
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Paulo José Basso,
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Mounting evidence progressively appreciates the vital interplay between immunity

and metabolism in a wide array of immunometabolic chronic disorders, both

autoimmune and non-autoimmune mediated. The immune system regulates the

functioning of cellular metabolism within organs like the brain, pancreas and/or

adipose tissue by sensing and adapting to fluctuations in the microenvironment’s

nutrients, thereby reshapingmetabolic pathways that greatly impact a pro- or anti-

inflammatory immunophenotype. While it is agreed that the immune system relies

on an adequate nutritional status to function properly, we are only just starting to

understand how the supply of single or combined nutrients, all of them termed

immunonutrients, can steer immune cells towards a less inflamed, tolerogenic

immunophenotype. Polyphenols, a class of secondary metabolites abundant in

Mediterranean foods, are pharmacologically active natural products with

outstanding immunomodulatory actions. Upon binding to a range of receptors

highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in

immunometabolic pathways through a mitochondria-centered multi-modal

approach. First, polyphenols activate nutrient sensing via stress-response

pathways, essential for immune responses. Second, they regulate mammalian

target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in

immune cells and are well-tolerated caloric restriction mimetics. Third,

polyphenols interfere with the assembly of NLR family pyrin domain containing 3

(NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its

activation while improving mitochondrial biogenesis and autophagosome-

lysosome fusion. Finally, polyphenols impact chromatin remodeling and

coordinates both epigenetic and metabolic reprogramming. This work moves

beyond the well-documented antioxidant properties of polyphenols, offering new

insights into the multifaceted nature of these compounds. It proposes a

mechanistical appraisal on the regulatory pathways through which polyphenols

modulate the immune response, thereby alleviating chronic low-grade
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inflammation. Furthermore, it draws parallels between pharmacological

interventions and polyphenol-based immunonutrition in their modes of

immunomodulation across a wide spectrum of socioeconomically impactful

immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or

even Alzheimer’s disease. Lastly, it discusses the existing challenges that thwart the

translation of polyphenols-based immunonutritional interventions into long-term

clinical studies. Overcoming these limitations will undoubtedly pave the way for

improving precision nutrition protocols and provide personalized guidance on

tailored polyphenol-based immunonutrition plans.
KEYWORDS

polyphenols, Mediterranean phytochemicals, immunometabolism, immunonutrition,
pharmacological immunomodulation, senolytics, immunometabolic diseases,
precision nutrition
1 Polyphenols: leading-
edge immunonutrients

The immune system, a complex interactive network of many

different immune cells, mediators, and cellular mechanisms, is

highly dynamic in the response to changes in the tissue

environment and plays a vital role in the balance between health

and disease (1). It generally comprises two lines of defense: the

innate (or unspecific) which comprises the physical barriers (e.g.

skin, mucosal membranes, commensal microbiota) and several

innate immune cells such as neutrophils, macrophages

(phagocytes), innate lymphoid cells and nonspecific mediators

that rapidly detect antigens, and the adaptive (or specific)

immunity that involves B and T cells (2).

Strong evidence links undernutrition to immunosuppression,

decreased vaccination efficacy (3, 4) and/or a greater difficulty in

recovering from infections, broadly recapitulated during the

COVID-19 pandemic (5, 6). On the other hand, overnutrition is

closely associated with chronic low-grade inflammation and an

increased risk of metabolic diseases (7). Thus, nutritional

interventions tagging specific metabolic pathways in immune cells

are promising to tackle the increasing prevalence of chronic diseases

featuring a dysfunctional immunometabolic status (8), as well as the

immunosenescence characterizing the aging process (9).

While it is agreed that immune function relies on an adequate

nutritional status to function properly, we are only just starting to

understand how the supply of single or combined nutrients, all of

them denominated immunonutrients, can redrive the polarization

of immune cells towards a tolerogenic or less inflamed

immunophenotype (1, 6, 10). Many nutrients fall within the

definition of immunonutrients, the most well-known being

omega-3 fatty acids, glutamine, arginine, branched-chain amino

acids (BCAAs; leucine, isoleucine, valine) and nucleotides (11, 12).

Immunonutrition, a branch of precision nutrition, outlines the

opportunity to integrate specific nutrients, or foods, in the usual
02
diet (12) and has been drawing the attention of the scientific and

medical communities due to its promising health benefits arising

from immune system modulation in varied contexts, from

individuals undergoing surgical procedures to critically ill

patients, subjects with immune-related diseases, the elderly and,

in a distinct scope, professional athletes (1, 2). In a multidisciplinary

perspective, immunonutrition is defined as the modulation of

immune system by nutrients and non-nutritive substances (e.g.

antioxidants, prebiotics or probiotics), collectively termed

immunonutrients, which are administered in doses above those

normally obtained from the diet (1). These molecular compounds

display a double function: they act as dietary constituents and, at the

same time, may optimize immune responses by improving defense

function while maintaining diet and commensal tolerance (1, 12).

One may consider immunonutrition as a set of four main mutually

dependent concepts: immune system, nutrition, body organ

metabolism and the microbiome (1). Besides acting as a physical

barrier, the microbiome interacts dynamically with both the innate

and adaptive immune system of mucosa-associated lymphoid tissue

(MALT) (13). Consequently, it has a chief role in MALT-dependent

processes such as oral tolerance induction, cytokine secretion and

overall regulation of immune responses. The possibility to reshape

microbiota through immunonutrition in the form of functional

foods, nutraceuticals and/or dietary supplements, is therefore an

exciting approach to switch off oxidative stress and low-grade

inflammation present in a plethora of immunometabolic diseases

(2, 14).

A wide variety of non-nutritive phytochemicals have shown to

benefit immune homeostasis, polyphenols the most-representative

ones (12, 15, 16). This group of secondary plant metabolites is a

promising class of phytochemicals that hold the potential to

simultaneously balance the gut microbiome (14, 17) and the

immune system by reprogramming immunometabolic pathways

towards the repolarization of immune cells into a tolerogenic, less

inflamed phenotype (6). Accordingly, much interest has been
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created on their potential use as prophylactic or nutritional

interventions targeting immunometabolic diseases.

In this work, we aim to shed light on the immunomodulatory

effects of polyphenols, leading-edge immunonutrients, on non-

communicable chronic diseases that share immunometabolic

impairments, both auto-immune and non-autoimmune mediated.

It provides a critical appraisal into their capacity to modulate

immunometabolic reprogramming, emphasizing polyphenols’

immunomodulatory roles in the maldaptation of organ-specific

immune functions as well as their potential use as precise

immunonutritional interventions in immunometabolic diseases.
2 Polyphenols: dietary sources,
structural diversity and bioactivity

2.1 Dietary sources

The therapeutic potential of plant-based natural compounds

and the phytochemicals composing them has been a significant

point of interest in the last years. The most abundant and widely

distributed bioactive molecules are polyphenolic compounds (PCs)

(18). PCs are significantly abundant in a series of foods including

olive oil, herbs, vegetables, fruits, seeds, nuts, whole-grain cereals,

and wine that are frequently held accountable for the health benefits

of the Mediterranean dietary pattern (19). Each of the referred food

groups is enriched in specific PCs classes: phenolic acids

predominate in cereals and whole-grains such as wheat, oats, rice,

corn, and triticale (20); flavones and hydroxycinnamic acids in

dried herbs such as oregano and peppermint (21); catechins,

hydroxycinnamic acids, anthocyanins, and proanthocyanidins in

red wine (22); flavonoids, phenolic acids and dihydrochalcones in

fruits such as apples, mangos and pomegranates for instance (23,

24), and anthocyanins in berries, in which they are responsible for

their unique pigmentation and aroma (25). In fact, Mediterranean

nutritional patterns are associated with the consumption of colorful

meals composed of a high variety of plant-based foods whose

sensory and nutritional qualities, namely astringency, color and

scent partially derive from the PCs composing them (26, 27).
2.2 Chemical structures

Polyphenolic compounds present a phenolic ring as their basic

monomer (18). Due to their chemical structure, PCs present strong

free radical scavenging capacity which confers them the ability to

activate biological antioxidant responses (28, 29). Besides

scavenging free radicals, some PCs are also capable of inhibiting

the formation and/or activation of their precursors (28, 29).

Depending on their chemical structure, origin and biological

function, PCs can be divided in different classes, the largest ones

being (1) flavonoids and (2) phenolic acids (18). Examples of more

narrow classes are (3) tannins, which include pro- and

antoanthocyanidins, gallotannins and ellagitannins, (4)

coumarins, (5) lignans, (6) quinones, (7) stilbenes, including
Frontiers in Immunology 03
resveratrol and pterostilbene for instance, and (8) curcuminoids

such as curcumin and ginerol analogues (30).

2.2.1 Flavonoids
In plants, flavonoids are responsible for the coloring and aroma

of flowers and fruits (24) and the majority are found as glycosides

(18). The general structural backbone of flavonoids is C6–C3–C6,

the carbon of the C ring on which the B ring is attached to being the

determinator of the subgroup the compound belongs to (18, 24).

When the link between the B and the C rings is in the position 3,

they are isoflavones, and when this link happens in position 4 we

stand before neoflavonoids (24). Those in which the B ring is

attached to the C one in the position 2 are further classified into

different subgroups depending on the structure of the C ring, them

being flavanones, flavanonols, flavones, flavonols, flavanols and

anthocyanins (24). Figure 1 presents the chemical structure of the

most common compounds belonging to flavonoid subclasses.

2.2.2 Phenolic acids
Phenolic acids are PCs that possess one carboxylic acid group,

and can be divided into two major subtypes: benzoic acids, which

present a skeletal structure C6-C1, and cinnamic acids, whose

structure is C6-C3 (31). They are present in innumerous plant-

based foods, such as fruits, vegetables, seeds, legumes, cereal and

coffee, being mainly in a bound form, such as amides, esters and

glycosides (31). The most abundant hydroxycinnamic acid found in

food is chlorogenic acid (CGA), which is an ester formed between

caffeic and quinic acids (31). On another hand, the most common

hydroxybenzoic acids are gallic, vanillic, ellagic, syringic, p-

hydroxybenzoic, and protocatechuic acids (31). These compounds

might act as neuroprotective agents through radical-scavenging

activity, being useful in the context of chronic diseases associated

with oxidative stress (31). Figure 2 presents the chemical structure

of the most common compounds belonging to phenolic

acids subclasses.
2.3 Bioavailability and bioactivity

The overall bioavailability of PCs is determined mainly by their

chemical structure, their absorption, distribution, metabolism, excretion

(ADME), the form of administration, and food matrix (32).

Pharmacokinetic studies show that PCs classes vary in terms of

bioavailability and can be placed as follows: phenolic acids >

isoflavones > flavonols > catechins > flavanones, proanthocyanidins >

anthocyanins (32–34).

The polyphenolic content of several plants and fruits is greatly

affected by exogenous factors (e.g. climatic conditions, culture types,

the degree of ripeness), storage, cooking methods and processing

mechanisms (33). Besides, food related factors such as the presence

of specific macro and micronutrients can as well modify PCs

bioavailability and bioactivity (35). Interestingly, it has been

recently suggested that the association between PCs and fiber

delays their absorption through the gastrointestinal (GI) tract,

potentially optimizing their assimilation (36).
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To exert their bioactivity, PCs must be delivered to the GI and

absorbed, reach circulation and, posteriorly the target tissues, being

subjected to a significant degree of transformation along their

journey through the GI tract. As consequence, a single PC is able
Frontiers in Immunology 04
to generate several different metabolites displaying different

activities and properties relatively to the original compound.

In general, PCs display low oral bioavailability (5-10%) (37), due

to factors such as decreased solubility, the interaction with the food
FIGURE 2

Chemical structure of the subclasses of phenolic acids, examples of compounds belonging to each subclass and examples of foodstuff containing
them. The most abundant hydroxycinnamic acid found in food is chlorogenic acid (CGA), which is an ester formed between caffeic and quinic acids.
On another hand, the most common hydroxybenzoic acids are gallic, vanillic, ellagic, syringic, p-hydroxybenzoic, and protocatechuic acids. Figure
created in BioRender.com.
FIGURE 1

Chemical structure of the main subclasses of flavonoids, examples of compounds belonging to each subclass and examples of foodstuff containing
them. The largest subgroup of flavonoids are flavanols, in which the hydroxyl group is positioned in the C3 of the C ring. Flavanones and flavones
display a hydroxyl group in the C5 of the A ring with the difference between them residing in the double bond formed between positions 2 and 3,
which is saturated in flavanones. Isoflavones differ from flavones on the position of the phenyl group, being structurally similar to estrogens.
Flavanonols present the hydroxyl group linked to the C ring in the position 3, and no double bound between this and position 2. Anthocyanin hydroxyl
groups of the A and C rings is what dictates their color. All subclasses can be found in fruits and vegetables. Figure created in BioRender.com.
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matrix, difficulties in membrane-crossing, as well as their extensive

hepatic and intestinal metabolism and rapid clearance (32). Still,

they display a plethora of scientifically proved and extensively

documented dose-dependent beneficial effects (38). Accumulating

evidence on the health-promoting effects of many PCs make them a

topic of interest for scientists, nutritionists, and consumers in

general. Their advantageous features, including marked

antioxidant, anti-inflammatory, antimicrobial and anti-adipogenic

properties grant them great potential to be incorporated in

functional foods, nutraceuticals and/or dietary supplements

(Table 1). Notably, PCs are closely intertwined to the therapeutic

potentiation of the immune system, adding an extra layer of

complexi ty to their ple iotropic act ions . Polyphenols

immunomodulatory and anti-inflammatory activities correlate to

the number, positions and types of substitutions as well as the

degree of polymerization based on the chromane ring (53).

Moreover, the high degree of hydroxylation in the B-ring of

cathecins and anthocyanidins favor metabolic reprogramming

and polyphenols’ bioactivity (54). In the upcoming section, the

impact of polyphenols in immunometabolic reprogramming of

both innate and adaptive immune responses will be discussed.
3 Polyphenols and immunometabolic
reprogramming: a multi-
organelle approach

Immunometabolic reprogramming heavily relies on inter-

organelle communication and mitochondria, key organelles for

cellular metabolism, act as masters regulators of multi-organelle

connections and immune cell-fate determination (55, 56).

During the immune response, cells shift from metabolic

quiescence to an active phase, and the preferential utilization of

specific metabolic pathways can dictate immune cells ’
Frontiers in Immunology 05
different ia t ion towards a pro- or ant i - inflammatory

immunophenotype depending on their specialization for

mounting protective immunity or tolerance to self or external

antigens (57).

The interaction among nutrient signaling networks, adenosine

triphosphate (ATP) availability, and immunological cues is crucial

to meet the energy demands and functional modifications in

immune cell metabolism. AMPK and its downstream target,

mTOR, serve as central hubs to nutrient availability by sensing

intracellular energy levels (AMP/ADP: ATP ratio). In energy-

depleted states, activated AMPK typically inhibits mTOR

signaling and promotes mitochondrial biogenesis via the

peroxisome proliferator-activated receptor-gamma (PPARg) co-

activator-1 alpha (PGC1a) signaling axis (58). Consequently,

cellular metabolism skews towards increased oxidative

phosphorylation (OXPHOS) activity and enhanced expression of

genes encoding key mitochondrial enzymes. Conversely, in states of

overnutrition, mTOR upregulates protein and lipid synthesis to

promote immune cell growth and proliferation (59).

Quiescent immune cells, such as naïve T cells, memory T cells

(Tmem), Treg or tolerogenic DCs, alongside M2 macrophages,

predominantly favor mitochondria-driven catabolic metabolism

characterized by OXPHOS and fatty acid oxidation (FAO) to

sustain ATP supply for long-term survival (60, 61). Autophagy, a

conserved lysosomal degradation pathway that supports immune

cell differentiation, is enforced by AMPK activation, thereby

restraining glycolysis and maintaining cellular quiescence (7, 62).

Contrariwise, activated immune cells, such as M1 macrophages and

effector T cells (e.g. Th1, Th17), exit the quiescence state by

metabolizing nutrients to ensure an adequate supply of

macromolecules for the energy demands associated with cellular

growth (55). They shift the balance towards mTOR activation and

aerobic glycolysis as a rapid source of ATP, akin to the Warburg

effect, to meet the high nutritional and energetic requirements of
TABLE 1 Bioactivity of polyphenolic compounds.

Bioactivity Polyphenolic compound Evidence Reference

Antioxidant Catechins
Catechins displayed the most favorable results regarding a series of

antioxidant activity evaluation assays
(39)

(-)-Epigallocatechin-3-gallate from Green Tea
Stimulate nuclear factor erythroid 2–related factor 2 (Nrf2)

translocation to the nucleus
(40)

Kaempferol, Gallic Acid, Resveratrol
Potentiate the activity of enzymes belonging to the endogenous

biological antioxidant system, such as catalase, superoxide dismutase,
glutathione peroxidase and glutathione-S-transferase

(41–43)

Anti-
inflammatory

Hesperidin
Reduce interleukin (IL)-6, tumor necrosis factor alpha (TNF-a) and

nitric oxide levels both in vitro and in vivo
(44)

Dehydroxylated Phenolic Acids: 3,4-
dihydroxyphenylpropionic acid, 3-hydroxyphenylacetic

acid, 4-hydroxyhippuric acid

Attenuate lipopolysaccharide (LPS)-induced secretion of TNF-a, IL-6
and IL-1b in human peripheral blood mononuclear cells (PBMCs)

(45)

Antimicrobial
Epigallocatechin Gallate, Tea Polyphenols, A-

type Proanthocyanidins
Disturbing the cell wall of specific bacteria, their inner cytoplasmatic
membrane, or reducing their motility and biofilm-forming ability

(46–48)

Anti-
adipogenic

Vanillic Acid, Catechins, Resveratrol
Adipose tissue “browning”

Suppress the expression of genes and transcription factors related
to adipogenesis

(49–52)
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short-term clonal expansion and effector function (4, 10, 60). For

example, mTORC1 sustains aerobic glycolysis and upregulates

hypoxia-inducible factor 1 alpha (HIF-1a) expression to support

Th17 cell differentiation, counteracting Treg expansion (58).

Similarly, a significant transition from OXPHOS to aerobic

glycolysis occurs in bone marrow-derived DCs upon Toll-like

receptor (TRL) activation, resulting in inducible nitric oxide

synthase (NOS)-dependent generation of nitric oxide (NO) and

blockade of mitochondrial electron transport (61). Metabolic

reprograming of activated immune cells also involves

glutaminolysis. Glutamine is converted into glutamate and

ketoglutarate, two well-known tricarboxylic acid cycle (TCA)

intermediates that support the oxidative metabolism of immune

cells, particularly macrophages. A high ketoglutarate/succinate ratio

promotes alternative (M2) activation and FAO engagement, while a

low ratio strengthens the proinflammatory phenotype observed in

classically activated (M1) macrophages (63).

Metabolic rewiring entails significant modifications in

mitochondrial biogenesis and dynamics, as well as redox signaling

pathways, all of which are crucial for immune function. For

instance, the immunometabolism of T cells heavily relies on the

continuous dynamic reshaping of mitochondria through fusion and

fission events to maintain mitochondrial quality. Memory T cells

undergo increased mitochondrial fusion to support OXPHOS and

fatty acid oxidation (FAO) metabolism. In contrast, activated

effector T cells demonstrate heightened rates of mitochondrial

fission and reduced cristae, an adaptation to facilitate aerobic

glycolysis (64) . Membrane-bound organel les such as

mitochondria, endoplasmic reticulum (ER) and lysosomes must

establish inter-organelle connections through specialized cytosolic

microdomains to facilitate the intersection of metabolic signaling

and the utilization of products from one pathway efficiently as

intermediates for another (65). ER-mitochondria junction signaling

provides a regulatory platform for various overarching immune

cellular functions. The mitochondria-ER network brings together

signaling components to potentiate mitochondria fission and

Warburg metabolism, key events for the rapid recall response of

newly activated memory CD8+ T cells (66, 67). Similarly, the

activation of NLRP3 spatially correlates to mitochondria-derived

reactive oxygen species (mtROS) and excessive mitochondrial

fission in ER-mitochondria contact sites of macrophages

undergoing glycolytic reprogramming (64, 68, 69). In summary,

the dynamic behavior of mitochondria and inter-organelle

communication, particularly with the ER network and

endolysosomal system, is crucial for enabling immune cells to

seamlessly adjust to fluctuations in nutrient availability. This

aptitude is vital for effectively meeting the functional demands

during immune cell remodeling.

Evidence regarding the immunomodulatory effects of PCs have

been significantly emerging in the last decades (8, 70, 71). A main

reason relies on the fact that different immune cell populations

express various kinds of polyphenols’ receptors (72). Examples of

immune cellular receptors targeted by PCs include the retinoic acid-

inducible gene like receptors (RLRs), aryl hydrocarbon receptor

(AhR), 67 kDa laminin receptor (67LR), zeta chain-associated 70

kDa protein (ZAP-70), T cell receptor (TCR) ab, secretory IgM-
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(sIgM-) B-cell receptor, Toll-like receptor (TLR) 4 (73–79) and

Retinoic Acid Receptors (RARs) (80, 81). Upon binding, PCs are

able to modulate immune cells metabolism and activity through a

multi-modal approach encompassing nutrient-sensing

mechanisms, AMPK/mTOR signaling balance, regulation of inter-

organellar communication and modulation of metabolism-

epigenetic axis (Figure 3).
3.1 Nutrient-sensing mechanisms

Nutrients not only act as building blocks but also activate

nutrient sensing via stress-response pathways and growth factors,

essential for immune responses (82). Under amino acid starvation

conditions`, immune cells activate the amino acid response (AAR)`,

a cytoprotective signaling pathway that transiently reduce protein

synthesis while enhancing stress-induced gene expression (83).

AAR pathway is a potent regulator of inflammatory T cell

differentiation. Accordingly, glutamine uptake and glutaminolysis

largely cooperate in Th1/Th17 inflammatory T cell response (84).

Glutamine, the most abundant amino acid in human plasma, is an

important substrate of various ATP generating pathways (e.g.

glycolysis, OXPHOS) (85). It is transported across the plasma

membrane in mammalian cells by different transporters such as

the alanine serine cysteine transporter 2 (ASCT2). Gallate-type

procyanidin PCB2 3,3 (PCB2DG) polyphenol, a dimer of

epicatechin, interacts directly with ASCT2 glutamine transporter

and antagonizes glutamine influx, mTOR/HIF-1 pathway, Th1/

Th17 cell production and inflammatory response through

interferon gamma (IFNg) and interleukin-17 (IL-17) production.

Sirtuin-1 (SIRT1) serves as another crucial energy sensor. It is

activated by NAD+ in nutrient-deficient states and modulates

mitochondrial biogenesis by deacetylating and activating

transcription factors such as PCG-1a, signal transducer and

activator of transcription 3 (STAT3) or the nuclear factor E2-

related factor (NRF)-2. In CD4+ T cells, SIRT1 impedes the

process of differentiation of T lymphocytes into Th17 cells

through STAT3 deacetylation (86). Therefore, SIRT1 agonists

have emerged as promising pharmacological approaches to

broaden the array of current therapeutic options focused on

reducing the Th17 profile. Among these possibilities, the

deacetylase activator resveratrol stands out as particularly

promising. In CD4+ T cells, this polyphenol has been observed to

encourage Th2 and Treg polarization, immunomodulatory effects

that are linked to the diverse beneficial impacts of resveratrol in

various pathologies characterized by imbalanced lymphocyte

subtypes ratios (87).
3.2 AMPK/mTOR signaling balance

mTOR and AMPK stand out as two additional master

regulators of cellular metabolism, enabling adaptation to

challenges of nutrient scarcity or excess, ultimately promoting cell

survival. They are intricately linked to cell-specific adjustments in

response to metabolic stress, and disruptions in these signaling
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pathways are closely associated with various pathological conditions

(88). When nutrients are abundant, organisms prioritize fuel

utilization to support cellular growth, with mTOR signaling

playing a central role in this process. Conversely, upon nutrient

depletion, organisms suppress anabolic pathways and promote

autophagy via AMPK signaling to adopt a state geared towards

preserving the structural and functional integrity of existing cells.

Importantly, SIRT1/PGC1a can exert negative regulation on the

phosphoinositide 3-kinase (PI3K)-alpha serine/threonine-protein

kinase/(Akt/mTOR) pathway, likely through their influence on the

cellular maintenance of autophagy (89). Senolytic drugs can

simultaneously upregulate nutrient deprivation signaling (AMPK)

and suppress pathways associated with nutrient surplus (mTOR),
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consequently boosting autophagic flux (90). Accordingly, caloric

restriction mimetics are the most extensively studied metabolic

interventions and have long been associated to lifespan extension

and immunosenescence improvement (91, 92).

PCs are well-tolerated caloric restriction mimetics due to their

ability to activate AMPK, a cellular energy sensor, thus improving

mitochondrial turnover (93, 94). Quercetin and fisetin, two well-

established senolytic drugs, belong to the flavonoid class of

polyphenols and are key modulators of immune cell function. In

lipopolysaccharide (LPS)-treated macrophages, fisetin inhibited

PI3K/AKT/mTOR signaling and inflammatory cytokines

secretion (95). In addition, the acetyltransferase inhibitor

epigallocatechin-3-gallate (EGCG) was found to downregulate
FIGURE 3

Polyphenols and immunomodulation: a mitochondria-centered multi-modal approach. Polyphenols impact immunometabolic reprogramming
through four regulatory axes: first, they activate nutrient sensing via stress-response pathways and growth factors, essential for immune responses.
Second, polyphenols regulate mTOR/AMPK balance and inflammatory responses in immune cells and serve as well-tolerated caloric restriction
mimetics. Third, they interfere with the assembly of NLRP3 in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while
improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling through modulation
of histone deacetylase/acetyltransferase, thereby coordinating both epigenetic and metabolic reprogramming. Figure created in BioRender.com.
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mTOR-HIF1a signaling, a metabolic checkpoint of Th17/Treg

differentiation, leading to the downregulation of glycolysis-

associated molecules and inhibition of Th17 differentiation (70).

Likewise, carnosol and curcumin effectively inhibit mTOR

activation in response to LPS stimulation in human DCs via

AMPK-dependent induction of heme oxygenase-1 (HO-1), an

important antioxidant enzyme that assist the maintenance of DCs

in a tolerogenic state (71).
3.3 Mitochondria and ER-lysosomes inter-
organellar communication

The NLRP3 inflammasome, a critical junction between innate

and adaptive immunity, relies on ER-mitochondria contact sites to

facilitate the association of mitochondria-driven ligands, including

dysfunctional mitochondria themselves, as upstream signals for

NLRP3 activation. Additionally, self-derived or foreign-derived

particulates can be endocytosed by lysosomes, leading to

membrane damage and further release of cathepsin B, another

common upstream signal for NLRP3 activation (96). In LPS-treated

microglia cells, quercetin enhances the mitophagic clearance of

damaged mitochondria, countering mtROS accumulation and

NLRP3 inflammasome activation during the assembly stage (97).

Similarly, resveratrol inhibits the acetylated a-tubulin-mediated

spatial arrangement of mitochondria and their ER contacts in

macrophages. Consequently, it interferes with the assembly of

NLRP3 and its adaptor protein, apoptosis-associated speck-like

protein containing a caspase recruitment domain (ASC), thereby

inhibiting NLRP3 inflammasome activation triggered by

mitochondrial damage (98).

Interestingly, it has been proposed that polyphenols can be

directly endocytosed into lysosomes, regulating key signaling

pathways of phagocytic cells such as macrophages and DCs (99).

Accordingly, chrysin (a flavone) and hesperidin (a flavonoid)

enhanced lysosomal phosphatase activity in a concentration-

dependent manner in LPS-stimulated macrophages (100).

Similarly, the senolytic drug fisetin facilitates the autophagosome-

lysosome fusion and degradation processes in LPS-treated

macrophages by regulating a set of genes primarily involved in

autophagosome assembly/maturation (95). Comparable effects were

observed in LPS-treated DCs, where cocoa procyanidins strongly

upregulated gene pathways associated with lysosomal metabolic

function and nutrient metabolism, suggesting a significant impact

on DC metabolic activity (99).
3.4 Modulation of metabolism-
epigenetic axis

Recent research has revealed that alterations in metabolic status

can coordinate the function of immune cells by influencing

epigenetic changes. This regulatory axis between metabolism and

epigenetic enables the microenvironment to mold immune cells,

and disruption of this process can contribute to the development of

various diseases (101). For example, in LPS-stimulated THP-1
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promonocyte cells, TLR4 stimulation triggers glucose-dependent

ATP production alongside gene-specific chromatin remodeling.

Sirt1 deacetylation activates PGC1a transcriptional activity and

orchestrates sequential metabolic reprograming, sensing processes

dependent on NAD+, thereby reducing HIF1a-dependent
glycolysis and enhancing PGC1a-dependent FAO (102). Notably,

quercetin upregulates Sirt1/PGC1a signaling and improves

mitochondrial function and morphology (e.g. mtROS,

mitochondrial membrane potential, ATP production) in LPS-

induced inflammatory macrophages (103).

Chromatin remodeling involves structural changes such as

DNA methylation, histone methylation, and acetylation, which

greatly impact transcriptional changes of different genes. Several

polyphenols have been identified as histone deacetylase (HDAC)

inhibitors (EGCG, curcumin, genistein, quercetin), histone

acetyltranferase (HAT) activators (genistein) or HAT inhibitors

(EGCG, curcumin) (104). For instance, gallic and ellagic acids,

along with fisetin, were found to decrease HAT activity in THP-1

cells, resulting in the deacetylation of the p65 subunit of NF-kB and

attenuation of pro-inflammatory cytokine release (105, 106).

Moreover, EGCG enhances HDAC activity in Treg cells, leading

to suppressed nuclear factor kappa-light-chain-enhancer of

activated B cells (NF-kB) signaling and elevated synthesis of the

anti-inflammatory IL-10 (107). Finally, treatment with

dihydrocaffeic acid (DHCA) led to a decrease in DNA

methylation levels in peripheral leukocytes from mice exposed to

stressful conditions as well as human and mice peripheral

leucocytes exposed to lipopolysaccharide (LPS) in vitro (108).
4 Polyphenols
and immunomodulation

4.1 Polyphenolic modulation of
innate immunity

In a simplified manner, one might consider that innate

immunity includes two distinct components: the cellular system

and the non-cellular system (70). As its name suggests, the cellular

system is composed of a set of different cell populations, such as

granulocytes, monocytes, macrophages, natural killer and dendritic

cells (70). On another hand, the non-cellular one includes diverse

kinds of mechanisms that range from mucous barriers to signaling

pathways (70). Both components act in a synergistic manner in

order to prevent pathogens’ access to the organism or promote their

destruction in case the referred barriers have already been

broken (70).
4.1.1 Effects of polyphenols on dendritic cells
Due to their antigen-presenting activity, dendritic cells (DCs)

are indispensable for initiating and regulating innate immune

responses (70). PCs have been showing to influence several

aspects related to DCs, including differentiation and maturation,

as well as their antigen presentation and cytokine secretion

functions. For instance, resveratrol was shown to regulate the
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differentiation of healthy human monocytes from the blood into

DCs (109). Analogously, both EGCG and quercetin exerted

immunosuppressive effects in bone marrow (BM)-derived DCs,

impairing their maturation and their expression of major

histocompatibility complex (MHC) (110, 111). An in vitro study

has shown that quercetin’s inhibition of DC maturation results

from downregulated steroid receptor coactivator (Src)/PI3K-Akt-

NF-kB-inflammatory pathways (112). Furthermore, EGCG

exposure induced apoptosis of blood monocyte-derived DCs from

healthy individuals and modulated developing DCs’ phenotype by

downregulating MHC II molecules and the surface markers CD11c,

CD80 and CD83, which are needed for the process of antigen

presentation (113). Interestingly, polyphenols of different natures

have been shown to possess immunosuppressive properties towards

murine BM-derived DCs stimulated with LPS, including curcumin

(114), apigenin (115), daidzein (116), baicalin (117), fisetin (118)

and silybin (119). These PCs significantly inhibited the expression

of surface markers associated with DC maturation such as CD40,

MHC II molecules, as well as costimulatory receptors namely CD80

and CD86, in a dose-dependent manner. As a consequence, they

impacted the induction of Th1-mediated immune responses.

Additionally, the referred study employing curcumin has also

reported a decreased production of IL-1b by DCs, once more

repressing their immunostimulant activity (114). Many of these

effects seem to derive from the polyphenols’ ability to modulate DC

metabolism, namely through suppressing mitogen-activated

protein kinases (MAPKs) p38, c-Jun-N-terminal kinase (JNK),

extracellular regulated kinase (ERK) 1 and 2, and NF-kB
activation (111, 114, 115, 119, 120). Analogously, carnosol and

curcumin were found to affect AMPK activation and downstream

inhibition of the mTOR pathway in lipopolysaccharide-prime DCs

(121). The reduced glycolytic flux promoted by the two polyphenols

also impacted mitochondria, inhibiting the LPS-induced increase of

spare respiratory capacity.
4.1.2 Effects of polyphenols on monocytes
and macrophages

Similarly to DCs, macrophages play an important role in antigen

presentation mechanisms, as well as tissue inflammation and repair

processes (70). Remarkably, the shift between M1 and M2

phenotypes has shown to be influenced by PCs. For instance, in

vitro culturing of THP-1 macrophages with a cocoa extract resulted

in suppressed M1-mediated inflammation and promoted

polarization to M2 (122). A similar effect has been observed with

resveratrol regarding tumor-associated macrophages (123).

Moreover, quercetin, kaempferol, daidzein, genistein (124) and

apigenin (125) have exhibited the ability to reduce pro-

inflammatory cytokines’ secretion by these cells. Quercetin has

shown to prevent the secretion of IL-6, IL-1b and tumor necrosis

factor alpha (TNF-a) by macrophages by suppressing LPS-induced

MAPK and ERK activation (126). Plum polyphenols have also been

linked to decreased pro-inflammatory cytokines, ROS and

malondialdehyde production by RAW 264.7 macrophages treated

with monosodium urate through different signaling pathways

involving HIF-1, ErbB and Forkhead box transcription factor O
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(FoxO) (127). A similar effect has been reported for hesperidin which

besides decreasing ex vivo IL-12 secretion in LPS-stimulated mouse

macrophages also suppressed their migration and adhesion

properties in vitro (128). An interesting study aiming to evaluate

the impact of the flavonoids quercetin, naringenin and naringin on

the metabolism of cultured human macrophages has highlighted that

the flavonoid-mediated immunomodulation derived from glycolytic

downregulation, as well as anti-inflammatory reprogramming of the

TCA cycle and antioxidant protection (mainly quercetin), membrane

modification (naringenin) and osmoregulation (naringin) (129).

PCs are also able to modulate macrophagic ROS production

and iNOS activity, as has been reported for curcumin (130, 131),

resveratrol (132, 133), EGCG (134, 135), and genistein (136), to

name a few.

Polyphenols further seem to improve macrophages’ phagocytic

capacity. EGCG and curcumin, for instance, have been shown to

trigger murine peritoneal macrophages and RAW 264.7

macrophages’ phagocytosis in vitro (137, 138). The synergistic

effect of these two polyphenols together with resveratrol has been

demonstrated against glioblastoma and human papillomavirus

(HPV)-infected cells, leading to the repolarization of tumor-

associated macrophages and tumor suppression (139).

Interestingly, PCs seem to not only influence macrophages but

also their precursors -monocytes – as evidenced by an increase in

nitric oxide (NO) production by blood monocytes observed in

healthy individuals consuming red wine (72). Moreover, blueberry

supplementation has been shown to decrease monocyte expression

of monocyte-to-macrophage differentiation-associated (MMD) and

C-C motif chemokine receptor 2 (CCR2), reducing inflammation in

metabolic syndrome patients (140). EGCG prevented monocyte

adhesion to cultured endothelial cells from pig pulmonary aortas by

reducing the expression of vascular cell adhesion molecule-1

(VCAM-1) and monocyte chemotactic protein-1 (MCP-1) (141).

4.1.3 Effects of polyphenols on neutrophils
As has been observed for DCs and macrophages, studies

highlighting the immunomodulatory effects of PCs on this cell

population have been arising, particularly regarding their ability to

inhibit in vitro neutrophils’ oxidative capacity, which correlates

with exacerbated neutrophilic inflammation (142, 143).

Accordingly, a study performed by Drábiková et al. reported that

a series of polyphenols including curcumin, pinosylvin, resveratrol,

pterostilbene, piceatannol and N-feruloylserotonin significantly

reduced ROS production by human neutrophils in vitro (144).

Furthermore, human blood cultured neutrophils’ exposed to

treatment with grape polyphenols exhibit improved chemokinetic

accuracy and motility in association with enhanced CD16 shedding

and CD66b expression (145). On another hand, a study evaluating

the impact of phenolic acids in a mouse model of colitis exalted the

ability of ferulic acid to alleviate the disease by suppressing the

formation of neutrophil extracellular traps (146).

4.1.4 Effects of polyphenols on natural killer cells
Natural Killer (NK) cells are recognized by their robust

cytotoxicity and lytic activity, as well as effector functions (147).
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Contrarily to what has been described above regarding the effects of

PCs on macrophages, DCs and neutrophils, which are essentially

immunosuppressive, their impact on NK cells appears to have a

stimulatory nature, increasing their number and activity. As an

example, green tea polyphenols and quercetin are able to promote

murine NK-mediated cytotoxicity (148) and lytic activity (149),

respectively. Similarly, low-dose resveratrol supplementation has

promoted NK cell killing capacity in different experimental contexts

(150–152), potentially by activating JNK and ERK (152, 153).

Nevertheless, this seems to be dose-dependent since high doses of

resveratrol exerted the opposite effect. Similarly, a study performed

by Oo et al. reported that luteolin, apigenin and quercetin at doses

of 12.5 µg/ml and 25µg/ml significantly increased the NK-cell-

mediated cytotoxic activity against lung cancer cells (154).

Contrastingly, genistein blocks NK cells’ activity at low doses

(155) but enhances their cytotoxicity at high concentrations

(156). These results highlight the dose-dependent behavior

displayed by the vast majority of polyphenolic compounds.

In humans, clinical studies showed that blueberry

supplementation increases NK cell count in the blood of healthy

subjects (157, 158).
4.2 Polyphenolic modulation of
adaptive immunity

Alternatively to the innate immune system, the adaptive branch

of the immune system involves a unique type of cells - lymphocytes

(70). Two primary lymphocyte populations prevail (1): T

lymphocytes, which are responsible for cytokines’ secretion,

cytotoxic destruction of unviable cells and activation of other

immune cells, and (2) B lymphocytes, known by their antibody-

producing capacity (70).

4.2.1 Effects of polyphenols on T and B cells
The immunomodulatory potential of PCs goes beyond innate

immunity, considerably impacting lymphocyte numbers and

functionality. For instance, incorporating EGCG in the diet for

one week has proven to elevate T regulatory (Treg) cells’ number in

mice’s spleen, mesenteric and pancreatic lymph nodes (159).

Furthermore, these cells were able to repress cytotoxic T cell

action and proliferation as well as interferon gamma (IFNg)
production (159). A study evaluating EGCG’s impact on naïve

CD4+ T cell differentiation showed that the green tea polyphenol

inhibited Th1, Th9, and Th17 differentiation by downregulating the

respective transcription factors T-bet, PU.1, and RORgt, while also
preventing IL-6-induced suppression of Treg development. These

effects were considered to result from downregulation of Signal

transducer and activator of transcription p-STAT1 and p-STAT4

for Th1, and p-STAT3 for Th17 cells, as well as inhibition of IL-6-

induced STAT3 phosphorylation, respectively. Analogously,

naringenin displayed the potential to induce Treg cells through

AhR-mediated pathways (72) and baicalin has shown to inhibit

Th17 cell differentiation both in vitro and in vivo via reducing RAR-

related orphan receptor gamma t (RORgt) expression and up-
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regulating Forkhead box p3 (Foxp3) expression (160).

Interestingly, EGCG has also shown to induce Treg cells by

repressing DNA methylation, inducing Foxp3 and IL-12

expression both in vitro and in vivo (159). These outcomes exalt a

novel epigenetic mechanism underlying the polyphenol’s

immunomodu l a t o r y a c t i v i t y a s s o c i a t ed w i th DNA

methyltransferases inhibition. Moreover, Ning et al. provided new

evidence for the effectiveness of the green tea flavonoid in vitiligo

treatment via Janus kinase 2 (JAK2) kinase activity inhibition,

reducing the protein levels of CD11a, CXCR3, and CCR2

receptors in human T lymphocytes, suppressing their adhesion to

melanocytes induced by IFN-g (161). Importantly, EGCG’s

immunomodulatory properties are not limited to CD4+ T cells. In

fact, there are several reports on the flavonoid’s competence on

increasing CD8+ T cell number and activity in tumorigenic contexts

(162, 163). Genistein has exhibited a similar effect, while also

enhancing CD8+ T cell IFNg expression both ex vivo and in vivo,

leading to immune stimulation (156).

A study performed by Ramiro-Puig et al. evaluating the effects

of a cocoa-enriched diet in the spleen lymphocyte function of young

rats reported that a 10% cocoa intake increased lymphocyte

proliferation rate, but down-regulated Th2-associated cytokine

levels and decreased immunoglobulin (Ig) secretion (164).

Additionally, spleen B cell proportion was raised, and Th cell

percentage declined (164).

Similarly, auraptene, a citrus fruit-derived coumarin, was able

to suppress the activation of murine inguinal lymph node-derived

Th1 cells (165). Finally, genistein has also shown to increase the

number of both helper and cytotoxic T cells as well as B

lymphocytes in rat spleen (166). Likewise, curcumin

administration to Min/+ mice increases mucosal CD4+ T and B

cell numbers by modulating CD28, CTLA-4, STAT and NF-kB

expression, preventing the formation of intestinal tumors (167). In

addition, through inhibiting STAT4 phosphorylation curcumin has

also shown to suppress human CD4+ T cells differentiation into the

Th1 phenotype (168). Curiously, curcumin’s impact appears to

depend on the stimulous to which lymphocytes have been exposed,

since other studies exalt its immunossupressive activity. For

instance, Sharma et al. reported that both resveratrol and

curcumin suppressed the activity of concavilin A-stimulated T

and B cells by inhibiting their proliferation, antibody production

and lymphokine secretion (169). In fact, curcumin’s ability to

suppress B cell proliferation has also been demonstrated in

human Epstein-Barr infected cells (170). Curiously, polyphenol-

driven apoptosis of leukemic B cells was shown to correlate with

caspase 3 activation, reduced mitochondrial transmembrane

potential as well as downregulation of antiapoptotic protein

beclin 2 and iNOS expression (171).
5 Polyphenol-based immunonutrition
in immunometabolic diseases

Over the past two decades, the pivotal interplay between immunity

and metabolism in chronic diseases has become increasingly evident
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(172). The burgeoning field of Immunometabolism has progressively

illuminated how the immune system orchestrates the functionality of

key homeostatic systems within tissues, such as the brain, pancreas,

liver and adipose tissue. This modulation occurs through the sensing

and adaptation to microenvironmental nutrient fluctuations, driving

flexibly reprogramming of metabolic pathways in immune cells that

greatly impact their polarization towards a pro- or anti-inflammatory

phenotype (172, 173). Accordingly, mounting body of evidence

progressively appreciates the mobilization of the innate and adaptive

immune systems not only in autoimmune diseases featured by the loss

of self-tolerance but also in supposedly non-immune pathologies

encompassing neurodegeneration and metabolic disorders (174).

Consequently, there’s a rising interest in immunonutritional

approaches aimed at optimizing immune cells functions to enhance

effective defense responses while preserving tolerance.

The following sections delve into the characteristics of

immunological disturbances within the spectrum of both auto-

immune and non-autoimmune metabolic disorders (175).

Additionally, it sheds light on the immunomodulatory roles of

polyphenols and draws a mechanistical parallel between their effects

and the pleiotropic immunomodulatory actions of drugs currently

integrated into corresponding therapeutic algorithms (Figure 4).
5.1 Autoimmune
immunometabolic diseases

5.1.1 Type 1 diabetes mellitus
Type 1 diabetes mellitus (T1DM) is currently accepted as being

a T cell-mediated disease (176). Nevertheless, other adaptive

immune cells as well as elements from innate immunity are

believed to be involved in T1DM physiopathology.

Namely, T1DM patients display an impaired complement

system function (177) and monocytes from these patients display

decreased chemotaxis and phagocytic activity (178). Furthermore,

infiltration of macrophages (179),neutrophils, and NK cells (180) in

the pancreatic Langerhans islands has been detected in NOD mice

and human patients. Moreover, hyperglycemia has shown to impair

macrophages’ autophagic mechanisms (181, 182). Interestingly,

insulin has shown to reestablish the normal phenotype in

diabetogenic macrophages through Akt and ERK signaling (183),

as well as to repress TLRs and CD14 transcription (184).

Furthermore, Yu et al. reported insulin’s ability to promote

phenotype transition of macrophages from M1 to M2 through

PI3K/Akt pathways, and PPAR-g signaling during diabetic wound

healing (185).

Nonetheless, cellular infiltrates found on the pancreas of

diabetic subjects are also composed of adaptive immune cells,

such as CD4+ and CD8+ T as well as B lymphocytes (176).

Remarkably, diabetogenic CD4+/CD8+ T lymphocytes are more

dependent on aerobic glycolysis and rely less on OXPHOS (186).

Accordingly, glycolysis inhibition induced terminal CD4+ T cell

exhaustion in an animal model of T1DM, delaying disease onset

(187). Treg cells are also found to be dysfunctional in the pancreatic

lymph nodes of T1DM patients (188) and an increase in IL-17-
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producing T cells has also been detected (188, 189). Diabetogenic T

cells are further characterized by mitochondrial membrane

hyperpolarization and dysfunction, resulting in increased ROS

levels and diminished ATP production (190).

PCs supplementation has been emerging as a potential

therapeutic strategy for alleviating the immune dysfunction

characterizing T1DM, in part by improving mitochondrial

function. In fact, several kinds of polyphenols have shown to

improve mitochondrial function, namely through the activation

of the key mitochondrial biogenesis’ PGC-1a, including ursolic acid
(191), resveratrol (192), quercetin (193, 194) and olive

hydroxytyrosol (195).

Nevertheless, PCs’ effects are not limited to mitochondrial

function. For instance, a pomegranate peel extract was able to

inhibit immune cell infiltration into pancreatic islets (196).

Similarly, oral administration of capsaicin to several mice strains

showed to attenuate the proliferation and activation of autoreactive

T cells in pancreatic lymph nodes, protecting them from disease

development (197). The authors considered these effects to be

mediated by capsaicin-mediated enhancement of a discreet

population of CD11b+/F4/80+ macrophages in the pancreatic

lymph nodes, which express the anti-inflammatory factors

interleukin IL -10 and programmed death-ligand 1 (PD-L1).

Moreover, procyanidin B2 gallate has been revealed as a

suppressor of TNF-a production by activated CD4+ T cells by

inhibiting their glycolytic function via mTOR- HIF-1a interaction

(198). Lastly, a study evaluating the impact of black seeds and garlic

intake in diabetic rats demonstrated a significant increase in the

blood levels of monocytes and granulocytes, while lymphocyte

proliferation was suppressed (199). A similar output was verified

when administering fenugreek oil to a rat model of T1DM, which

blunted the diabetes-induced increase of pancreatic lymphocyte

counts (200).

5.1.2 Inflammatory bowel disease
Inflammatory Bowel Disease (IBD) presents defects in

peripheral and intestinal immune function (201). A deep analysis

of the peripheral immune system of IBD patients has found

decreased numbers of NK cells and B lymphocytes opposing to

increased counts of neutrophils and memory CD8+ T cells in the

blood (202). Besides displaying elevated phagocytosis and cytokine

production (201), IBD-associated macrophages also go through the

Warburg effect by HIF-1a stabilization and subsequent increased

expression of glycolytic enzymes, a process that is modulated by

pyruvate kinase 2 (PKM2) (203). The disease further entails gut

DCs overactivation, resulting in increased levels of IL-6in the serum

and intestine of IBD patients. Decreased numbers of Treg cells in

mice peripheral blood and patients’ intestinal mucosa, alongside the

expansion of Th17 cells and increased production of IL-17 and IL-

23 in the intestinal mucosa and lamina propria (LP) have also been

detected (201). Interestingly, the expression of pro-inflammatory

cytokines by Th17 cells was found to be epigenetically controlled by

the glucose transporter GLUT3, which is upregulated in models of

IBD (204). Collectively, evidence points to a relevant role of

glycolysis in the immunologic dysfunction characterizing IBD.
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FIGURE 4

Mechanistical parallelism between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation. Current
therapeutic algorithms of immunometabolic disorders include drugs with pleiotropic immunomodulatory actions shared by a plethora of polyphenol-based
immunonutritional approaches. For instance, the anti-diabetic metformin suppresses the production of pro-inflammatory cytokines by immune cells
through Nf-KB signaling modulation, the same effect being reported for curcumin and the flavonoid EGCG. The anti-diabetic has also displayed the ability
to counteract unbalances in T cell subpopulations by activating AMPK, an effect once again shared by the polyphenol’s curcumin and carnosol. Tissue
plasminogen activator (tPA), a serine protease used in stroke therapy, was found to improve chemotaxis and phagocytic ability of immune cells through
metabolic pathways’ modulation, including ERK 1/2 and Akt signaling. An equivalent effect has been reported for curcumin and anthocyanins, due to
suppression of PI3K signaling and iNOS enzymatic activity. Through these same mechanisms, curcumin also attenuates immune cell infiltration, exerting an
effect similar to the NMDA receptor antagonist memantine, an anti-dementia drug widely used in Alzheimer’s disease, which blocks T cells’ potassium
channels. Minocycline, a tetracycline antibiotic currently being studied as a therapeutic strategy for stroke, prevents DCs and microglia cells from excessive
activation by modulating the JAK/STAT signaling pathway. Likewise, anthocyanins are suggested to modulate the PI3K/Akt/Nrf2/HO-1 axis in DCs and
microglia cells, suppressing their overactivation. This is also achieved with the polyphenol hydroxytyrosol, which reduces MAPK activation. A similar
mechanism has been observed for polyphenols belonging to different classes, such as resveratrol and kaempferol, which also regulate PPARg, inhibiting
macrophage and microglia polarization towards a pro-inflammatory (M1) phenotype. These polarization-shifting properties are likewise reported for the
flavonoid phloretin and are considered to be mediated by an increased AMPK expression. These effects are analogous to the ones of insulin, which is
directed to T1DM patients and interferes with PI3K/Akt and PPARg signaling, and to the decarboxylase inhibitor carbidopa, which promotes M2 macrophage
polarization in the context of Parkinson’s Disease by suppressing glucose uptake. Under environmental stimuli, immune cell activation occurs accompanied
by metabolic reprogramming. In most cases, this primarily consists of a transition from mitochondrial OXPHOS to aerobic glycolysis. Drugs purposed for
Multiple Sclerosis treatment, such as dimethyl fumarate, IFNg and glatarimater acetate, among others, are known to modulate this shift, suppressing
glycolysis and promoting OXPHOS in T cells. The same is observed for methotrexate – an antimetabolite used to treat IBD. Analogously, by interfering with
mTOR signaling and PKM2 activity, flavonoids such as shikonin and procyanidin B2 gallate, respectively, also modulate immune cell metabolic
reprogramming in the context of immunometabolic dysfunctions. Figure created in BioRender.com.
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Accordingly, therapy with methotrexate, which is used for different

autoimmune conditions including IBD, appears to suppress

glycolytic mechanisms in varied immune cell populations (205),

counteracting the metabolic reprogramming associated with

disease pathophysiology.

Furthermore, intestinal barrier function is also impaired in the

context of the disease, presenting less mucus secretion by goblet

cells, reduced antimicrobial peptides (AMPs)’ production by Paneth

cells and several mutations in genes coding tight junction proteins,

resulting in their dysfunction and consequent loss of barrier

integrity (201). Defects in mucosa mitochondrial function are also

a feature of IBD, including reduced complex I activity, membrane

potential, biogenesis, OXPHOS, TCA cycle and fatty acid

metabolism alongside increased mitochondrial fragmentation due

to fission (206, 207).

Furthermore, the disease is characterized by increased

susceptibility to dysfunctional autophagy of macrophages, DCs,

Paneth cells and GCs (208). Particularly, Autophagy Related 16 Like

1 (ATG16L1) gene deficiency in macrophages increases the risk of

Chron’s Disease development (209) and suppresses DCs’ ability to

induce Treg cells in contexts of intestinal inflammation (210).

Remarkably, a part of PCs’ beneficial effects regarding IBD is

related to their impact on autophagy. As an example, the flavonoid

galangin has shown to alleviate DSS-induced colitis’ symptoms in

mice by increasing the expression of autophagy-related proteins

and promoting colonic autophagosome formation (211). On

another hand, resveratrol displayed autophagy-promoting

properties in cultured macrophages through sirtuin modulation

(212, 213), highlighting its potential to counteract the macrophagic

autophagy dysfunction underlying IBD.

PCs further display relevant potential to maintain intestinal

homeostasis by protecting the intestinal barrier. Several studies

evaluating the impact of polyphenolic supplementation in

experimental models of the disease have revealed improved gut

barrier function, consequently limiting inflammatory cell

infiltration. This has proved to be true for grape seed PCs which

increase colonic goblet cell density and mucin 2 mRNA expression

(214); anthocyanins by enhancing tight junction molecules

(zonulin-1, claudin-1, occludin) and Muc 1/2 expressions (215),

just to mention a few. Interestingly, resveratrol and resveratrol-

related PCs (e.g. pterostilbene) have further demonstrated to

alleviate intestinal inflammation in mice with colitis by regulating

the Th17/Treg balance and control the levels of plasmatic and

intestinal mucosal cytokines such as transforming growth factor

beta (TGF-b), IL-6, IL-10 and IL-17 (216, 217), restoring the

percentage of CD4+ T cells in mesenteric lymph nodes (MLNs)

and decrease their number in the intestinal LP, as well as reducing

the percentage of macrophages in both regions (218). Similarly,

curcumin appears to promote colonic Treg cell expansion while

decreasing the counts of inflammatory DCs; inhibiting pro-

inflammatory cytokines’ secretion, T cell infiltration and NF-kB

activation (219), as well as to suppress macrophage activation and

regulate M1/M2 polarization (220). Chlorogenic acid has also

shown to mitigate DSS-induced colitis in mice by inhibiting M1

macrophage polarization through suppressing PKM2-dependent

glycolysis and Nod-like receptor protein 3 activation (146).
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Moreover, a study performed byWu et al. reported that the lignan

arctigenin inhibits Th17 and Th1 differentiation in vitro by repressing

STAT3 and STAT4 phosphorylation respectively through mTORC1

downregulation, ameliorating DSS-induced colitis in mice (221).

On another hand, shikonin – a polyphenol widely used in

Chinese traditional medicine – has shown to suppress glucose

consumption and lactate production as well as inhibit the nuclear

translocation and enzymatic activity of PKM2, which is responsible

for stimulating the Warburg effect in macrophages, in a DSS-

induced colitis mouse model (222).

Furthermore, PCs are known for inducing short-chain fatty acids

(SCFAs) production by the gut microbiota, namely butyrate (223,

224), which displays several gut health-promoting properties: it

promotes colonic mucus production (225); potentiates the

extrathymic conversion of CD4-positive T lymphocytes into Treg

cells; is able to reduce mTOR activation and glycolysis in intestinal

macrophages, while simultaneously promoting their metabolic

reprogramming to OXPHOS and lipid metabolism (203) as well as

downregulating their expression of pro-inflammatory cytokines (226).

Remarkably, some of the aforementioned effects equally emerge from

methotrexate therapy for CD, which elevates OXPHOS in T cells by

activating AMPK and blocking mTORC1 (227).

In humans, consumption of mango by IBD patients significantly

improved Simple Clinical Colitis Activity Index (SCCAI) score and

decreased the plasma levels of pro-inflammatory cytokines related to

neutrophil-induced inflammation (228).

5.1.3 Multiple sclerosis
Similarly to T1DM and IBD, Multiple Sclerosis (MS)’

pathophysiology is characterized by a series of immunological

alterations, the most well-known pathophysiological components of

the disease (229). Although the primary events leading to the

autoimmune attack characterizing MS are not yet established, a

possible explanation is based on molecular mimicry consisting of

the activation of autoreactive T lymphocytes through cross-reactivity

by viral and/or bacterial antigens structurally similar to central

nervous system (CNS) proteins, such as myelin basic protein

(MBP), myelin oligodendrocyte glycoprotein (MOG) and

proteolipid protein (PLP) (229). These cells migrate to the CNS

fueling neuroinflammatory events that promote BBB opening allow

a second wave of immune cells to access the CNS, namely CD8+ T

cells, B lymphocytes and macrophages (230). Macrophages within the

perivascular cuff of post-capillary venules of animals with EAE display

altered metabolism featured by increased expression of the glycolytic

enzyme lactate dehydrogenase (LDHA) as well as monocarboxylate

transporter-4 (MCT-4), specialized in secreting lactate from glycolytic

cells, potentially inducing macrophage infiltration in the CNS (231).

Analogously to what is described for T1DM, activated CD4+ T cells

from MS patients display an up-regulation of aerobic glycolysis and

down-regulation of OXPHOS (232), as well as altered mitochondrial

structure, mitochondrial DNA (mtDNA) levels and membrane

potential (233). Furthermore, abnormal expression of autophagy-

related markers and genes has been found in T cells from MS

patients and EAE animals (234). It is worth noting that the role of

autophagy in MS pathophysiology is controversial since there is

evidence of both protective and deleterious effects of autophagy
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induction in immune cells in the context of the disease (234), but there

seems to be a consensus regarding the fact that autophagy contributes

to MS pathology in macrophages, DCs, T and B cells while having a

protective role in neurons and glial cells (235).

On another hand, there is a decreased count of circulating Treg

cells in MS patients (236), which also seem to play an important role

in EAE development (237). In fact, the immunometabolism of T cells

is extremely relevant in the pathophysiology of MS, as evidenced by

the fact that several of its therapeutic strategies modulate T cell

metabolic features: Dimethyl Fumarate suppresses glycolysis; IFNg
decreases ATP levels, mitochondrial membrane potential and

modulates OXPHOS; Teriflunomide limits T cell activation by

blocking mitochondrial respiratory chain’s complex III; and

Glatiramer Acetate promotes OXPHOS and represses glycolysis in

CD4+ T cells (238). Likewise, a study evaluating the effects of

cinnamic acid in EAE reported that the polyphenol acted as an

MCT-4 inhibitor, attenuating immune cell infiltration into the CNS,

suppressing glycolysis and lactate production by macrophages and

ultimately reducing disease severity (231). The EAE-associated

inflammatory phenotype of macrophages has also been reduced by

the dihydrochalcone phloretin, which activated Nrf2 by stimulating

AMPK-dependent autophagy (239). Additionally, a large number of

PCs have shown to attenuate EAE clinical severity or inhibit its

development by reducing immune cell infiltration, referring to EGCG

(240), curcumin (241) and hesperidin (242). The latter two also seem

to impact the Th17/Treg balance in EAE animals, promoting Treg

cell expansion and Th17 suppression in the spleen (241), lymph

nodes (240, 242) and the CNS, accompanied by repressed pro-

inflammatory cytokine secretion (240, 241). Analogously, EGCG as

well as naringenin for instance are known to impact the Th1-

mediated immune response associated with EAE (240, 243). The

described outcomes are potentially attributed to the impact of PCs on

the expression of transcription factors associated with each of the

referred T cell subsets: Foxp3 for Tregs (242, 243), RORgt for Th17
cells (241–243), and T-bet for Th1 ones (243). Inhibition of Th17

cells’ differentiation by curcumin further entails down-regulating IL-6

and IL-21 as well as STAT3 phosphorylation (241). Considering that

MS is a T cell-mediated disorder, inhibition of CD4+ T cells’

activation might comprise a promising therapeutical strategy.

Interestingly, curcumin has shown to induce human T cell death

through increased expression of ER stress-related transcriptional

factors (244). Analogously, resveratrol inhibits CD4+ T cells’

activation and cytokine production by promoting SIRT1 expression

and activity both in vitro and in vivo (245).The stilbene has further

been highlighted as able to counteract the decline in brain

mitochondrial function characterizing the cuprizone-induced

demyelination model by enhancing cytochrome oxidase activity

and elevating ATP levels (245).
5.2 Non-autoimmune
immunometabolic diseases

5.2.1 Obesity and type 2 diabetes mellitus
Findings arising from pre-clinical and clinical research have

been elucidating the mechanisms of immunological dysfunction
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associated with obesity and type 2 diabetes mellitus (T2DM).

Regarding innate immunity, metabolic dysfunctions are

characterized by an altered neutrophil functionality, increased M1

macrophage and inflammatory DCs numbers, and abnormal NK

phenotypes (246). In obese individuals, neutrophils display

augmented chemotaxis and non-directed migration, as well as

increased basal levels of superoxide, while neutrophils from

diabetic subjects lose a variety of their functions, including

migration capacity, phagocytosis and ROS production (246). By

increasing leptin levels, obesity alters adipose tissue macrophages’

(ATMs) metabolism through Janus kinase 3 (JAK3) and STAT3,

and PI3K-Akt-mTOR pathways, increasing glycolytic enzymes’

activity and glucose uptake as well as inducing mitochondrial

dysfunctions (247). PI3K-Akt-mTOR activation in brain

macrophages of diabetic rats has further been implicated in

autophagy impairment (248), which originates protein aggregates

and fosters damaged mitochondria due to defective mitophagy

(249). Dysfunctional mitochondria accumulation leads to

increased ROS production and consequent NLRP3 dependent-

inflammation by macrophages in both T2DM (250) and obesity

(251). Mitochondrial dynamics are likewise affected in the context

of both disorders, as evidenced by induced activation of the fission

regulator dynamin-related protein 1 (Drp1) by a high-fat diet (252)

as well as increased mitochondrial fission and decreased fusion in

leukocytes from T2DM patients (253).

NK cells are also dysfunctional in contexts of obesity and

T2DM, displaying increased proliferation rates and IFNg
secretion, and impaired degranulation, respectively (246). A

dysfunctional mTOR function has also been observed in NK cells

from obese patients (254). Furthermore, DCs activation and

maturation is promoted in cases of diabetes, and obesity-

associated DCs present an inflammatory phenotype triggering

Th17 cells’ activation (246).

Adaptive immunity is likewise affected by metabolic

impairments, resulting in increased numbers of gd T, Th17 and

Th22 cells and a reduction in Tregs (246). B cells display altered

functionality, promoting an abnormal antibody response (246). In

obesity, CD4+ T cells also reveal a distinct metabolic profile

characterized by the activation of glycolysis and OXPHOS (255).

Furthermore, mitochondria from T2DM patients’ CD8+ T cells

display higher oxidative capacity together with elevated ROS levels

and fatty acid uptake as well as decreased FAO and AMPK activity

(256). In fact, metformin, a widely used oral antidiabetic, has shown

to facilitate T cells’ shift from a glucose-dependent anabolic state to

a catabolic one through mTOR signaling blockage and by restoring

mitochondrial FAO (257). Furthermore, it shuts down glycolysis

and promotes OXPHOS by activating pathways involving carnitine

palmitoyltransferase (CPT)-1 alpha and PGC-1a (258).

The impact of PCs in immune system dysfunctions associated

with obesity and T2DM have been consistently highlighted in both

in vitro and in vivo experiments. Analogously to metformin, a

variety of polyphenol formulations as well as isolated compounds

are described as PGC-1a inducers in the context of T2DM and

obesity, such as ginger polyphenols 6-gingerol and 6-chrysophanol

(259), epicatechin-enriched cocoa (260), sudachitin (261), and

EGCG (262). The latter has also shown to inhibit T2DM-
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associated mitochondrial deficiency and dysfunction in diabetic

Goto-Kakizaki rats by suppressing enhanced autophagy in muscle

cells (263, 264). Furthermore, resveratrol administration to older

adult diabetics showed to improve mitochondrial biogenesis and

function through SIRT1 upregulation, alleviating the oxidative

damage and promoting insulin sensitivity (265).

On another hand, PCs that include capsaicin, curcumin, and

anthocyanins for instance, have shown to attenuate macrophage

migration (266–268), in part by suppressing MCP-1 expression (268,

269). Curcumin has also displayed relevant suppressive effects on NF-

kB signaling in immune cells, leading to a reduction in iNOS expression

by macrophages and DCs (270), as well as neutrophils (271).

Neutrophils chemotaxis is also apparently impacted by curcumin’s

ability to suppress PI3K activity and Akt phosphorylation (271). On

another hand, evidence suggests that PCs present in the small fruit

lingonberry promote macrophage polarization to an anti-inflammatory

(M2) phenotype by upregulating PPARg and STAT6 phosphorylation

in experimentally induced obesity (272). Quercetin has also shown to

abolish NLRP3 inflammasome activation in macrophages by

upregulating Akt signaling, reducing insulin resistance in mice with

particulatematter-inducedmetabolic disorder (273). A similar effect has

been reported for red raspberry polyphenols (274).

Regarding adaptive immunity, studies employing cafeteria diet-

induced obesity as well as the alloxan-induced model of diabetes in

rats have reported that PCs intake lowered the production of pro-

inflammatory mediators including ILs, TNFa, IFNg and TGF-b by

MLN and splenic lymphocytes (275, 276). Contrasting to what is

observed for macrophages, PCs seem to promote Treg cell

recruitment, namely through elevation of Foxp3 gene expression

(277). A study employing EGCG in the context of murine diet-

induced obesity has reported an increased Treg/Th17 cell balance

by decreasing the ratio of STAT3/STAT5 expression (278).
5.2.2 Neurological diseases
Evidence from genome-wide association studies highlight the

association between immune cells-mediated inflammation and

increased risk of neurodegeneration (279). Most neurodegenerative

diseases involve deposition ofmisfolded proteins, leading to aggregate

formation and consequent neuronal loss (279). The initial phases of

the referred disorders are characterized by the activation of the

immune system and neuroinflammation, partially mediated by a

CNS resident macrophage cell population – microglia – that are

activated in virtually all neurodegenerative conditions (279). Despite

the pivotal role of microglia cells, infiltrations composed of astrocytes,

monocytes and/or lymphocytes are also frequent in these contexts

(279). Immune cell dysfunctions in the mitochondrial respiratory

chain are likewise preponderant features of neurodegenerative

diseases, evidence suggesting that leucocytes, neutrophils,

monocytes/macrophages, and T cells display increased levels of

ROS and NO accompanied by elevated mitochondrial membrane

potential and decreased complex activity (238).

Considering the above, previously mentioned reports of PCs

ability to limit immune cell activation and cellular infiltration point

to these natural substances as promising therapeutic agents in the

context of neurological disturbances.
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5.2.2.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is the most common neurodegenerative

disease worldwide (279, 280). Its main features include b-amyloid

protein (Ab) deposition and tau protein hyperphosphorylation,

originating senile plaques and neurofibrillary tangles (NTFs),

respectively (279, 280). The referred aggregates promote microglial

activation, which surprisingly appears to play a dual role in disease

pathophysiology (280). Initially, activated microglia seem to have a

beneficial effect by phagocytizing excessive Ab, but as the disease

progresses, they may lose this ability and acquire a dysfunctional

senescent phenotype or become neurotoxic by remaining chronically

activated (280). The inflammatory mediators produced by these cells

stimulate an analogous response on astrocytes, resulting in neuronal

death (280). Furthermore, brain parenchyma infiltration by

neutrophils and NK cells also seems to contribute to the

neuroinflammatory changes reported in AD (279, 280). On another

hand, the role of adaptive immune system in the disease is

controversial, since there are studies supporting a neuroprotective

role for the adaptive immune cells in AD animal models (281) while

others exalt its requirement for disease progression (282). Noticeably,

numerous lines of evidence on the impact of metabolic perturbations

in microglia mediated-neuroinflammation in AD have been

arising. Actually, the age-related decline in glucose metabolism in

the brain is associated with cognitive dysfunctions in AD patients

(283). Ab deposition seems to induce mTOR phosphorylation

and HIF-1a expression by microglia, originating inflammatory

cascades (283). Microglial cells adopt a neuroimmunomodulator

phenotype, exhibiting ineffective glycolysis, and TCA cycle

accompanied by impaired chemotaxis and phagocytic ability (283).

Furthermore, AD features a great degree of mitochondrial

dysfunction with concomitant cardiolipin exposure, leading to

increased microglial phagocytosis and synthesis of inflammatory

mediators, fostering neuroinflammation (284). Moreover, damaged

mitochondria release mtDNA which can induce the NLRP3

inflammasome and the NF-kB pathway, exacerbating inflammation

(284). AD-associated microglia further display a suppressed

autophagic flux due to a reduced expression of key regulatory

proteins such as Beclin-1 (285).

Interestingly, Chen et al. has reported that microglial cells

mediate T cell infiltration in experimental models of AD as well

as human brains, driving neuroinflammation (286). Accordingly,

memantine – a drug approved for the treatment of advanced AD –

acts on T cell metabolism by blocking potassium channels,

normalizing these cells’ response (287).

Likewise, PCs exhibit vast potential as therapeutic agents in

neurological pathologies by acting on different strands of their

etiology, among which are immune dysfunctions. Interestingly,

oleuropein aglycone – a polyphenol abundantly present in extra

virgin olive oil – is reported to induce autophagy in AD mouse

models by modulating AMPK signaling (288, 289) as well as sirtuin

activity and histone acetylation (288). Likewise, curcumin has

shown to downregulate PI3K, phosphorylated Akt and mTOR

protein levels, inducing autophagy in brain tissue of APP/PS1

double transgenic AD mice (290).

Resveratrol, which is currently under investigation in several

clinical trials for AD, has demonstrated to possess remarkable
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immunomodulatory properties in immune cell populations highly

relevant in the context of the disease. It inhibited microglia

activation, proliferation and cytokine production (IL-6 and TNF-

a) (291) and promoted its polarization towards an anti-

inflammatory phenotype in animal models (292), suppressing

neuroinflammation. Furthermore, a retrospective study with AD

patients demonstrated that treatment with resveratrol induced

adaptive immune responses, increasing IL-4, fibroblast growth

factor (FGF) 2 and macrophage-derived chemokine (MDC)

secretion by macrophages (293). Still regarding microglia cells,

anthocyanins were also able to mitigate oxidative stress and

neurodegeneration in a mouse model of AD by modulating the

PI3K/Akt/Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme

oxygenase 1 (HO-1) axis (294). Additionally, supplementation of

cultured microglia exposed to Ab with a polyphenol abundantly

found in extra virgin olive oil named hydroxytyrosol attenuated

mitogen-activated protein kinases (MAPKs) activation as well as

ROS generation (295). The flavonoid baicalein has also shown to

inhibit microglia-induced neuroinflammation in a mouse model of

AD by suppressing NLRP3 activation and the TLR4/NF-kB

pathway (296). Similarly, a study performed by Kim et al.

described gallic acid’s profile as a histone acetyltransferase

inhibitor, highlighting its ability to inhibit NF-kB acetylation and

reducing cytokine production by cultured microglia (297).

5.2.2.2 Parkinson’s Disease

On the frequency ranking for neurodegenerative diseases,

Parkinson’s Disease (PD) follows AD at second place and is

characterized by the accumulation of a-synuclein in neurons,

glial cells, and nerve fibers (279). The histopathological hallmarks

of PD include loss of dopaminergic neurons in the substancia nigra

pars compacta (SNpc), presence of activated microglia, astrogliosis

and lymphocytic infiltration (279).

Similarly to what happens in AD, the accumulated protein

aggregates promote microglia activation, which proceed to release

excessive amounts of neurotoxic factors generating a self-

amplifying cycle that contributes to progressive neuronal

degeneration (279). PD-associated microglia also display impaired

mitochondrial function associated with mutations in genes involved

in mitophagy and oxidative stress such as Pink1 and Parkin,

resulting in inflammasome activation that fosters dopaminergic

neurodegeneration (298, 299). Interestingly, research in PD

experimental models has shown that NLRP3 inflammasome

activation is exacerbated in microglia cells deficient in autophagy

related protein 5 (ATG5) (300), highlighting autophagy’s relevance

in suppressing inflammation. Nevertheless, the role of other

immune cells such as astrocytes and NK cells in this

inflammatory cascade remains to be enlightened (279, 280). On

another hand, the expansion of dysfunctional monocytes appears to

be an essential element in PD pathogenesis and might be related to

the secretion of inflammatory mediators by microglia cells as well as

pro-inflammatory monocytes’ recruitment to the brain, fomenting

neuroinflammation (279, 280). Furthermore, evidence suggest that

M1 macrophages’ activation is linked to disease susceptibility and

progression (301). Accordingly, the decarboxylase inhibitor
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carbidopa that is used for PD management has been shown to

favor macrophage differentiation to an M2 phenotype (302).

Contrasting to the occurring in AD, the role of the adaptive

immune system in PD’s pathophysiology is becoming clearer. In

fact, numerous authors have found adaptive immune populations,

namely Th17 cells, in PD patients’ brain samples (303). In parallel

to what is observed for AD, glucose hypometabolism has been

implicated in disease pathophysiology, being associated with the

development of dementia occurring in the brain cortex (283).

Furthermore, PD is characterized by deregulation of several

glycolytic enzymes and transporters such as pyruvate

dehydrogenase kinase 1 (PDK1), PKM2, LDHA, GLUT1, MCT-1

and MCT-4, as well as increased mitochondrial respiratory activity

and oxidative damage in neurons (283).

Recently, PD supplementation with PCs has been drawing attention.

Oncemore, resveratrol exposes its neuroimmunomodulatory properties,

being able to suppress microglia activation and decrease the levels of

TNF-a, IL-1b and IL-6 and their receptors’ expression in the SNpc of

mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

induced PD (304). Analogously, curcumin administration has shown

to inhibit microglial morphological alterations in an in vitro model

(305). Curcumin has further demonstrated protective effects against

neurodegeneration in the A57Ta-synuclein model of PD by

downregulating mTOR/p70S6 kinase (P70S6K) signaling and

recovering macro autophagy (306). Accordingly, researchers

employing a nanoformulation of a-mangostin discovered that the

polyphenol reprogrammes microglia metabolism from glycolysis to

OXPHOS and promotes its autophagic capacity, increasing microglial

Ab clearance (307).

Regarding the mitochondrial dysfunction featuring the disease,

morin and mangiferin displayed the ability to attenuate membrane

potential loss in neurons (308), as well as quercetin which also

enhanced mitophagy by upregulating Pink and Parkin gene

expression (309).

On another hand, a study evaluating the impact of genistein in

dopaminergic neurodegeneration reported a dose-dependent inhibition

of neuronal loss in rats’ glial cells (310). The same authors reported the

soybean isoflavone’s ability to suppress microglia cell activation as well

as NO and superoxide production by these cells (310).

It is worth noting that evidence regarding the importance of the

gut-brain and spleen-brain axes in PD has been emerging, suggesting

an involvement of the intestinal and splenic immune systems in this

disease development (311). Wang et al. evaluated the impact of

chicory acid in mice with MPTP-induced PD and verified that this

PC prevented dopaminergic brain lesions and glial activation,

simultaneously reverting the disease-induced alterations in IL-17,

IFN-g and TGF-b levels in both the spleen and colon (311).

5.2.2.3 Stroke and stroke-induced neurodegeneration

Stroke is one of the global leading causes of disability and

mortality (312, 313). It is currently acknowledged that the immune

system is an active player in stroke’s pathogenesis, possibly causing

subsequent damage which are collectively designated as stroke-

induced secondary neurodegeneration (SND), a condition that

shares numerous features with AD, namely Ab accumulation (314).
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Similarly to AD and PD, stroke-associated neuroinflammatory

events include microglial activation and consequent release

of neurotoxic mediators, as well as stimulation of macrophages

and DCs (315). Stroke-associated microglial cells display

dysfunctional phagocytosis and chemotaxis, severely compromising

neuroinflammation resolution and neurorestoration (316).

Furthermore, after stroke events activated M1 microglia cells display

enhancedmitochondrial fission, leading to NF-kB andMAPK activation

which induces pro-inflammatory mediators’ expression (317). These

cells have also shown to release damaged mitochondria to neurons

where they fuse with neuronal mitochondria, damaging them and

promoting mitochondria-mediated neuronal death (318). Additionally,

stroke-associated microglia feature increased autophagy in associated

with an enhanced inflammatory response (319–321). In agreement,

treatment of permanent middle cerebral artery occlusion (pMCAO)

mice with an autophagy inhibitor alleviated the inflammatory response,

while an autophagy inducer exerted the opposite effect (320).

NK cells and CD4+, CD8+ and gd T lymphocytes have likewise

revealed to be involved in stroke’s initial stages, with B cell-

mediated neurodegeneration becoming prominent later on in the

disease course (315). Therefore, components of immunoreactivity

can be found in each phase of stroke pathology. Another similarity

between AD, PD and stroke is the metabolic reprogramming of

microglia cells shifting from OXPHOS to glycolysis (322). In fact,

stroke brains display increased concentrations of numerous

glycolytic intermediates, including glucose-6-phosphate, fructose-

6-phosphate, LDHA, PKM2, pyruvate, and lactate (322).

Furthermore, blocking microglial hexokinase-2, the enzyme

responsible for glucose phosphorylation into glucose-6-phosphate,

has shown to suppress their activation and reduce the infarct area in

male Sprague-Dawley rats subjected to transient middle cerebral

artery occlusion (323), highlighting the role of glucose metabolism

in microglia-mediated neuroinflammation characterizing stroke.

Interestingly, the ability of already existing drugs to modulate

macrophage and microglia metabolism in the context of stroke is

being studied (324). Minocycline, which has exhibited

neuroprotective activity in the context of stroke (325), has shown

to promote microglia polarization from an M1 to an M2 phenotype

through STAT1 and STAT6 pathways (326). Moreover, studies

suggest that tissue plasminogen activator (tPA), a widely employed

fibrinolytic agent in stroke therapy, is able to normalize microglial

chemotaxis and phagocytosis through metabolic pathways’

modulation, including Akt and ERK 1/2 signaling (327, 328).

Likewise, PCs immunomodulatory effects have been

demonstrated in situations of stroke and SND as well. For

instance, a study evaluating fisetin effects in a mouse model of

ischemic stroke highlighted the flavanol’s ability to inhibit post-

ischemic infiltration of macrophages and DCs as well as repress the

intracerebral activation of immune cells (329). In addition, fisetin

shown to suppress TNF-a production by macrophages and

microglia cells in vitro (329). Regarding PCs’ impact on

microglia, a study performed by Lan et al. showed that the

flavanone pinocembrin was able to suppress microglia activation

and consequent production of IL-6, IL-1b and TNF-a (330), while

also decreasing the expression of TLR4 and its downstream target

proteins TRIF and myeloid differentiation primary response 88
Frontiers in Immunology 17
(MyD88) (330). Similarly, both curcumin (331) and baicalein (332)

appeared to ameliorate ischemic brain damage a by modulating

microglia polarization and suppressing TLR4 and NF-kB signaling.

Gallic acid has also shown to induce microglia M2 polarization in a

MCAO mouse model (333).

PCs further seem to impact stroke-associated microglia

mitochondria dysfunction, as evidenced by the reduced post-

ischemia neuronal mitochondrial damage resulting from

kaempferol administration to rat PC12 cells (334). This effect was

considered to derive from an upregulated SIRT1 expression

alongside to inhibited gene acetylation of the pro-apoptotic

protein P66shc as well as Drp1 recruitment.

Remarkably, recent research has demonstrated that consumption

of resveratrol after stroke events might exert neuroprotection through

gut-brain-axis modulation (335). In fact, the authors determined that

the polyphenolic supplementation promoted a polarization shift of

Th cells from Th1 to Th2, reducing intestinal inflammation and

vascular permeability, which culminated in mitigation of

inflammatory brain lesions (335).
6 Conclusion and future directions

In recent years, the term “immunometabolism” has gained

traction within the scientific and research communities as a

descriptor of the interface between the immune system and

metabolism. The disruption of such complex interactions is

increasingly recognized as a common denominator of a wide range

of socioeconomically impactful diseases of both autoimmune and

non-autoimmune nature (172). The escalating prevalence of

immunometabolic disorders and the intricate interplay between

metabolic irregularities and scenarios of chronic inflammation

underscore the imperative to unravel the mechanisms that dictate

the programming of immune cell metabolism. In fact, cells from the

immune system display unique energy requirements depending on

their activation state, anabolic and catabolic mechanisms, being

associated with pro- and anti-inflammatory responses, respectively

(336). Therefore, modulating immune cells’ metabolic pathways

through their respective energetic substrates may significantly

impact disease outcome. From this perspective, nutritional

interventions emerge as promising tools within the realm of

preventive and/or adjunct therapeutic approaches, framing the

concept of immunonutrition, a branch of precision nutrition aimed

to fine tune pro- or anti-inflammatory immunophenotypes through

personalized protocols tailored to individual requirements, health

status and metabolic variability (57, 337).

Within the context of immunometabolic disorders, polyphenols

stand out due to a wealth of evidence supporting their potential health

benefits. Remarkably, varied polyphenols have shown to exert

immunomodulatory effects, such as curtailing immune cell

hyperactivity and rebalancing pro- and anti-inflammatory T cell

subsets, naming a few (70). Particularly, these bioactive compounds

are reported to influence immune cell metabolic reprogramming,

driving a tolerogenic phenotype and mitigating inflammation, thus

showcasing significant potential as key immunonutrients. Such

outcomes stem from their influence on nutrient-sensing pathways
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primarily involved in processes like glycolysis, mitochondrial

biogenesis and dynamics as well as mitochondria-ER-lysosome

inter-organelle connections, leading to epigenetic and metabolic

reprogramming that yield diverse immunomodulatory effects across

different cell populations as depicted in Figure 3 (338). It is worth

emphasizing that a substantial portion of these regulatory pathways is

similarly influenced by the pleiotropic effects of drugs included in

current therapeutic algorithms for the aforementioned diseases (as

illustrated in Figure 4), encouraging further exploration on how to best

leverage polyphenols as immunonutrients, including optimal dosing,

administration routes and potential drug-nutrients interactions

requiring clarification. Likewise, precision nutrition practices must

account for the metabolic and immunological changes occurring in

various life stages, particularly focusing on aging and associated

immunosenescence, an imperative yet unmet need.

Additional gaps surface when one considers clinical trial’s

experimental design and the selection of immune biomarkers in

studying the efficacy of immunonutrition approaches in the scope of

chronic diseases. The intricate nature of nutritional interventions,

their multi-target profile, as well as defining control groups, blinding,

randomization, and insufficient adherence pose substantial hurdles to

study design, results interpretation, and implementation. Overcoming

these limitations will undoubtedly improve the level of precision in the

clinical application of polyphenols-based immunonutrition and

attenuate the massive burden of immunometabolic disorders

currently compose. Multi-omics models and the integration of

multi-dimensional datasets comprising nutritional genomics,

phenotypes and lifestyles are paramount to understand the

metabolic variability between individuals and achieve personalized

guidance for tailored polyphenol-based immunonutritional plans.
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