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Background: Tetanus, diphtheria, acellular pertussis (Tdap) vaccination is

recommended to be administered in every pregnancy. Although the safety of

this strategy has been confirmed, the immunogenicity of Tdap vaccination in two

successive pregnancies has not yet been described. This study investigated

Tdap-specific immunity levels and transplacental transfer in two successive

pregnancies after repeated Tdap-vaccination.

Methods: Women enrolled in prior studies on Tdap vaccination during

pregnancy were invited to participate in a follow-up study if they became

pregnant again. Women who received a Tdap vaccine in both pregnancies

were considered for this analysis. Tdap-specific total IgG and IgG subclasses

were measured with a multiplex immunoassay.

Results: In total, 27 participants with a mean interval between deliveries of 2.4

years were included in the analysis. In maternal serum, Tdap-specific total IgG

levels were comparable at both deliveries whereas in cord serum, all Tdap-

specific total IgG antibody levels were reduced at the second compared to the

first delivery. This was largely reflected in the IgG1 levels in maternal and cord

serum. Transplacental transfer ratios of total IgG and IgG1 were also mostly

reduced in the second compared to the first pregnancy.

Conclusion: This study reports for the first time Tdap-specific total IgG and IgG

subclass levels and transfer ratios after repeated Tdap vaccination in successive

pregnancies. We found reduced transfer of most Tdap-specific IgG and IgG1

antibodies in the successive pregnancy. As pertussis-specific antibodies wane

quickly, Tdap vaccination in each pregnancy remains beneficial. However, more

research is needed to understand the impact of closely spaced booster doses

during pregnancy on early infant protection against pertussis.
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Introduction

Despite the availability of universal pertussis immunization

programs achieving high coverage, pertussis has re-emerged as an

important respiratory infection during the last decade. According to

Yeung et al., an estimated 24.1 million pertussis cases and 160,700

pertussis-related deaths in children younger than 5 years old occur

annually (1). The most affected population are infants (2), too

young to be completely protected by the currently available vaccines

and vaccination schedules (3).

A three-dose primary series of diphtheria-tetanus-pertussis

vaccines is recommended to be given from 6 weeks of age

onwards (4). As immunity against pertussis after vaccination or

natural infection wanes over time, repeated pertussis booster doses

are needed throughout life to prevent infection and to protect

vulnerable populations such as unvaccinated infants by reducing

transmission. A single booster dose of tetanus, diphtheria, acellular

pertussis (Tdap) is therefore recommended by the Advisory

Committee on Immunization Practices for persons aged 11 to 18

years. From the age of 19 onwards, a booster dose of either Td or

Tdap is recommended to be administered every 10 years

throughout life to ensure continued protection (5). The safety and

immunogenicity of this decennial Tdap booster in adolescents and

adults have been established in previous research (6–8). Tdap

immunization less than 2 years after tetanus vaccination was also

found to be safe in the general population (9, 10).

To ameliorate the protection of vulnerable infants in their first

weeks of life, Tdap vaccination is recommended during pregnancy in

an increasing number of countries (5, 11). In-pregnancy vaccination

elevates the levels of disease-specific maternal antibodies in pregnant

women which are then transferred to the newborn through

transplacental transport and breastfeeding and provide passive

protection to the newborn in the first weeks postpartum (12).

Although a correlate of protection for pertussis is not yet defined,

high levels of immunoglobulin G (IgG) antibodies against pertussis

toxin (PT), pertactin (PRN), and filamentous hemagglutinin (FHA)

are known to be important effectors to mediate protection (13). IgG

antibodies can be further divided into four subclasses, IgG1, IgG2,

IgG3 and IgG4, that structurally differ in their constant region

resulting in different effector functions, half-life and transplacental

transport (14). Typically, IgG1 and IgG3 are potent inducers of Fc-

mediated effector mechanisms, whereas IgG2 and IgG4 have lower

Fc-dependent effector potential. Immunoglobulin class switching

involves the change of B cell’s antibody production from one

isotype to another and allows the immune system to engage with

each antigen in a specific manner with unique effector mechanisms

being imprinted by each (sub)class (15). The transport of IgG

subclasses across the placenta is known to be mediated by the

neonatal Fc receptor (FcRn) with preferential transfer of IgG1 and

less efficient transfer of IgG2, IgG3 and IgG4, although there is no

absolute consensus in the hierarchy of subclass transfer

efficiency (16).

Vaccine-induced pertussis-specific antibodies are known to

wane quickly (17–19). Therefore, vaccination is recommended

during each pregnancy, maximizing the maternal antibody
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response and passive antibody transfer to adequately protect the

newborn regardless of the interval between pregnancies (5). For

pregnant women who receive Tdap during multiple closely spaced

pregnancies, a theoretical risk for severe local reactions exists based

on historical data on multiple doses of tetanus-containing vaccines

(20). On the other hand, the potential benefit of preventing

pertussis morbidity and mortality in infants should outweigh the

theoretical concerns of possible severe adverse events. Moreover,

more recent data did not find increased risks for acute adverse

events and adverse birth outcomes after Tdap vaccination in

pregnancy with a recent prior tetanus-containing vaccination (21,

22). The safety of Tdap administration in successive pregnancies

within a 5-year timespan has also been confirmed (23). However,

currently, the immunogenicity in successive pregnancies after

repeated Tdap vaccination has not yet been described. In other

words, it is not known if pregnant women achieve the same level of

immunity in successive pregnancies after Tdap vaccination in both

pregnancies and whether maternal antibodies are equally

transported across the placenta. As vaccination in pregnancy is

becoming an increasingly important strategy to protect infants, it is

of importance to improve our knowledge concerning transplacental

transfer of immunity and the impact of IgG subclasses on

this transport.

The primary aim of this study is therefore to investigate Tdap-

specific IgG antibody levels and the transplacental transfer of IgG

antibodies from mother to child at two successive deliveries after

Tdap vaccination in both pregnancies. The study also aims to

evaluate Tdap-specific IgG subclass levels as well as the

transplacental transfer of these antibodies.
Methods

Study design

Women enrolled in prior studies on pertussis vaccination during

pregnancy (clinicaltrials.gov NCT01698346 and NCT02511327) were

invited to participate in a follow-up study when they became

pregnant again. Women who received a licensed Tdap vaccine in

both pregnancies (Boostrix®, GlaxoSmithKline or Triaxis®, Sanofi

Pasteur; depending on availability within the national vaccination

program at the moment of vaccination) were included in the follow-

up study. Vaccination was planned and performed according to

protocol by a study physician or within the regular healthcare system

following the current Belgian recommendation, i.e. vaccination

between 24 and 32 weeks of gestation, if feasible (24). A maternal

and cord blood sample were collected from all mother-infant pairs at

each delivery. Cord blood samples were collected immediately after

birth; maternal blood samples were collected within 72 hours after

delivery. All collected samples were centrifuged and serum was stored

at -35°C until further use.

The pregnancy of the baseline studies was not for all

participants their first pregnancy but will be further referred to as

‘pregnancy 1’ and ‘delivery 1’ in this paper. The pregnancy of the

follow-up study succeeded the previous pregnancy and will further

be referred to as ‘pregnancy 2’ and ‘delivery 2’.
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For both baseline studies and the follow-up study, a

questionnaire on demographics, vaccination history and general

medical history was collected. Growth parameters of the newborn,

breastfeeding data, daycare attendance, immunization data, and

medical histories for all household members were collected at each

visit. Full details on inclusion and exclusion criteria can be found in

the publications of the original studies (25–27).
Tdap-specific IgG and IgG
subclass detection

All available leftover maternal and cord serum samples from both

deliveries were tested at the Université Libre de Bruxelles (ULB).

Total and subclass Tdap-specific IgG antibodies were quantified

using an in-house bead-based multiplex immunoassay (28). In

brief, serum samples were incubated with distinct fluorescent

magnetic beads, individually coated with specific purified target

antigens: PT (List Labs, #180), FHA (Sigma, #F5551), PRN (NAC,

#NAT41666), diphtheria toxin (DT, List Labs, #151) and tetanus

toxin (TT, MassBiologics, # LP1105P). Samples were measured at

appropriate dilutions with a Multigam reference (CAF-DCF,

Belgium), a WHO international standard NIBSC 06/140 and

blanks included on each plate. Serum dilutions used to titrate IgG

and IgG1 were 1:9000-1:18000-1:36000, 1:70-1:140-1:280 for IgG2

and IgG3, and 1:70-1:700-1:7000 for IgG4. After washing, the

captured IgG was detected with R-phycoerythrin labelled

antibodies specific for each isotype (IgG1-4).

Antigen-antibody binding was read on a BioPlex-200 (Bio-Rad,

California, USA) obtaining mean fluorescence intensity (MFI).

Tdap-specific total IgG antibody MFI levels were converted into

international units per milliliter (IU/mL) by interpolation from a

weighted five-parameter logistic standard. The lower limit of

quantification (LLOQ) was defined as the lowest concentration

within the linear part of the standard curve and corresponds to the

mean of the interpolated bottom best-fit values of all plates,

multiplied by 2. Adjusted LLOQ concentration for PT, FHA,

PRN, DT and TT was 6.9, 26.0, 7.2, 0.04 and 1.9 IU/mL

respectively. For Tdap-specific subclass levels, the MFI results of

the different dilutions were combined to generate an area under the

curve (AUC) measurement.
Statistical analysis

No sample size calculation was performed since convenience

sampling was done, reaching out to samples from participants of

prior maternal pertussis vaccination studies with a successive

pregnancy. Descriptive analyses were performed to identify

possible demographic or clinical differences between both

pregnancies. Statistical tests included paired t tests for continuous

data and chi-square tests for categorical data.

Antibody levels were presented as geometric mean concentrations

(GMC) with 95% confidence interval in IU/mL (Tdap-specific total

IgG) or median AUC with interquartile ranges (Tdap-specific IgG1-4).
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Comparisons of antibody levels in maternal and cord serum between

the successive pregnancies were performed with a paired Wilcoxon

signed-rank test (non-parametric). The transplacental transport ratio

(TTR) was calculated as the ratio of cord and maternal serum antibody

levels. Calculated ratios were corrected with the ROUT method to

identify outliers (Q=0.1%). Statistical significance between delivery 1

and delivery 2 was set at p <0.05 for each analysis (* p < 0.05, ** p <

0.01, **** p < 0.0001). A linear regression was applied to investigate the

impact of time interval between Tdap vaccinations on the difference in

TTR between deliveries. The analyses were performed using GraphPad

Prism, version 10.1.0.
Results

Study population

The selection procedure of the participating women and the

number of available serum samples are shown in Figure 1. A total of

333 participants were enrolled in the baseline studies mentioned

earlier. Of these, 93 women enrolled in the follow-up study with a

successive pregnancy. Tdap vaccination in both pregnancies could

not be confirmed for 11 women, who were excluded from this

analysis. Of 82 participants, leftover maternal and cord serum at

both deliveries were available from 27 mother-infant pairs. The mean

interval between delivery 1 and delivery 2 was 2.4 years (1.4-3.9).

None of the participants had a record of pertussis disease within the

past 5 years prior to participation. Other demographic characteristics

are presented in Table 1. No significant demographical differences

were present in pregnancy 1 versus pregnancy 2, except for parity and

pertussis vaccine brand. These differences are expected since parity is

linked to the succession of pregnancies and since the Triaxis vaccine

was not yet offered by the Belgian health care system during

recruitment of pregnancy 1.
Laboratory results

Tdap-specific IgG levels at successive deliveries
Table 2 summarizes the concentrations of IgG antibodies to PT,

FHA, PRN, DT and TT in maternal peripartum and cord serum

samples from the successive pregnancies. In maternal serum, IgG

levels against all tested antigens were comparable at the first and

second delivery. In cord serum, levels were significantly lower for all

antigens tested at the second compared to the first delivery. At the

first delivery, additional analysis also showed significantly higher

IgG levels in cord compared to maternal serum, whereas at the

second delivery, this was only true for anti-FHA and anti-PRN

levels. These results suggest reduced efficiency of transplacental

transport of Tdap-specific IgG antibodies after Tdap-vaccination in

successive pregnancies. On the other hand, seroprotective levels for

diphtheria and tetanus, defined as antibody concentrations ≥ 0.1

IU/mL, were reached at both deliveries for all participants. For

pertussis, no correlate of protection currently exists. Active IgG

transport from mother to fetus in pregnancy was observed in our
frontiersin.org
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study for all tested antibodies in the first pregnancy but was not

present or less pronounced during the second pregnancy.
Transplacental transport of Tdap-specific IgG in
successive pregnancies

To further explore transfer of Tdap-specific IgG in successive

pregnancies, the TTR was calculated for both pregnancies. The

geometric mean TTR of total IgG was reduced at the second

compared to the first delivery for all antibody specificities tested.

This reduction was significant for antibodies against DT and

TT (Table 3).
Impact of time interval between Tdap vaccination
on transplacental transport difference

As the mean interval between Tdap vaccination in the

successive pregnancies of the participants amounts 2.4 years (1.4-

3.9) similarly to the interval between deliveries, all participants

received a closely spaced Tdap booster in their successive

pregnancy. The difference between the TTR of the first versus

second pregnancy was further investigated with the time interval

between Tdap vaccination in the successive pregnancies as a
FIGURE 1

Flowchart of selection procedure participants. Created in
Biorender.com.
TABLE 1 Demographic characteristics of participating women.

MOTHER No (%)

Participants, no. 27 (100.0)

Race, no. (%)
Caucasian
Other

27 (100.0)
0 (0.0)

Last Tdap vaccination before
Tdap vaccination in pregnancy
1, no. (%)

< 10 years
≥ 10 years
Unknown

5 (18.5)
11 (40.7)
11(40.7)

Last Td vaccination before
Tdap vaccination in pregnancy
1, no. (%)

< 10 years
≥ 10 years
Unknown

12 (44.4)
9 (33.3)
6 (22.2)

Interval between delivery 1 and
2, years (SD)

< 2.5y
≥ 2.5y

17 (63.0)
10 (37.0)

PREGNANCIES
Pregnancy

1
Pregnancy

2
p

value

Mode of delivery no. (%)
Vaginal
C-section
Unknown

22 (81.5)
5 (18.5)
0 (0.0)

17 (63.0)
5 (18.5)
5 (18.5)

0.06

(Continued)
TABLE 1 Continued

PREGNANCIES
Pregnancy

1
Pregnancy

2
p

value

Parity, no. (%)
0
1
2
3

20 (74.1)
6 (22.2)
1 (3.7)
0 (0.0)

0 (0.0)
20 (74.1)
6 (22.2)
1 (3.7)

<0.0001

Influenza vaccination during
pregnancy, no. (%)
Yes
No
Unknown

13 (48.1)
9 (33.3)
5 (18.5)

7 (25.9)
7 (25.9)
13 (48.1)

0.06

Pertussis vaccine brand, no. (%)
Boostrix
Triaxis
Unknown

27 (100.0)
0 (0.0)
0 (0.0)

19 (70.4)
5 (18.5)
3 (11.1)

0.01

Twin pregnancies, no. (%)
Yes
No

6 (22.2)
21 (77.8)

2 (7.4)
25 (92.6)

0.13

Premature delivery, no. (%)
Yes
No

2 (7.4)
25 (92.6)

1 (3.7)
26 (96.3)

0.55

Mean gestational age at
vaccination, weeks (SD)

29.5 (2.9) 28.8 (2.6) 0.34

Mean gestational age at delivery,
weeks (SD)

39.6 (1.5) 39.5 (1.5) 0.64

Mean interval between
vaccination and delivery,
days (SD)

70.9 (24.5) 74.3 (19.9) 0.52

Mean interval between
vaccination and delivery,
weeks (SD)

10.1 (3.5) 10.6 (2.8) 0.51
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continuous variable (Figure 2). A weak negative correlation

(between -0.2 and -0.39) between vaccination interval and

difference in TTR was found for all Tdap-specific antibodies

tested. This weak trend suggests a greater decrease in TTR

between pregnancies with a shorter interval between vaccinations.
Levels of Tdap-specific IgG subclasses at
successive deliveries

The IgG subclass distribution was tested subsequently in the

same serum samples for the same Tdap-specific antibodies

(Figure 3). IgG1 subclass levels were comparable at first versus

second delivery in maternal serum for anti-FHA, anti-DT and anti-

TT antibodies but were significantly lower at the second delivery for

anti-PT and anti-PRN antibodies. In cord serum, IgG1 subclass

levels were significantly lower at the second compared to the first

delivery for anti-FHA, anti-DT and anti-TT. The levels of IgG2 and

IgG3 against all tested antigens remained stable in both maternal

and cord serum across pregnancies except for significantly lower

anti-DT IgG2 antibodies in maternal serum and anti-PT IgG2 in

cord serum at the second delivery. IgG4 levels in maternal serum

were significantly lower for anti-PT at the second delivery, but
Frontiers in Immunology 05
significantly higher for anti-PRN. In cord, IgG4 subclass levels were

comparable between deliveries.

Transplacental transport of Tdap-specific IgG
subclasses in successive pregnancies

Like the Tdap-specific total IgG levels, subsequent analysis of

the IgG subclass distribution was conducted, calculating the transfer

ratio of IgG1, IgG2, IgG3 and IgG4 across the placenta in successive

pregnancies (Figure 4). Transfer efficiency was significantly reduced

for IgG1 antibodies against FHA, DT and TT at the second

compared to the first delivery. The transfer efficiency of IgG2,

IgG3 and IgG4 antibodies did not differ among pregnancies, except

for lower transfer efficiency of IgG3 anti-PRN antibodies in the

second compared to the first delivery. On the other hand, although

not significant, anti-PRN IgG1 transfer efficiently was higher in the

second compared to the first pregnancy.
Discussion

Even though Tdap vaccination is in most countries

recommended during each pregnancy, immunogenicity data

concerning Tdap vaccination in successive pregnancies are scarce.

The present research assessed the impact of Tdap vaccination in

two successive pregnancies on Tdap-specific total and subclass IgG

levels in maternal and cord serum at delivery and the transplacental

transport across the placenta.

In maternal serum at delivery, we found comparable Tdap-

specific IgG levels at the first and second delivery whereas in cord

serum, levels were lower at the second as compared to the first

delivery. The lower cord serum levels were related to lower transfer

ratios of these antibodies at the second delivery. To our knowledge,

this is the first paper to report immunogenicity data at successive

deliveries after Tdap vaccination in both pregnancies. The

immunogenicity of the repeated decennial Tdap booster doses has

been studied before in the general population and showed similar

Tdap-specific antibody responses after first versus the second

booster dose (6, 7). These results are in line with the antibody

levels in maternal serum in our study that reach similar levels at
TABLE 2 Geometric mean concentrations with 95% confidence intervals for Tdap-specific total IgG in maternal and cord serum at successive
deliveries expressed in IU/mL.

GMC (95% CI)

Maternal Cord

Delivery 1 Delivery 2 Pa Delivery 1 Delivery 2 Pa

Anti-PT 85.0 (66.2-109.2) 90.3 (71.1-114.7) 0.84 114.1 (89.7-145.0) 59.8 (33.7-106.1) 0.049

Anti-FHA 401.6 (313.6-514.2) 343.6 (276.7-426.7) 0.14 557.0 (428.9-723.4) 339.1 (232.2-495.1) <0.001

Anti-PRN 695.3 (471.5-1025.0) 693.7 (497.1-968.1) 0.44 957.5 (661.1-1387.0) 946.6 (687.9-1303.0) 0.04

Anti-DT 2.3 (1.8-2.8) 2.2 (1.8-2.8) 0.75 3.1 (2.4-4.0) 2.2 (1.6-3.0) 0.02

Anti-TT 15.2 (12.6-18.3) 15.3 (13.0-18.1) 0.64 19.6 (16.7-23.2) 16.5 (14.3-19.1) 0.02
fr
PT, pertussis toxin; FHA, filamentous hemagglutinin; PRN, pertactin; TT, tetanus toxoid; DT, diphtheria toxoid; aBy the paired Wilcoxon signed-rank test.
TABLE 3 Geometric mean concentration (GMC) transplacental transport
ratios (TTR) with 95% confidence intervals (CI) of Tdap-specific IgG
antibodies successive deliveries.

GMC (95% CI)

Delivery 1 Delivery 2 Pa

Anti-PT 1.3 (1.2-1.6) 0.7 (0.4-1.1) 0.06

Anti-FHA 1.4 (1.2-1.6) 1.0 (0.7-1.4) 0.14

Anti-PRN 1.4 (1.2-1.7) 1.2 (1.0-1.5) 0.71

Anti-DT 1.4 (1.2-1.6) 1.0 (0.8-1.2) 0.03

Anti-TT 1.3 (1.1-1.5) 1.1 (0.9-1.2) 0.05
GMC, geometric mean concentration; 95% CI, 95% confidence interval; PT, pertussis toxin;
FHA, filamentous hemagglutinin; PRN, pertactin; TT, tetanus toxoid; DT, diphtheria toxoid;
aBy the paired Wilcoxon signed-rank test.
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both deliveries even though the mean interval between both

deliveries amounts 2.4 years in contrast to a 10-year interval for

the general booster doses. Another study in the US investigated the

immunogenicity of Tdap vaccination in pregnancy with self-

reported prior Tdap receipt (29). They reported significantly

higher baseline Tdap-titers in pregnant women with prior Tdap

and significantly lower post-vaccination titers against FIM, PRN

and TT. Half of these women had received prior Tdap in the past 1-

5 years. The study suggested that recent prior Tdap vaccination

modifies the immune response after Tdap vaccination in pregnancy.

However, the study did not measure transplacental transport of

antibodies and their levels in newborns. In addition, prior Tdap

could not be confirmed for a substantial part of the participants.

The effects of prior influenza vaccination on maternal and cord

serum antibody levels in pregnant women have also been studied
Frontiers in Immunology 06
before, with no significant differences reported at delivery (30).

However, vaccination history in that study was again based on self-

report and only vaccination in the prior year was determined.

The effect of a pre-pregnancy Tdap vaccination on antibody

titers at delivery was studied before in which women received a

Tdap booster in-between successive pregnancies instead of

vaccination in pregnancy. Despite the significant increase in

antibody titers between first delivery and one-month

postvaccination, levels had declined significantly between

postvaccination and second delivery, but were still significantly

higher than baseline concentrations at first delivery. The mean

interval between vaccination and second delivery was 16.8 months.

Although baseline measurements were not included in our study

design, these data suggest significant waning of antibody levels after

a mean interval between Tdap vaccinations of 2.4 years in our study.
A B

D E

C

FIGURE 2

Correlation between difference in transplacental transport ratio of delivery 1 (TTR1) and delivery 2 (TTR2) and the interval between Tdap vaccinations
in successive pregnancies of antibodies against PT (A), FHA (B), PRN (C), DT (D) and TT (E).
A B

DC

FIGURE 3

Tdap-specific serum levels of IgG1 (A), IgG2 (B), IgG3 (C) and IgG4 (D) in maternal and cord serum at successive deliveries. Results are expressed in
log10 AUC and plotted as median with interquartile ranges. Statistical significance between delivery 1 (D1, dark labels) and delivery 2 (D2, white labels)
was determined by a paired Wilcoxon signed-rank test and set a p<0.05 (*p<0.05, **p<0.01, ****p<0.0001).
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Unvaccinated pregnant women were not included in our

analysis, making a direct vaccination versus non-vaccination

comparison not possible. However, antibody levels at delivery

from Tdap-vaccinated versus unvaccinated pregnant women have

been reported before, with significantly lower Tdap-specific

antibody levels in cord serum from both term and preterm born

infants of unvaccinated compared to Tdap-vaccinated mothers (26,

27). The antibody levels in cord serum of both term and preterm

born infants from these unvaccinated pregnant women are also

considerably lower for each of the antigens tested compared to the

antibody levels in cord serum in the successive pregnancy of our

analysis. In addition, seroprotective total IgG levels for diphtheria

and tetanus were measured at both deliveries for all participants.

This indicates that infants of mothers vaccinated with Tdap in

successive pregnancies would still be better protected against the

disease compared to infants from unvaccinated mothers as

seroprotective levels are more likely not to be reached in

unvaccinated mothers. These observations underscore the

importance of vaccination in each pregnancy.

Active IgG transport from mother to fetus during pregnancy,

reaching higher concentrations in the newborn than in the mother,

has been established before (31, 32) and was confirmed in our study

in the first pregnancy. However, in the second pregnancy, the transfer

efficiency was reduced. Antibody subclass is one of the factors that is

known tomodulate this efficiency as differences in transfer efficiencies

have been noted across IgG subclass antibodies in prior research (14).

In the present research, IgG subclass levels were measured to further

evaluate possible differences at successive deliveries. Remarkably,

IgG1 subclass levels in cord serum were lower at second compared

to first delivery for most antibodies tested, in accordance with the
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total IgG data in cord serum. These reduced IgG1 levels suggest

reduced Fc-mediated effector functions such as antibody-dependent

cellular cytotoxicity (ADCC), complement-dependent cytotoxicity

(CDC), and antibody-dependent cellular phagocytosis (ADCP).

Since IgG1 is the most abundant IgG subclass in human sera,

constituting more than 60% of the total IgG, it makes sense that

the IgG1 results are in line with total IgG (33). Our data indeed also

show superior IgG1 levels compared to the other three subclasses,

with the lowest levels seen for IgG3. However, in maternal serum at

delivery, IgG1 levels do not completely match the total IgG results as

lower anti-PT and anti-PRN IgG1 levels were detected at second

versus first delivery whereas total IgG levels were comparable

between deliveries. In theory, the sum of the IgG subclass levels

should be equal to the total IgG level for each of the antibodies tested.

One could therefore reason that these differences outbalance each

other, such as the decrease of IgG1 PRN antibodies versus the

increase of IgG4 PRN antibodies in maternal serum at second

versus first delivery. Such a shift in subclass may be related to more

advanced class switch to IgG4 in PRN specific memory B cells

following repeated antigen exposure, as previously described,

although this shift was not seen for the other antigens (14). Such

reasoning should be handled with caution though because different

secondary monoclonal antibodies have been used for the distinct

subclass assays and no quantification of IgG subclasses was

performed. Finally, the reduced IgG1 levels in cord serum are also

reflected in the impaired transfer efficiency of the majority of the

IgG1 antibodies tested, possibly related to reduced affinity to the FcRn

or to other receptors involved in transfer. Interestingly, despite the

significantly lower level of total IgG and IgG2 anti-PT in cord serum

and its lower total IgG TTR at the second delivery, the anti-PT TTR is
A B

DC

FIGURE 4

Transplacental transport ratio (TTR) of Tdap-specific IgG1 (A), IgG2 (B), IgG3 (C) and IgG4 (D) in maternal and cord serum at successive deliveries.
Ratios are calculated using the log10 AUC results and plotted as median with interquartile ranges. Statistical significance between delivery 1 (D1, dark
labels) and delivery 2 (D2, white labels) was determined by a paired Wilcoxon signed-rank test and set at p <0.05 (*p < 0.05, **p < 0.01).
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not distinctly impaired at the second compared to the first delivery

for any of the IgG subclasses.

Other factors besides antibody subclass may also modulate the

transplacental antibody transfer efficiency, such as antigen specificity,

Fc glycosylation and functional profile (34). A recent study reported

similar antibody Fc-dependent effector responses in pregnant versus

non-pregnant women following Tdap vaccination (35). They also

observed similar memory B cell responses in both study groups and

thereby inferred that the induction of vaccine responses in successive

pregnancies is not affected by preceding pregnancies. The functional

profile would thus not be modified in successive pregnancies,

although biophysical characteristics such as antibody avidity were

not explored in that research. Pregnancy itself is associated with a

physiological increase in IgG Fc galactosylation and galactosylated

IgG were shown to be preferentially transported across the placenta

(34, 36, 37). Diminished binding of deglycosylated IgG1 to the FcRn

receptor has been reported by a German study and suggests that Fc

glycosylation influences IgG1 interaction with FcRn to a certain

extent (38). Different Fc glycosylation profiles for Tdap-induced

IgG1 antibodies in successive pregnancies could thus potentially

contribute to the reduced IgG1 transplacental transfer at the

successive pregnancy observed in our study.

During pregnancy itself, immunological adaptations are

modulated by increased estrogen and progesterone levels that are

important for innate immune surveillance and tolerogenic

responses (39). Progesterone is also known to enhance

immunoglobulin class switching with increased antibody

production due to an increased production of B cells (39).

Hormone concentrations in successive pregnancies have been

studied before, with lower estrogen and progesterone levels

detected throughout pregnancy in multiparous compared to

primiparous women (40). Vaccine responses in successive

pregnancies might also be affected by these hormonal changes.

Further research concerning the impact of Tdap vaccination in

successive pregnancies on hormonal changes is needed to better

understand the immunological implications of these changes.

Our study has some limitations. Since left-over samples were

used, available mother-infant samples from successive deliveries

were limited. Within the selected cohort, some mothers received a

different Tdap vaccine in their second pregnancy. However, this

proportion was too low to analyze its impact. Also, no blood sample

was taken before vaccination in the first pregnancy nor before

vaccination in the second pregnancy. A baseline reference and the

degree of waning before vaccination in the second pregnancy are

therefore lacking.

Up to our knowledge, this paper is the first to report

immunogenicity data at successive deliveries after Tdap vaccination

in both pregnancies. Our findings suggest that the transfer efficiency

of Tdap-specific IgG antibodies and more specifically IgG1 is reduced

after repeated Tdap-vaccination in successive pregnancies. In other

words, infants born at a close successive delivery seem to inherit fewer

maternal antibodies compared to the infant born at the first delivery

and might therefore be less protected. Seroprotective levels for

diphtheria and tetanus at both deliveries for all participants

indicate on the other hand that infants of mothers vaccinated with

Tdap in successive pregnancies would still be better protected against
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the disease compared to infants from unvaccinated mothers. This

highlights the importance of Tdap vaccination in each pregnancy.

More research is needed to further explore the immunobiology of

vaccine responses in pregnancy and the impact of closely spaced

booster doses during pregnancy on early infant protection

against pertussis.
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