MERS-CoV infection and

vaccination in the URT and LRT during MERS-CoV infection

and vaccination is an important task. Thus, in the current

intensive review, we summarized and simplified the published

studies investigating this topic. Innate immune cells, mainly

APCs, such as macrophages, B cells, and DCs, mediate the

immune response by recognizing PAMPs initiated by viral

replication intermediates. These interactions lead to the rapid

activation of antiviral signaling pathways and cytokine and

chemokine production in response to the infection. T and B cells,

the main two arms of the adaptive immunity system, play an

important role in fighting MERS-CoV infection, particularly
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CD4+ helper T cells that regulate CD8+ cytotoxic T-cell and B-cell

functions. CD8+ cytotoxic T cells are effector cells that directly

eliminate virus-infected cells.

Notably, the human NALT plays a crucial role in protection

against several respiratory pathogens due to a wide range of

mucosal immune effector cells (146, 147). However, few data are

available on the immunopathogenesis and immune responses

during MERS-CoV infection in URT tissues because of the few

reported cases worldwide. Thus, an urgent need exists to explore the

role of cell-mediated immunity and the mechanisms of pro-

inflammatory cytokines, chemokines, and cytotoxic markers in

the mucosal tissues, mainly the tonsils, to better understand the

immune response during MERS-CoV infection and vaccination.

The effective, efficient innate and adaptive immune responses in

human lungs can play a crucial role in the immune response, combatting

the respiratory viral infection, and prevention of further disease

complications. Nevertheless, local immunity in lung tissues makes it

difficult to understand and properly evaluate the immune responses

following MERS-CoV infection or the benefits of human vaccine trials.

Future studies of immune responses in the URT and LRT

following infection and vaccination are a priority, leading to the

assessment of new vaccine formulations, doses, and routes of

administration (e.g., i.n.). Finally, understanding in depth the

mechanisms of mucosal immune responses in both the URT and

LRT following MERS-CoV infection or administration of MERS-

CoV vaccines could provide valuable information for developing

preventive methods and therapeutic vaccine candidates that are able

to stop, control, and manage current MERS-CoV infections or the

emerging and re-emerging of other human CoV infectious diseases.
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