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Introduction: Considerable evidence has unveiled a potential correlation

between gut microbiota and spinal degenerative diseases. However, only

limited studies have reported the direct association between gut microbiota

and spinal stenosis. Hence, in this study, we aimed to clarify this relationship using

a two-sample mendelian randomization (MR) approach.

Materials and Methods: Data for two-sample MR studies was collected and

summarized from genome-wide association studies (GWAS) of gut microbiota

(MiBioGen, n = 13, 266) and spinal stenosis (FinnGen Biobank, 9, 169 cases and

164, 682 controls). The inverse variance-weighted meta-analysis (IVW),

complemented with weighted median, MR-Egger, weighted mode, and simple

mode, was used to elucidate the causality between gut microbiota and spinal

stenosis. In addition, we employed mendelian randomization pleiotropy residual

sum and outlier (MR-PRESSO) and the MR-Egger intercept test to assess

horizontal multiplicity. Cochran’s Q test to evaluate heterogeneity, and “leave-

one-out” sensitivity analysis to determine the reliability of causality. Finally, an

inverse MR analysis was performed to assess the reverse causality.

Results: The IVW results indicated that two gut microbial taxa, the genus

Eubacterium fissicatena group and the genus Oxalobacter, have a potential

causal relationship with spinal stenosis. Moreover, eight potential associations

between genetic liability of the gut microbiota and spinal stenosis were implied.

No significant heterogeneity of instrumental variables or horizontal pleiotropy

were detected. In addition, “leave-one-out” sensitivity analysis confirmed the

reliability of causality. Finally, the reverse MR analysis revealed that no proof to

substantiate the discernible causative relationship between spinal stenosis and

gut microbiota.
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Conclusion: This analysis demonstrated a possible causal relationship between

certain particular gut microbiota and the occurrence of spinal stenosis. Further

studies focused on the mechanism of gut microbiota-mediated spinal stenosis

can lay the groundwork for targeted prevention, monitoring, and treatment of

spinal stenosis.
KEYWORDS

two-sample mendelian randomization, gut microbiota, spinal stenosis, causal
inference, single nucleotide polymorphism
Introduction

Spinal stenosis, a multifactorial disease, is characterized by the

narrowing of the spinal canal, which may occur from exogenous

factors like trauma, infections, and tumors, as well as endogenous

factors like natural degeneration (1). These factors can change the

anatomical structure surrounding the spinal canal (posterior

longitudinal ligament, ligamentum flavum, and facet joints) and

degenerate the intervertebral discs, leading to symptoms such as ow

back pain, leg pain, and intermittent claudication (2). As a result of

the aging population, an estimated 100 million individuals

worldwide are reported to suffer from spinal stenosis, seriously

affecting the quality of life for patients and their families and

contributing significantly to the global medical and financial

burden (3, 4). Though the function of the existed treatment

strategies, to develop high-efficiency and fast prevention,

treatment and monitoring strategies is very instant.

As the evolvement of the human health research, studies on the

gut microbiota have steadily moved to the center of attention (5).

Gut microbiota, including prokaryotes (bacteria and archaea),

eukaryotes (fungi, intestinal protozoa, and parasitic helminths),

viruses, and phages, forms the largest, most important and

diverse micro-ecosystem among the digestive ecosystems (6). Due

to the diversity and specificity of its structure, the gut microbiota is

essential for maintaining a dynamic balance between the intestinal

environment and human systems (7, 8). In addition, gut microbiota

and its metabolites are involved in the disease process of various

organs inside and outside the intestine (e.g., brain, liver, and

colorectum). Especially in some metabolic diseases, changes in the

abundance of gut microbiota have become a potential risk factor for

inducing inflammatory cytokines (9–11). In recent years, there has

been growing evidence with regard to the relationship between gut

microbiota and spinal degenerative diseases. Specifically, dysbiosis

may affect the health of spinal structures through three

mechanisms: (1) nutrition, including calcium, amino acids, and

vitamin K; (2) immune regulation, such as estrogen, short-chain

fatty acids, and systemic inflammation; and (3) neurotransmitters,

including serotonin and leptin, which affect bone metabolism (12).

Furthermore, the publication by A et al. serves as an overview of

earlier research findings and creatively brings up the concept of the
02
intestinal-spinal axis, thus further illustrating the potential

relationship between gut microbiota and spinal degenerative

diseases (13).Based on the known interactions between the gut

microbiota and diseases, several studies have implicated that the

occurrence and development of such diseases can be prevented by

precisely and simply regulating the biological abundance of gut

microbiota (14), providing a new scheme for spinal stenosis

prevention, treatment and monitoring.

Thus, comprehending the connection between the gut

microbiota and spinal stenosis is essential. Nevertheless, recent

reports have only demonstrated some indirect relationships. It is

commonly recognized that spinal stenosis is associated with

reduced space available for the neural and vascular elements of

the lumbar spine (15). As previously mentioned, dysbiosis of the

intestinal flora may affect spinal structures (bone, cartilage,

intervertebral discs, ligaments, and muscles) through a range of

possible mechanisms, such as immunological and nutritional,

leading to the development of vertebral osteophytes, lesser

articular eminence hyperplasia and hypertrophy, disc herniation,

hypertrophy of the ligamentum flavum, and more. And

importantly, when the alterations happen in paravertebral

structures, causing the volume of the spinal canal to narrow, it

can lead to spinal stenosis (16). Also, the correlation between gut

microbiota and disorders associated with chronic inflammation and

the validation observed in ligamentum flavum thickening raise the

prospect of a relationship between gut microbiota and spinal

stenosis (17). However, no direct cause-and-effect association

between gut microbiota and spinal stenosis has been reported.

Comprehending and clarifying the causal relationship between

the two mentioned above can offer novel approaches towards the

targeted prevention and management of spinal stenosis.

Employing genetic variants to generate instrumental variables

(IVs) for exposure and incorporating collected data from genome-

wide association studies (GWAS), mendelian randomization (MR)

studies offer a whole new approach to evaluate causal relationships

between exposures and outcomes (18). At present, MR studies have

been widely used to explore the causal relationship between gut

microbiota and diseases, including metabolic diseases, autoimmune

diseases, and various types of bone diseases (19). Considering the

fact that genotypes are randomly assigned from parents to children,
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it is unlikely that environmental influences will affect the

relationship between genetic variation and outcome (20).

Therefore, MR research offers an economical and effective

approach to investigating the causal relationship between

exposure and the outcome. In this paper, a two-sample MR

analysis was performed to assess the causal relationship between

gut microbiota and spinal stenosis using the GWAS summary

statistics from the MiBioGen and FinnGen consortia.
Materials and methods

Based on two-sample MR analyses, we obtained pooled data

from published GWAS to evaluate the causal relationship between

gut microbiota and spinal stenosis. This study first determined

whether gut microbiota contributes to the prevention or promotion

of spinal stenosis by selecting gut microbiota as the exposure and

spinal stenosis as the outcome. In addition, three crucial

presumptions must be met to allow for MR research to proceed:

1. Genetic variation should be significantly linked to exposure; 2.

Genetic variation should be independent of confounders associated

with selected exposures and outcomes; and 3. Genetic variation can

affect outcomes only through exposure and not through other

biological pathways (i.e., no horizontal multiplicity of effects)

(21). Specific details are shown in Figure 1.
Exposure data sources

The MiBioGen consortium, conducting the largest genome-

wide meta-analysis on gut microbiota composition, provided

genetic variations of gut microbiota in this study. The meta-

analysis examined the relationship between human autosomal

genetic variation and the gut microbiome by analyzing the

microbial composition of 18,340 participants from 24

independent cohorts, the majority of whom were of European
Frontiers in Immunology 03
ancestry (n = 13,266) (22). A total of 211 taxa (9 phyla, 16

classes, 20 orders, 35 families, and 131 genera) were included in

this meta-analysis. The data can be easily accessed from the website

(www.mibiogen.org) (23).
Outcome data sources

GWAS summary statistics for spinal stenosis were obtained from

the FinnGen Consortium R8 release (https://r8.risteys.finngen.fi/),

which involved 9,169 spinal stenosis cases and 164,682 controls.
Instrument variables selection

To ensure the validity and accuracy of the findings on the causal

relationship between gut microbiota and spinal stenosis, we

employed a rigorous quality control procedure to screen out

acceptable IVs. The flow diagram is shown in Figure 2.

First, referring to previous MR studies and to ensure that a

sufficient number of IVs were acquired, we established the

significance level at P < 1.0×10-5 to ensure the robustness of the

results (24, 25). Second, selected SNPs (R2 < 0.001 and clumping

distance = 10,000 kb) were clumped to lessen the offset

brought on by linkage disequilibrium to guarantee that the

IVs are mutually independent (26). Third, we eliminated

palindromic SNPs and SNPs that did not appear in the

outcome from the IVs (27). Fourth, the PhenoScanner (http://

www.phenoscanner.medschl.cam.ac.uk/phenoscanner) database

was employed to detect and exclude IVs associated with

confounders (educational attainment, smoking behavior, BMI,

length of mobile phone use, and watching TV) to meet the

principle of independence assumption in MR analysis (28).

Finally, we calculated the F statistic to assess the strength of IVs

and removed IVs with F < 10 to satisfy the strong correlation with

exposure and attenuate instrumental bias (26, 29). F = R2(n-k-1)/k
FIGURE 1

Schematic representation of the a two-sample mendelian randomization analysis. SNPs, single nucleotide polymorphisms.
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(1-R2) (n, sample size; k, number of IVs; and R2 variance of the

exposure explained by the selected SNPs).
Statistical analysis

The IVW approach (30) was mostly utilized in this MR analysis

to provide unbiased estimates of the causal connection between gut

microbiota and spinal stenosis. In addition, to estimate the causal

relationship under various circumstances, additional techniques

were also employed, including the weighted median approach

(31), MR-Egger method (32), simple mode method (33), and

weighted mode method (34).

To detect potential horizontal pleiotropy effects, we performed

the MR-PRESSO and MR-Egger regression intercept analysis. The

intercept term in MR-Egger regression can be utilized for assessing

horizontal pleiotropy, which if significant demonstrates the

presence of horizontal pleiotropy and vice versa indicates the

absence of horizontal pleiotropy (35). By eliminating major

outliers, MR-PRESSO analysis identifies and decreases horizontal

pleiotropy. However, it is important to note that the MR-PRESSO

outlier test requires that at least 50% of the genetic variance be valid

instrumental variables and relies on the Instrument Strength

Independent of Direct Effect (InSIDE) condition (36). After

removing pleiotropy, the remaining SNPs were used for

subsequent MR analyses.
Frontiers in Immunology 04
Cochran’s Q statistic was used to examine the heterogeneity of

the SNPs, with a P-value < 0.05 indicating significant heterogeneity

(37). Furthermore, to detect possible heterogeneity, we individually

removed each instrumental variable SNP and conducted a “leave-

one-out” sensitivity analysis to discover if a single SNP conclusively

contributed to the causal signal (38). False discovery rate (FDR)

corrections were applied to evaluate the false alarm rate. When P <

0.05 but q-value ≥ 0.1, gut microbiota and spinal stenosis were

considered to have a suggestive association.

Finally, we also performed reverse MR analyses to determine

whether reverse causality existed. The “TwoSampleMR” package

and the “MRPRESSO” package in the R software (version 4.3.1,

https://www.r-project.org/) were used for all MR analyses (36, 39).
Results

Instrument variables for gut microbiota

According to a series of filtering steps, a total of 102, 180, 216, 380,

and 1363 SNPs at the phyla, class, order, family, and genus levels were

identified after a series of filtering steps. After clumping and

harmonization, the number of SNPs related to spinal stenosis varies

from 3 to 20. Furthermore, the genus RuminococcaceaeUCG002

contains the highest number of SNPs (20), whereas the genus with

the least number is LachnospiraceaeND3007 (3 SNPs). And no feature,
FIGURE 2

The flow diagram of instrument variables selection.
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regardless of level, contains a single SNP. Supplementary Table 1

contains comprehensive details regarding the selected SNPs.
Causal effects

Initially, our research examined the cause and effect relationship

between the gut microbiota and spinal stenosis. Employing the IVW

approach as the primary MR detection method, As shown in Table 1,

Supplementary Table 2, and Figure 3, the genus Eubacterium

fissicatena group (OR = 1.09, 95% CI = 1.01-1.18, P = 0.02, IVW)

and the genus Oxalobacter (OR = 1.12, 95% CI = 1.05-1.20, P = 0.001,

IVW) were identified to have a potential causal relationship with spinal

stenosis, indicating these two bacterial categories might potentially

cause spinal stenosis. Specifically, considering that the above OR values

are all greater than 1, the higher genetically predicted Eubacterium

fissicatena and Oxalobacter levels were associated with a higher risk of

spinal stenosis. When the FDR adjustment was carried out, however,

these correlations failed to be significant (q > 0.1). Specific IVs can be

found in Table 2.

Among the two causal correlations revealed above, the F-statistics

of the IVs were larger than 10, eliminating the bias of weak IVs

(Table 2; Supplementary Table 1). Cochran’s IVW Q-test indicated

that no significant heterogeneity was observed in the IVs of the genus

Eubacterium fissicatena group (P = 0.67) and the genus Oxalobacter (P

= 0.45) (Supplementary Table 3). In addition, according to the results

of theMR-Egger regression intercept analysis, no significant directional

horizontal pleiotropy was identified either in the IVs of the genus

Eubacterium fissicatena group (P = 0.33) and the genus Oxalobacter (P

= 0.92) (Supplementary Table 4). In addition, none of the above SNPs

revealed a potential relationship with confounders (educational

attainment, smoking behavior, BMI, length of mobile phone use, and

watching TV) associated with spinal stenosis (28).

According to the results of reverse MR analysis, no significant

causal association was found between spinal stenosis and the

mentioned gut microbiota, the genus Eubacterium fissicatena
Frontiers in Immunology 05
group (OR = 0.94, 95% CI = 0.87-1.03, P = 0.19, IVW) and the

genus Oxalobacter (OR = 0.96, 95% CI = 0.89-1.04, P = 0.31, IVW)

(Table 3). Promising results (P > 0.05) were obtained for

heterogeneity based on the Cochran’s IVW Q-test and directional

horizontal pleiotropy based on the MR-Egger regression intercept

analysis. In addition, relevant information on the selected IVs and

MR results about reverse MR analysis can be found in

Supplementary Table 5.

Moreover, in at least one MR method excluding IVW, eight

bacterial taxa, the class Clostridia (OR

= 1.39, 95% CI = 1.14-1.70, p = 0.001, Weighted median; OR =

1.43, 95% CI = 1.09-1.87, P = 0.03,

Weighted mode), the order Clostridiales (OR = 1.37, 95% CI =

1.13-1.65, P = 0.001, Weighted median;

OR = 1.40, 95% CI = 1.08-1.81, P = 0.02, Weighted mode), the

order Rhodospirillales (OR = 1.46, 95% CI = 1.05-2.03, P = 0.04, MR

Egger), the family Lachnospiraceae (OR = 1.65, 95% CI = 1.06-2.51,

P = 0.03, MR Egger), the family Prevotellaceae (OR = 0.86, 95% CI =

0.75-0.98, P = 0.03, Weighted median),

the family Acidaminococcaceae (Causal Estimate = -0.07, SD =

0.03, T = -2.65, P = 0.04, MR-PRESSO), the genus Eisenbergiella

(OR = 0.87, 95% CI = 0.78-0.97, P = 0.03, MR Egger), the genus

unknowngenus.id.2755 (OR = 1.49, 95% CI = 1.10-2.02, P = 0.03,

MR Egger), were revealed to be suggestively related with spinal

stenosis (Figure 4; Supplementary Tables 2, 6).
Sensitivity analyses

In this study, Cochran ‘s IVW Q-test was utilized to evaluate

heterogeneity, and the MR-Egger regression intercept analysis was

used to evaluate directional horizontal pleiotropy. Furthermore, we

employed MR PRESSO to ensure global directional horizontal

p le iotropy and increase the re l iabi l i ty of the study

(Supplementary Table 6). At the level of five different strains, MR

PRESSO was performed for each intestinal flora except the genus
TABLE 1 MR estimates for the association between the two gut microbiota and spinal stenosis.

Bacterial taxa (exposure) MR method No. of SNP OR 95% CI P-value q-value

Eubacterium fissicatena group MR Egger 9 1.34 0.91-1.99 0.19 0.96

Weighted median 9 1.07 0.79-1.54 0.20 0.94

Inverse variance weighted 9 1.09 1.01-1.18 0.02 0.97

Simple mode 9 1.05 0.90-1.22 0.54 0.96

Weighted mode 9 1.05 0.90-1.22 0.56 0.99

Oxalobacter MR Egger 11 1.10 0.79-1.54 0.59 0.98

Weighted median 11 1.09 0.99-1.20 0.09 0.94

Inverse variance weighted 11 1.12 1.05-1.20 0.001 0.13

Simple mode 11 1.08 0.92-1.26 0.37 0.96

Weighted mode 11 1.09 0.95-1.25 0.27 0.99
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LachnospiraceaeND3007 because there were insufficient SNPs (n ≤

3) to conduct MR PRESSO. And one of the class levels, one of the

order levels, three of the family levels, and eighteen of the genus

levels were tested for outlier-corrected MR-PRESSO to ensure the
Frontiers in Immunology 06
robustness of the MR results (Supplementary Table 6). In addition,

the leave-one-out analyses were performed to examine the potential

influence of individual SNPs on the observed associations. As

shown in Figure 5, when an SNP is eliminated individually, the
TABLE 2 SNPs used in MR analysis of the association between the two gut microbiota and spinal stenosis.

Bacterial
taxa (exposure)

SNP Effect allele Other allele Exposure (Bacteria) Outcome
(spinal stenosis)

F-
statistic

Beta SE P-value Beta SE P-value

Eubacterium fissicatena group rs10147907 T G 0.17 0.04 1.36E-05 0.05 0.02 0.04 18.92

rs11818408 G A 0.11 0.02 8.04E-06 0.01 0.01 0.55 19.93

rs11876297 T C 0.13 0.03 3.06E-06 0.00 0.01 0.89 21.78

rs151257695 A G 0.21 0.05 4.10E-06 0.03 0.02 0.14 21.21

rs1768152 T C 0.14 0.03 1.03E-05 0.03 0.02 0.11 19.46

rs2733072 G A 0.11 0.02 1.57E-06 0.01 0.01 0.56 23.06

rs3771393 C T 0.13 0.03 9.27E-07 0.00 0.01 0.87 24.07

rs6934739 A G 0.11 0.03 1.04E-05 0.01 0.01 0.31 19.44

rs7104872 G A 0.14 0.03 2.05E-06 -0.01 0.02 0.75 22.54

Oxalobacter rs11108500 A G -0.20 0.04 3.17E-06 -0.06 0.02 0.00 21.70

rs111966731 T C 0.21 0.05 6.22E-06 0.01 0.02 0.50 20.42

rs12002250 A C 0.22 0.05 3.22E-06 -0.02 0.03 0.46 21.68

rs1569853 T C -0.14 0.03 3.33E-06 -0.04 0.02 0.04 21.61

rs36057338 G T 0.21 0.04 8.15E-07 0.01 0.03 0.69 24.32

rs3862635 C T -0.17 0.04 1.25E-05 -0.03 0.02 0.11 19.08

rs4428215 G A 0.13 0.02 7.50E-08 0.02 0.01 0.24 28.93

rs6000536 C T -0.13 0.03 2.45E-07 -0.01 0.02 0.50 26.63

rs6993398 G A 0.13 0.03 5.06E-06 0.00 0.02 0.87 20.81

rs736744 C T 0.12 0.02 2.41E-08 0.02 0.01 0.11 31.13

rs115602804 G A 0.10 0.02 3.69E-06 0.00 0.02 0.91 21.41
A B

FIGURE 3

Scatter plots for the causal association between gut microbiota and spinal stenosis. (A) genus Eubacterium fissicatena group; (B) genus Oxalobacter.
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overall error lines are all positioned on one side of the median line,

implying that each SNP affects the results equally and excludes

outlier SNPs from affecting the reliability of the results.

Discussion

Recently, researchers have revealed that the composition and

variety of gut microbial components are closely linked to spine-

related disorders such as osteoporosis (11), intervertebral disc

degeneration (40), spinal sarcopenia (41), adolescent idiopathic

scoliosis (42), ankylosing spondylitis (43), and others. An article,

based on previous research, innovatively proposes the concept of

the gut-spine axis by reviewing articles on gut microbiota and spine-

related diseases (13). In terms of the association between gut

microbiota and spinal stenosis, Tadatsugu Morimoto et al.

demonstrated that a Gut-ligament axis may be present in lumbar

spinal stenosis, but the specific connection is unknown (13). In this

study, a two-sample MR analysis was performed to assess the causal

relationship between gut microbiota and spinal stenosis, employing

summary statistics for gut microbiota from the largest GWAS meta-
Frontiers in Immunology 07
analysis carried out by the MiBioGen consortium and summary

statistics for spinal stenosis from the FinnGen consortium R8

release data. With the help of large-scale GWAS data sources, our

MR study fills this knowledge gap from a new perspective. To the

best of our knowledge, this is the first MR study to investigate the

potential causal relationship between gut microbiota and spinal

stenosis. Interestingly, the finding indicates that genetically

predicted abundance of specific gut microbiota (the genus

Eubacterium fissicatena group and genus Oxalobacter) is

potentially associated with spinal stenosis. Additionally, we also

identified some gut microbiota may be potentially related to spinal

stenosis. Importantly, the above results may have implications for

public health efforts to minimize the risk of development of

spinal stenosis.

Eubacterium fissicatena, growing at 20–40 °C (optimum 37 °C)

and pH 6.0–8.0 (optimum pH 7.0), was isolated from the alimentary

tract of the goat as first reported by M. Taylor in 1972 (44).

Eubacterium, regarded as promising targets for microbial

therapeutics, forms the core genera of health-associated human

gut microbiota (45). Over the past few years, an increasing number
FIGURE 4

Heatmap illustrating eight bacterial taxa were revealed to be suggestively related with spinal stenosis, with ** indicating P < 0.05.
TABLE 3 Reverse MR analysis between spinal stenosis and the two gut microbiota.

Bacterial taxa (outcome) MR method No. of SNP OR 95% CI P-value q-value

Eubacterium fissicatena group MR Egger 80 1.06 0.68-1.64 0.80 0.95

Weighted median 80 0.96 0.85-1.09 0.50 0.60

Inverse variance weighted 80 0.94 0.87-1.03 0.19 0.31

Simple mode 80 1.00 0.73-1.36 0.98 0.98

Weighted mode 80 0.98 0.75-1.28 0.87 0.87

Oxalobacter MR Egger 49 0.99 0.67-1.45 0.95 0.95

Weighted median 49 0.97 0.87-1.08 0.60 0.60

Inverse variance weighted 49 0.96 0.89-1.04 0.31 0.31

Simple mode 49 1.10 0.81-1.48 0.55 0.98

Weighted mode 49 1.14 0.86-1.51 0.35 0.87
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of studies have shown that Eubacterium modulates immune and

inflammatory responses in humans through the regulation of short-

chain fatty acids (SCFAs) which have significant effects on gut

health (45, 46). In addition to its anti-inflammatory effects,

butyrate, the primary metabolite of SCFAs in the colon, is

necessary for the maintenance of intercellular tight junctions,

which preserves the normal barrier function of intestinal mucosa

(47). Several studies conducted in mice have shown that specific

medication components or metabolites can modulate dextran

sulfate sodium salt-induced colitis by correcting intestinal flora

dysbiosis (decreasing the abundance of pathogenic bacteria,

Eubacterium fissicatena) (48–50). Furthermore, in terms of

metabolism-related diseases, the reduction of Eubacterium

fissicatena abundance is effective in reducing diet-induced obesity,

hepatic steatosis, dyslipidaemia, and insulin resistance (51–54).

Taken together, the existing research indicates that Eubacterium

fissicatena is most often a causative agent in the mediation of

inflammation-related diseases and metabolic disorders, including

obesity and dyslipidaemia. As mentioned in the background

section, there is a correlation between these factors and spinal

stenosis, and what seems to serve as an explanation for the existence

of a possible causal relationship between Eubacterium fissicatena

and spinal stenosis.

In contrast to Eubacterium fissicatena, Oxalobacter, first

reported as a novel anaerobic bacterium for degrading oxalic

acids in 1985, is a popular species of interest to researchers in our

literature search (55). Since the separation of Oxalobacter,

numerous studies have concentrated on its role in hyperoxaluria

and kidney stone development and attempted to develop associated

therapies to limit the formation and advancement of the above-

mentioned diseases, owing to its specific function in degrading

oxalic acid (56–59). OxlT, an oxalate transporter protein of

Oxalobacter, specifically absorbs oxalate from the intestine into

bacterial cells, lowering the likelihood that the host animal may

develop oxalate-deposition illnesses such as kidney stones (60).

Remarkably, when examining the connection between Oxalobacter
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and spinal stenosis, we discovered a case report by Knight RQ et al.

suggesting that lumbar spinal stenosis could potentially be caused

by oxalic acid accumulation (61). As a supplement, the correlation

between Oxalobacter and spinal stenosis at the genetic level was

explored in the present MR study to enhance insights in this field.

Furthermore, we found eight strains of organisms that might be

related to spinal stenosis based on five MR statistical approaches

other than the IVW method, in addition to the two strains (the

genus Eubacterium fissicatena group and the genus Oxalobacter)

that were obviously causally linked to the condition. As mentioned

above, eight bacterial taxa, 1 class (Clostridia), 2 orders

(Clostridiales, Rhodospirillales), 3 families (Lachnospiraceae,

Prevotellaceae, Acidaminococcaceae), and 2 genera (Eisenbergiella,

unknowngenus.id.2755), may have a potential relationship with

spinal stenosis. However, to confirm the aforementioned

association between gut microbiota and spinal stenosis, large-scale

population sequencing studies need to be performed.

Overall, this study has several strengths. Firstly, employing MR

analysis, we established the genetic causal relationship between gut

microbiota and spinal stenosis, and importantly identified two gut

microbiota (the genus Eubacterium fissicatena group and genus

Oxalobacter) that were causally linked to the condition. This work

contributes to the body of knowledge in this field and holds the

potential to contribute to public prevention strategies for spinal

stenosis. Second, to improve the robustness of the study findings,

MR-PRESSO and MR-Egger regression intercept terms were

utilized to test for horizontal pleiotropy. Furthermore, to avoid

bias, the two-sample MR study adopted non-overlapping exposure

and outcome summary data (62).

Nevertheless, there are several limitations regarding our study

that should be acknowledged. First, as the majority of participants

of the aggregated data in this research were of European ancestry,

the extent to which findings from this study can be extrapolated to

other ethnic groups may be limited. Second, following the relevant

research papers, we set the significance level for SNPs to P < 1 × 10-5

to acquire more instrumental variables, which implies that SNPs
A B

FIGURE 5

Leave-one-out plots for the causal association between gut microbiota and spinal stenosis. (A) genus Eubacterium fissicatena group; (B)
genus Oxalobacter.
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employed in the analyses in the current study did not satisfy the

standard GWAS significance threshold (P < 5 × 10-8) (19, 22). For

this, we carefully evaluated the F-value of each SNP to eliminate the

potential effect of weak IVs bias. Furthermore, the majority of

individuals with spinal stenosis are middle-aged or older, while our

current study is unable to divide the intestinal flora based on aging.
Conclusions

In summary, we comprehensively assessed the causal

association between the gut microbiota and spinal stenosis. As a

result, the genus Eubacterium fissicatena group and genus

Oxalobacter are considered to have a potentially genetic causal

relationship with spinal stenosis. Undoubtedly, this study might

provide new insights into the pathogenesis of gut microbiota-

mediated spinal stenosis. However, further large-scale clinical

trials are needed to confirm these findings and to develop public

prevention strategies for spinal stenosis, as well as to explore the

potential of targeted probiotics for the treatment of spinal stenosis.
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