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Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disease, which leads to muscle weakness and eventual paralysis. Numerous

studies have indicated that mitophagy and immune inflammation have a

significant impact on the onset and advancement of ALS. Nevertheless, the

possible diagnostic and prognostic significance of mitophagy-related genes

associated with immune infiltration in ALS is uncertain. The purpose of this

study is to create a predictive model for ALS using genes linked with mitophagy-

associated immune infiltration.

Methods: ALS gene expression profiles were downloaded from the Gene

Expression Omnibus (GEO) database. Univariate Cox analysis and machine

learning methods were applied to analyze mitophagy-associated genes and

develop a prognostic risk score model. Subsequently, functional and immune

infiltration analyses were conducted to study the biological attributes and

immune cell enrichment in individuals with ALS. Additionally, validation of

identified feature genes in the prediction model was performed using ALS

mouse models and ALS patients.

Results: In this study, a comprehensive analysis revealed the identification of 22

mitophagy-related differential expression genes and 40 prognostic genes.

Additionally, an 18-gene prognostic signature was identified with machine

learning, which was utilized to construct a prognostic risk score model.

Functional enrichment analysis demonstrated the enrichment of various

pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and

mTOR signaling pathways, as well as other immune-related pathways. The

analysis of immune infiltration revealed notable distinctions in certain

congenital immune cells and adaptive immune cells between the low-risk and

high-risk groups, particularly concerning the T lymphocyte subgroup. ALSmouse

models and ALS clinical samples demonstrated consistent expression levels of

four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and

GTF2H5) with the results of bioinformatics analysis.
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Conclusion: This study has successfully devised and verified a pioneering

prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related

genes. Furthermore, the findings indicate that four of these genes exhibit

promising roles in the context of ALS prognostic.
KEYWORDS

amyotrophic lateral sclerosis, mitophagy, immune infiltration, gene, prediction
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease affecting upper and lower motor neurons, characterized by

progressive muscle weakness, atrophy leading to paralysis, and

eventual fatality. ALS has insidious onset, rapid progression,

heterogeneous clinical manifestations, and currently lacks effective

treatment options. The majority of patients succumb to respiratory

failure within 3-5 years of onset (1, 2), imparting a heavy burden on

patients, their families, and society. Presently, ALS diagnosis

primarily relies on neurophysiological and neuroimaging

examinations, yet early diagnosis and treatment remain

challenging. Thus, the identification of practical early diagnostic

markers and the construction of a more accurate ALS diagnostic

and prognostic model may offer new hope for ALS patient treatment.

Mitophagy is a crucial process for mitochondrial quality

control, its malfunction leads to the accumulation of defective

mitochondria, posing a risk of damage to high-energy-demanding

neuronal cells. Studies have indicated that mitophagy dysfunction is

a key factor in the occurrence and progression of various

neurodegenerative diseases such as ALS, Parkinson’s disease, and

Alzheimer’s disease (3). Furthermore, research has pointed out that

energy metabolism disturbances resulting from mitochondrial

dysfunction are central to the pathophysiology of ALS (4, 5). To

date, nearly 40 ALS-related genes have been identified. Some of

these genes (OPTN, SQSTM1/p62TBK1, SOD1, C9ORF72, VCP) are

directly or indirectly associated with the mitophagy pathway,

influencing different stages of the mitophagy process (6, 7). The

findings of these studies indicate that mitophagy is a significant

factor in the pathogenesis of ALS. Nevertheless, the specific

involvement of mitophagy-related genes (MRGs) in the

progression of ALS remains largely unexplored. Consequently, a

comprehensive investigation into mitophagy-related markers in

ALS using bioinformatics tools may facilitate the discovery of

novel biomarkers with therapeutic potential for ALS.

Furthermore, it has been observed that mitophagy also

contributes to the regulation of the immune response. Mitophagy

has the potential to exert an anti-inflammatory effect by suppressing

the excessive production of interleukin (IL)-1b and IL-18 (8).

Dysregulation of mitophagy, on the other hand, triggers

inflammation by activating the pyrin domain-containing protein
02
3 (NLRP3) inflammasomes, resulting in an overexpression of IL-1b
and IL-18 (9, 10). Additionally, the release of mitochondrial DNA

has been shown to promote the transcription of various

inflammatory cytokines, including tumor necrosis factor (TNF-a)
and IL-6 (11). The unique anatomy of spinal motor neurons makes

ALS particularly susceptible to peripheral immune responses (12).

Blood monocytes and macrophages react to degenerating motor

nerves, producing cytokines that can act locally or travel through

the blood-brain barrier to the central nervous system. These

cytokines are being studied as potential early biomarkers for ALS

(13). A meta-analysis on ALS revealed a consistent trend towards

elevated blood levels of pro-inflammatory cytokines, including IL-

1B, IL-6, and TNF, which are known to be produced by reactive

monocytes/macrophages (13–15).

The objective of this study is to conduct multifaceted analyses of

different datasets related to ALS in the GEO database. Limma and

Spearman correlation analyses were used to identify mitophagy-

related DEGs in ALS and filter for mitophagy genes. Subsequently,

machine learning methods (forest plot, univariate analysis, and least

absolute shrinkage and selection operator (LASSO) regression) were

used to filter and identify prognostic markers and construct a risk

model. Finally, we used Gene Set Enrichment Analysis (GSEA) and

Receiver Operating Characteristic (ROC) curve analysis to create

and evaluate the prediction model molecule drugs. We also

collected ALS mouse models and ALS patients to confirm the

expression levels of the model’s feature genes. The study aimed to

elucidate the relationship between mitophagy, ALS, and immune

infiltration by constructing a mitophagy-associated prediction

model and examining its association with immune infiltration.

Our study sheds new light on the role of mitophagy and immune

inflammation in predicting the prognosis and diagnosis of ALS.
2 Materials and methods

2.1 Acquisition and preprocessing of
expression profiling data

The ALS patient dataset was sourced from the Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/), with the candidate

dataset being selected based on specific inclusion criteria, including
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ALS diagnosis, human gene expression profile, availability of follow-

up information (survival information), and related clinical data.

The gene expression data from GSE112676 and GSE112680,

obtained from Illumina HumanHT-12 V3.0 and HumanHT-12

V4.0 expression bead chip arrays, were incorporated into the

study. The dataset GSE112676 consisted of 233 ALS samples and

508 control (CON) samples, while the dataset GSE112680 cohort,

comprised 164 ALS samples and 137 control samples. Survival

information was available for all 397 ALS patients. Demographic

details of the cohorts have been previously documented (16). In

summary, the ALS and CON groups exhibited a higher proportion

of male participants (≥58.54%) with mean ages of 63.92 and 63.58,

respectively. The majority of patients (>60%) presented with spinal-

onset ALS rather than bulbar-onset ALS. The GSE112680 cohort

had a higher percentage of individuals with C9orf72 repeat

expansions (12.8% vs. 5.2%). Survival was operationally defined as

the duration from disease onset to death, tracheostomy, or

noninvasive ventilation (16). According to this operationalization,

the median survival time was 2.42 years, with 50% of patients

surviving. As shown in Table 1.

The methodology employed by Swindell et al. (16) was consulted

for a comprehensive account of the data processing procedures and

outcomes, with particular attention to mitigating platform-specific

biases and batch confounders. The relevant GSE dataset was obtained

by directly downloading the preprocessed and standardized probe

expression matrix. Gene probes were converted to gene symbols

utilizing the respective annotation profiles within each dataset.

Normalization of gene expression values and the generation of

normally distributed expression values were achieved using the

‘limma’ package in R software. In cases where multiple probes

corresponded to the same gene, the final gene expression value was

determined by calculating the average expression value.
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2.2 Differential expression pattern analysis

The differential expression analysis between the ALS and CON

groups was conducted utilizing the GSE112676 dataset. This

analysis was performed employing the R package limma (version

V-3.84.3, https://www.bioconductor.org/packages/release/bioc/

html/limma.html) within R version 4.3.0. Gene-specific

information, including P-values and logFC values, was obtained

and analyzed using the Benjamini & Hochberg method to account

for multiple tests. This method yielded adjusted p-values

(adj.P.Value). Differentially expressed genes (DEGs) were

identified using significant differences in fold change and

statistical significance, with a threshold set at adj.P.Val < 0.05.
2.3 Mitophagy-related gene screening

To investigate the correlation between mitophagy genes and

DEGs, a collection of thirty-four mitophagy genes associated

with ALS was identified based on the Relevance score > 1.5 in

the Genecards database (http://www.genecards.org/), searched

using the keyword “Mitophagy” . Further analysis was

performed to investigate the relationship between these

mitophagy genes and the identified DEGs. the corrplot

package (v-0.90, https://cran.r-project.org/web/packages/

corrplot/vignettes/corrplot-intro.html) was utilized. Genes

that exhibited a significant correlation (P<0.05) and a

correlation coefficient (r) exceeding 0.3 were deemed relevant

and selected as relevant genes. These relevant genes, in

conjunction with the mitophagy genes, were designated as

mitophagy-related genes for subsequent analysis.
TABLE 1 Baseline characteristics.

Variable Overall, N = 3971 Cohort p-value2

Training cohort
N = 233 (59%)1

Validation cohort
N = 164 (41%)1

Age of onset 63.78 [55.60,70.72] 63.92 [56.37,70.75] 63.58 [54.81,70.66] 0.696

Survival time (years) 2.42 [1.59, 3.52] 2.50 [1.64, 3.79] 2.34 [1.56, 3.35] 0.263

Sex 0.642

Female 158 (39.80%) 90 (38.63%) 68 (41.46%)

Male 239 (60.20%) 143 (61.37%) 96 (58.54%)

Site of onset 0.420

Bulbar 146 (36.78%) 90 (38.63%) 56 (34.15%)

Spinal 251 (63.22%) 143 (61.37%) 108 (65.85%)

Status 0.022

Dead 342 (86.15%) 209 (89.70%) 133 (81.10%)

Survival 55 (13.85%) 24 (10.30%) 31 (18.90%)
fr
1Median [IQR]; n (%).
2Wilcoxon rank sum test; Pearson’s Chi-squared test.
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2.4 Identification of prognostic
significance genes

Utilizing the aforementioned mitophagy-related genes,

conducted univariate Cox regression analysis using the survival-

V3.2.13 package (https://github.com/therneau/survival) to identify

potential genes associated with ALS. The corresponding P-value for

each gene was assessed, and a threshold of P<0.05 was established

for evaluation purposes.
2.5 Development and validation of
risk scoring

The glmnet package (V-4.1-2, https://cran.r-project.org/web/

packages/glmnet/index.html) was utilized to perform LASSO Cox

analysis on the candidate prognostic genes obtained from the

training set GSE112676. This analysis aimed to select feature

genes with nonzero regression coefficients to construct a risk-

scoring model. To assess the accuracy of the risk scoring model,

the prognostic model construction method was followed, wherein

the Risk score for each diseased sample was calculated by adding the

expression level of each gene multiplied by its corresponding

coefficient (e.g., Risk score = (expression level of gene A *

coefficient of gene A) + (expression level of gene B * coefficient of

gene B) +…), the Risk score values were calculated for each diseased

sample in the training dataset GSE112676. Subsequently, employing

the optimal threshold value derived from the median Risk score, the

diseased samples within the training dataset GSE112676 were

partitioned into two groups: High_Risk (comprising samples with

a Risk score greater than or equal to the median Risk score) and

Low_Risk (comprising samples with a Risk score lower than the

median Risk score). The survival package in R4.1.0 was utilized to

generate survival prognostic curves, enabling the evaluation of the

relationship between the aforementioned grouping of High_Risk

and Low_Risk samples and the actual survival prognosis

information. The log-rank test was used to determine the

statistical significance of the survival prognosis disparity among

the two groups. Furthermore, the prognostic significance of the

feature genes in the training dataset GSE112676 was assessed by

calculating the Area Under Curve (AUC) values of the ROC curve

at 5, 7, and 10 years. It should be noted that the AUC for validation

sets at 1, 2, and 3 years is 0, as the classification data for survival

time in these sets consists solely of either all 1 or all 0. Similarly, the

accuracy of the risk scoring model was confirmed in the external

validation dataset GSE112680 from GEO using the appropriate

signature construction method.
2.6 The relationship between high- and
low-risk groups and immune infiltration

Mitophagy and immunity are closely related, and peripheral

immune cells play a significant role in disease progression in ALS

patients (17). Therefore, it is meaningful to link with immune
Frontiers in Immunology 04
infiltration in the study. CIBERSORT analysis (accessible at https://

cibersortx.stanford.edu/) was used to estimate the proportions of 22

human immune cell subsets based on gene expression data. Finally,

the disparities in the distribution of TMB scores and proportions of

immune cell infiltration between the high-risk and low-risk groups

were evaluated using the Wilcoxon test.
2.7 Prognostic model genes and immune
correlation analysis

Conducting correlation analysis on the feature genes and

immune infiltration proportions was performed using the

corrplot package (v-0.90, https://cran.r-project.org/web/packages/

corrplot/vignettes/corrplot-intro.html).
2.8 Differences in checkpoint genes and
HLA family genes between high-risk and
low-risk groups

The expression data of common immune checkpoint genes and

the Human Leukocyte Antigen (HLA) gene family, which

comprises 17 HLA genes, were extracted from the training set

GSE112676. The differential expression of immune checkpoint

genes and the HLA gene family between the high-risk and low-

risk groups was compared using the Wilcoxon test.
2.9 Analysis of molecular mechanisms
between high- and low-risk groups

To conduct a more comprehensive examination of the

molecular mechanisms underlying the distinction between high-

and low-risk groups in ALS, 50 hallmark gene sets from the

MSigDB database (http://www.gsea-msigdb.org/gsea/index.jsp)

were obtained. The hallmark enrichment scores were computed

using the GSEA function from the clusterProfiler package (V-4.6.2,

h t tps : / /www.b ioconductor .o rg /packages / re l ease /b ioc /

html/clusterProfiler.html).
2.10 Differential gene selection between
high- and low-risk groups

Differential expression analysis was conducted on the high- and

low-risk groups using the GSE112676 dataset. The limma package

(V-3.84.3, available at https://www.bioconductor.org/packages/

release/bioc/html/limma.html) in R version 4.3.0 was employed to

obtain gene-specific information, including P-values and logFC

values. Furthermore, multiple testing correction was performed

using the Benjamini & Hochberg method to derive adjusted p-

values (adj.P.Value). DEGs were identified using the following

criteria: adj.P.Value < 0.05 and |logFC| > 1.5.
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2.11 Enrichment analysis of differential
genes between high- and low-risk groups

The DEGs obtained from the high- and low-risk groups were

subjected to Gene Ontology (GO) analysis using the clusterProfiler

package (V-4.6.2, https://www.bioconductor.org/packages/release/

bioc/html/clusterProfiler.html). This analysis encompassed the

categories of cellular component (CC), molecular function (MF),

and biological process (BP). Additionally, the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis was

conducted. A significance threshold of P-value < 0.05 was applied to

ascertain significant enrichment.
2.12 Diagnostic analysis of model genes

The differential expression of the feature genes between the ALS

and CON groups was assessed through the utilization of the Wilcox

test on both the training dataset GSE112676 and the validation

dataset GSE112680. The pROC package (V-1.18.2, https://

www.rdocumentation.org/packages/pROC/versions/1.18.2) was

employed to generate ROC curves for the feature genes.
2.13 Real-time polymerase chain reaction

A group of 10 patients diagnosed with ALS and 10 healthy

individuals of the same age and gender were selected for the study.

Blood samples were collected from both groups to investigate the

gene expression patterns of specific genes in a diagnostic model

using real-time quantitative polymerase chain reaction (RT-qPCR).

The ALS mouse model (B6SJL-Tg(SOD1G93A)) was acquired from

The Jackson Laboratory in the United States, and RT-qPCR was

conducted on the lumbar spinal cord of SOD1G93A mice to evaluate

the gene expression trends of characteristic genes in the disease

model. The procedure for collecting the samples was approved by

the Ethics Committee of the First Medical Center of Chinese PLA

General Hospital. Total RNA was isolated from peripheral blood

and spinal cord tissues using the RNAprep Pure High-Efficiency

Total RNA Extraction Kit and the RNAeasy Fast Animal Tissue/

Cell Total RNA Extraction Kit, respectively. RT-PCR was

conducted using the FastKing One-Step RT-PCR Kit. Gene

primers were designed using Primer 5 and synthesized by

Biomed. GAPDH expression was utilized as an internal control,

and relative expression was determined using the 2–DDCt method.
2.14 Statistical analysis

All statistical analyses were conducted using R software (version

4.1.0 and 4.3.0) and R studio (Version 3.84.3). The Wilcoxon test

was utilized to compare the proportions of immune cell infiltration

between the high- and low-risk groups and to analyze the

differential expression of the feature genes in the ALS and CON

groups. LASSO-Cox regression was used for feature gene selection.
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The log-rank test was then conducted to compare the survival rates

of low- and high-risk groups. Univariate Cox regression analyses

were also performed to identify genes that may be associated with

ALS. A two-tailed P value<0.05 was considered statistically

significant, with some exceptions where a specific P value was set.
3 Results

3.1 Acquisition and preprocessing of
expression profile data

The study’s schematic diagram is presented in Figure 1. The training

set, GSE112676, was acquired and comprised 508 control samples and

233 ALS samples, all of which had survival information available. The

validation set, GSE112680, consisted of 137 control samples and 164

ALS samples, all of which had survival information available. To explore

the association between mitophagy genes and differentially expressed

genes (DEGs), a set of thirty-four mitophagy genes (Supplementary

Materials 1) linked to ALS was identified using a Relevance score > 1.5

in the Genecards database (http://www.genecards.org/), utilizing the

keyword “Mitophagy”. Subsequent analysis was conducted to examine

the connection between thesemitophagy genes and the identifiedDEGs,

employing the corrplot package (v-0.90, https://cran.r-project.org/web/

packages/corrplot/vignettes/corrplot-intro.html). Genes demonstrating

a significant correlation (P<0.05) and a correlation coefficient (r) greater

than 0.3 were considered pertinent and chosen as relevant genes. These

relevant genes, in conjunction with the mitophagy genes, were

designated as mitophagy-related genes for subsequent analysis.
3.2 Identification of prognostic significance
genes in mitophagy-related genes

Firstly, the limma package was used to analyze the DEGs

between CON and ALS on all expression matrices of the training

set GSE112676, with adjust P-value <0.05 as a significance
FIGURE 1

Overview of the schematic diagram of this study.
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threshold. A total of, 5256 DEGs were identified from this

analysis, including, 2822 upregulated genes and, 2434

downregulated genes (Figure 2A). Similarly, we analyzed

differentially expressed genes in the validation set. A total of

1079 genes were down-regulated and 1300 genes were up-

regulated (Supplementary Figure 1). Additionally, a heatmap

was employed to visually represent the DEGs (Figure 2B).

According to the mitophagy database, a total of 34 genes

involved in the process of mitophagy were obtained

(Supplementary Material 1). After comparing training set

GSE112676 genes with all mitophagy-related genes, 25

overlapping genes were identified (Supplementary Material 2).

A Spearman correlation analysis was performed on a set of 25

genes associated with mitophagy. The correlation among these

25 mitophagy-related genes is depicted in Figure 2C, while an

examination of the expression levels of these 25 mitophagy genes

in the CON group compared to the ALS group is presented in

Figure 2D. Among them, the expression level of eight genes

(ATG12, ATG5, MAP1LC3B, MFN1, OPTN, SRC, TOMM20,

TOMM7) was upregulated, while the expression level of four

g e n e s (CDC3 7 , MFN2 , SQ STM1 , TOMM40 ) w e r e

downregulated. Using the corrplot package, Spearman

correlation analysis was conducted between the, 5256 DEGs

and the 25 mitophagy genes. In light of the extensive number

of genes, a correlation heatmap analysis specifically targeted the

top 20 DEGs with the highest logFC values, as well as the genes

associated with mitophagy (Figure 2E). Subsequently, employing

a significance threshold of P < 0.05 and |r| > 0.3, 4405 genes were

identified, comprising, 4383 DEGs and 22 mitophagy genes

(MFN2, OPTN, MAP1LC3B, ATG12, PINK1, MFN1, TOMM20,

TOMM7, TOMM40, ULK1, ATF5, CDC37, CSNK2A1, UBC,

VDAC1, UBA52, SQSTM1, TOMM22, CSNK2B, VPS13C, UBB,

CSNK2A2) (Supplementary Material 3). To further investigate

their prognostic potential, univariate Cox analysis on the

aforementioned, 4405 genes, led to the discovery of 40 genes

with significant prognostic value, as indicated by a P-value <

0.05 (Figure 2F).
3.3 Construction and validation of risk score

Through the utilization of LASSO-Cox regression analysis

on the aforementioned candidate genes, a subset of 18 genes

(VPS3TA, TR1M46, TIGD6, TAF1B, SEH1L, PARVB,

NCK1PSD, MRS2, MMP21, KYNU, JTB, IFNW1, GTF2H5,

FUBP1, DNAJB14, CDK5RAP1, BCKDHA, ATG2B) was

identified for the development of a prognostic risk score

based on the minimal criteria of l (Figures 3A, B). The risk

score for each sample was calculated using the formula: Risk

score = [(2.298 x VPS3TA expression value) + (-1.112 x

TR1M46 expression value) + (1.835 x TIGD6 expression

value) + (1.409 x TAF1B expression value) + (0.846 x SEH1L

expression value) + (1.177 x PARVB expression value) +

(0.027 x NCK1PSD expression value) + (2.525 x MRS2

expression value) + (0.087 x MMP21 expression value) +

(0.228 x KYNU expression value) + (-1.391 x JTB expression
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value) +(1.456 x IFNW1 expression value) + (0.247 x GTF2H5

expression value) + (3.198 x FUBP1 expression value) + (0.043 x

DNAJB14 expression value) + (-0.7 x CDK5RAPI expression

value) + (0.623 x BCKDHA expression value) + (0.828 x ATG2B

expression value)] (Figure 3C). Subsequently, the 164 patients

were stratified into two risk groups based on the median risk

score, with 113 patients categorized as low-risk and 51 patients

as high-risk (Figure 3D). Patients in the high-risk group

exhibited higher mortality rates (Figure 3E), as evidenced by

the Kaplan-Meier curve demonstrating superior survival rates

among patients in the low-risk group (P < 0.0001, Figure 3F).

Time-dependent ROC analysis of the risk score revealed that

the area under the curve (AUC) was 0.933, 0.966, and 1 for 5-,

7-, and 10-year survival, respectively (Figure 3G).

To Validate the prognostic risk score, patients in the validation

set, GSE112680, were divided into two groups based on the median

risk score (Figure 4A). Patients in the high-risk groups experienced

a higher incidence of mortality (Figure 4B), as evidenced by the

Kaplan-Meier curve demonstrating significantly greater survival

rates among patients in the low-risk group compared to those in

the high-risk group (validation set: P = 0.0058 Figure 4C). These

findings demonstrate the reliability of the ROC analysis and

indicate that the risk scoring model is highly feasible, with AUC

values of 0.643, 0.709, and 0.63 for 5-year, 7-year, and 10-year

predictions, respectively (Figure 4D).
3.4 Relationship between high- and low-
risk groups and immune response

An invest igat ion was conducted to determine the

connection between immune-related genes and ALS High-

and Low-Risk groups through the analysis of immune cell

infiltration. The CIBERSORT algorithm was used to estimate

the relative infiltration abundance of immune cell types in each

sample (Figure 5A). Additionally, the differences in immune

cells between the two risk groups were compared and their

significance was assessed using the Wilcoxon test. A total of 22

immune cells infiltrating between the ALS high- and low-risk

groups were screened with values of p<0.05, as shown in

(F igure 5A) . Pa t i en t s wi th h igher score s exh ib i t ed

significantly elevated levels of CD4 memory resting Tcells,

gamma delta Tcells, and M1 Macrophages while showing

relatively lower proportions of CD8 Tcells, M0 macrophages,

and NK cells, Mast cell activated and regulatory Tregs T cells.

Additional examination of the 18 mitophagy-related genes that

were chosen, along with their association with immune cells

(Figure 5B), unveiled a noteworthy inverse association between

MRS2 and M0 macrophages (r=-0.47, P<0.001, Figure 5C).

Conversely, there was a noteworthy positive correlation

between DNAJB14 and resting memory CD4 T cells(r=0.47,

P<0.001, Figure 5D). Further analysis of eight immune

checkpoint genes showed that the expressions of HAVCR2,

CD274, PDCD1, and CD86 were elevated and the expressions

of CD80 were relatively lower in the high-risk group of ALS
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(Figure 5E). Since HLA family genes play a crucial role in

immune response, we also analyzed the association between

HLA family genes and high- and low-risk groups. we found that

patients with higher scores exhibited significantly elevated

levels of HLA-DPB1, HLA-DRA , and HLA-DMB while

showing relatively lower proportions of HLA-G (Figure 5F).
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3.5 Molecular mechanism analysis between
high- and low-risk groups

The enrichment scores for multiple hallmark pathways were

calculated using GSEA. Among these pathways, a total of 10 showed

significant enrichment, with normalized enrichment scores (NES)
B

C

D

E
F

A

FIGURE 2

Identification of Prognostic Significance Mitophagy-Related Genes in ALS. (A) Differential analysis volcano plot (red represents significantly
upregulated genes, blue represents significantly downregulated genes, and black represents non-significant genes). (B) Heatmap of differentially
expressed mitophagy-related genes between ALS and control samples. (C) The correlation of 25 mitophagy-related genes. (D) The expression levels
of 25 mitophagy genes in the CON group vs. the ALS group. (E) Scatter plot showing the correlation between the top 20 DEG genes with the largest
logFC and mitophagy genes. The redder the point, the stronger the positive correlation; the bluer the point, the stronger the negative correlation.
The larger the shape of the point, the smaller the p-value; the smaller the shape, the larger the p-value. (F) Forest plot displaying the results of the
univariate Cox analysis. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05, ns P>0.05.
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greater than 0 indicating activation in the high-risk group and NES

less than 0 indicating inhibition in the high-risk group (Figure 6A).

To further analyze the high- and low-risk groups in the training set

(GSE112676), differential analysis was performed using the limma

package with the criteria of adj.P.Val < 0.05 and |logFC| > 1.5. This

analysis identified 100 DEGs, including 23 upregulated and 77

downregulated genes (Figure 6B). GO and KEGG pathway

enrichment analyses were performed on these 100 DEGs using R

software to explore their potential biological functions and

pathways. The results of GO functional analysis revealed that the

most significant items of GO enrichment included leukocyte

mediated immunity, leukocyte cell-cell adhesion, regulation of

immune effector process in biological process (BP), secretory

granule lumen, cytoplasmic vesicle lumen, mitochondrial outer

membrane in cellular component (CC) and transcription

coactivator activity in molecular function (MF) (Figures 6C–E).

The results of KEGG pathway enrichment analysis showed that they

were mainly enriched in Thermogenesis, NOD-like receptor
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signaling pathway, and Amino sugar and nucleotide sugar

metabolism (Figure 6F).
3.6 Diagnostic analysis of model genes and
validation of the four key DEGs in
SOD1G93A mice lumbar spinal cord tissue
and clinical samples

To verify whether the model genes we screened have significant

differences in diagnosis, ROC curves were drawn based on the

expression levels of 18 feature genes both in the GSE112676 and

GSE112680 datasets. According to it, four of eighteen genes

(BCKDHA, JTB, KYNU, GTF2H5) have good diagnostic value in

the diagnosis of ALS with AUC>0.6 in both the GSE112676 and

GSE112680 dataset (Figures 7A, B), suggesting that these four genes

not only have the prognostic effect but also have the potential

diagnostic value.
B
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FIGURE 3

Construction and Validation of Risk Score Model. (A) Each curve in the figure represents the trajectory of each independent variable coefficient. The
y-axis represents the coefficient values, while the lower x-axis represents log(l) and the upper x-axis represents the number of non-zero
coefficients in the model at that time. (B) The lowest point on the curve indicates the optimal lambda, which is the intersection between the yellow
line and the red dot. (C) The histogram shows the distribution of coefficient values for the selected features. The distribution of risk scores (D) and
survival times for each patient sample (E) in the training set GSE112676 is shown. The Kaplan-Meier survival curves (F) and time-dependent ROC
curves (G) are presented for both high and low-risk groups.
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Branched Chain Keto Acid Dehydrogenase E1 Subunit Alpha

(BCKDHA), Jumping Translocation Breakpoint (JTB), KYNU, and

General Transcription Factor IIH Subunit 5 (GTF2H5) (Figures 7C,

D) exhibited notable variations in both peripheral blood of ALS

patients and the lumbar spinal cord of SOD1G93A mice. Analysis of

mRNA expression in SOD1G93A lumbar spinal cord tissue samples

revealed an increase in JTB and KYNU expression, while BCKDHA

and GTF2H5 expression were found to be downregulated

(Figure 7E). Furthermore, to enhance the credibility of these four

genes that exhibit differential expression, peripheral blood samples

were procured from a cohort of 10 individuals diagnosed with ALS

and 10 healthy volunteers to conduct RT-qPCR. The outcomes

revealed a significant reduction in mRNA expression levels of

BCKDHA and GTF2H5 in the ALS group as compared to the

control group (P<0.05), whereas JTB and KYNU exhibited

upregulation (P<0.05) (Figure 7F). These findings strongly imply

that these four genes possess the potential to function as diagnostic

and prognostic biomarkers for ALS.
4 Discussion

ALS is a complex pathological process, that involves oxidative

stress , mitochondrial dysfunction, excitotoxicity , and

neuroinflammatory responses (18). The exact pathogenesis of
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ALS remains unclear, leading to a lack of practical early

diagnostic markers and treatment options, posing challenges for

clinical management. Although ALS primarily affects motor

neurons in the brain and spinal cord, peripheral blood analysis

may provide noninvasive biomarkers. Hence, it is still important to

explore new biomarkers and provide new insight.

In our analysis of the GEO dataset, we found two large patient

cohorts (GSE112676 and GSE112680) with prognostic information:

a microarray dataset from peripheral blood of ALS patients and

controls, with a total of, 1117 participants (19). This dataset is the

best resource for identifying ALS blood biomarkers. Swindell et al.

conducted a meta-analysis and found 752 ALS-increased DEGs

with consistent differential expression in both cohorts (GSE112676

and GSE112680) (16). Genes most strongly elevated in ALS

blood included ribosomal protein L9 (RPL9), ribosomal

L24 domain containing 1 (RSL24D1), vanin 2 (VNN2),

mitochondrial amidoxime reducing component 1 (MARC1) and

kynureninase (KYNU).

In this study, genes from the GSE112676 dataset with those

involved in the mitophagy process to screen, 4383 DEGs and 22

mitophagy-related DEGs using selection criteria. Subsequently,

through single-factor Cox regression analysis of these, 4405

mitophagy-related genes, identified 40 prognosis-related genes.

After conducting further LASSO Cox regression analysis, we

identified 18 signature genes and used them to establish a risk-
B

C D

A

FIGURE 4

Validation of Risk Score Model in GSE112680 geneset. Risk scores (A) and survival time distribution (B) for each patient sample in the validation set
GSE112680 were plotted. Kaplan-Meier survival curves (C) for the high and low-risk groups, as well as time-dependent ROC curves (D),
were generated.
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scoring model. By stratifying patients into high- and low-risk

groups, the relationship between the prognostic model genes and

immune infiltration was elucidated. Finally, GSEA and GO/KEGG

analyses clarified the pathways enriched by DEGs. ROC curve

analysis on the validation set demonstrated the good predictive

capability of the model. Finally, we found that four out of the

eighteen genes also have prognostic and diagnostic value for ALS.

To further determine the expression of these four genes in the
Frontiers in Immunology 10
disease, we used animal models and clinical samples for the four

overlapping genes in the test and training sets. Consistently, JTB

and KYNU were upregulated, while BCKDHA and GTF2H5 were

downregulated in the ALS group compared to the control group.

Increasing evidence suggests that mitochondrial dysfunction

resulting in disrupted energy metabolism is a key pathological

feature of ALS (4, 5). The accumulation of impaired mitochondria

is regarded as a catalyst for ALS, and concomitantly, deficiencies in
B
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FIGURE 5

Relationship Between High- and Low-Risk Groups and Immune Response. The infiltration abundance distribution using the CIBERSORT algorithm
(A). (B) Scatter plot illustrating the correlation between the expression levels of model genes and the levels of immune cell infiltration. The color of
the points indicates the strength of positive correlation (red) or negative correlation (blue). The size of the points reflects the p-value, with larger
points indicating smaller p-values. (C) MRS2 showed a marked negative correlation with M0 macrophages. (D) DNAJB14 exhibited a significant
positive correlation with T cells CD4 memory. Box plots displaying the expression levels of immune checkpoint genes (E) and HLA genes (F)
between high- and low-risk groups. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05, ns P>0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1360527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Du et al. 10.3389/fimmu.2024.1360527
mitophagy are also evident in ALSmodels (20).To date, various genes

associated with ALS have been identified to participate in the

degradation of damaged mitochondria through the process of

mitophagy, such as p62, OPTN, and TBK1 as discussed previously

(21, 22). A study showed that mutant SOD1 affects mitophagy by

preventing autophagy receptors from binding to damaged

mitochondria (23). Wang et al. found that C9ORF72 helps regulate

energy balance by stabilizing mitochondrial complex I (24).

Mutations in TARDBP lead to TDP-43 buildup in mitochondria. A

recent study by Yu et al. suggests a link between TDP-43, mtDNA,
Frontiers in Immunology 11
and inflammation in ALS development (25). The VCP protein is

crucial for maintaining mitochondrial quality control and mutant

VCP disrupts the labeling of mitochondria for mitophagy (26, 27).

These discoveries suggest that impaired mitochondrial transport may

play a role in the development of ALS. However, investigations into

mitophagy in ALS have been limited to morphological examinations

of autophagosomes and mitochondrial changes. The connection

between mitophagy and ALS is not fully understood, and

mitophagy-related genes in ALS have not been thoroughly studied

using bioinformatics analysis. This study aims to create a prediction
B
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A

FIGURE 6

Molecular mechanism analysis between high- and low-risk groups. (A) GSEA Enrichment Analysis Plot. (B) Volcano plot depicting the differential
expression between high- and low-risk groups. GO (C–E) and KEGG (F) enrichment analysis results are displayed, with stronger significance
indicated by redder color and lower significance indicated by bluer color.
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model related to mitophagy and explore the relationship between

mitophagy-related genes and immune infiltration in ALS to uncover

potential immune mechanisms and identify new biomarkers.

JTB regulates cell proliferation during mitosis and can inhibit

TGFB1-induced apoptosis (28). Moreover, JTB affects cell

proliferation and growth by increasing AURKB activity (29), and

its overexpression induces mitochondrial swelling and reduces

mitochondrial membrane potential. The results revealed increased

mRNA levels of JTB in the serum of ALS patients and the lumbar

spinal cord of SOD1G93A mouse models, consistent with the

bioinformatics analysis. Other studies have also reported

mitochondrial defects and impairment of the autophagy pathway

in ALS patients (23, 30). Furthermore, research has shown that

overexpression of JTB in cells leads to perinuclear aggregation and
Frontiers in Immunology 12
swelling of mitochondria, accompanied by a significant decrease in

membrane potential, as detected by JC-1 staining (28). Thus, the

overexpression of JTB in ALS may induce mitochondrial damage,

suggesting a novel key factor in mitochondrial dysfunction

associated with ALS.

BCKDHA, together with BCKDHB, forms the E1 subunit of the

mitochondrial branched-chain alpha-keto acid dehydrogenase

(BCKD) complex (31). This study showed decreased mRNA

levels of BCKDHA in the serum of ALS patients and the lumbar

spinal cord tissue of SOD1G93A mouse models, consistent with the

bioinformatics analysis. BCKDHA and VDAC1 are both

mitochondrial proteins that jointly participate in lipid metabolism

processes. Research has indicated that BCKDHA and VDAC1 can

undergo immunoprecipitation with APOE in mouse liver extracts
B
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FIGURE 7

Diagnostic analysis of model genes and Validation of the four key DEGs in the lumbar spinal cord tissue of SOD1G93A mice and clinical samples. In
the training set GSE112676, the ROC plot to assess disease prediction performance (A), as well as box plots were used to depict the differential
distribution of model genes (C). (B, D) The same analysis was performed in the validation set GSE112680. Additionally, the expression levels of four
key genes were validated by RT-qPCR in ALS mice lumbar spinal cord (E) and peripheral blood samples from ALS patients (F). ****P<0.0001,
***P<0.001, **P<0.01, *P<0.05, ns P>0.05.
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(32). This interaction plays a crucial role in the energy production

processes of mitochondria and helps the liver to adapt to its energy

demands. Furthermore, additional studies suggest that BCKDHA

(33) induces b-cell mitochondrial dysfunction, stress signal

transduction, and cell apoptosis related to type 2 diabetes mellitus

(T2DM). Since there are a limited number of studies on BCKDHA

and ALS, our study may provide some insights for future research.

KYNU is an enzyme involved in the kynurenine pathway (KP),

which generates metabolites with immunomodulatory properties.

The activation of the KP and the subsequent overproduction of the

KP metabolite quinolinic acid due to neuroinflammation are

prevalent characteristics in various neurodegenerative disorders,

such as ALS. Mutations in the WARS and KYNU genes negatively

impact protein synthesis and cell viability, and cause neurite

degeneration in neuronal cells and rat motor neurons (34). The

experimental results indicate elevated mRNA levels of KYNU in

serum from ALS patients and lumbar spinal cord tissue of

SOD1G93A mouse models compared to healthy individuals. This

result ties well with previous studies wherein the presence of a

functional KP in NSC-34 cells, with KYNU and TDO2 being among

the components of the KP in these cells (35). Jennifer et al. identified

five genes within the KP (AFMID, CCBL1, GOT2, KYNU, HAAO)

that exhibit either unique protein-altering variants or an

accumulation of rare protein-altering variants in sporadic ALS

cases compared to controls (34). Swindell found KYNU genes

most strongly elevated in ALS blood (16). Our results were

consistent with these findings and we also showed that a higher

expression of KYNU is associated with a better prognosis. Further

studies are still needed to clarify why the expression patterns of

those genes are different even though they trigger the same

canonical pathway of pyroptosis.

GTF2H5 encodes a subunit of the transcription/repair factor

TFIIH, which plays a role in gene transcription (36). GTF2H5 and

PINK1 are involved in gene expression, transcription pathways, and

RNA polymerase II transcription. The results indicate decreased

mRNA levels of GTF2H5 in serum from ALS patients and lumbar

spinal cord tissue of SOD1G93A mouse models compared to healthy

individuals. PHB2 depletion disrupts the stability of PINK1 in

mitochondria, thereby blocking the recruitment of PRKN/Parkin,

ubiquitin, and OPTN to mitochondria, resulting in inhibited

mitophagy (37). Furthermore, GTF2H5 deficiency leads to

resistance to free celastrol, a compound derived from

Tripterygium (TP) (38). Therefore, decreased expression levels of

GTF2H5 in ALS patients may lead to impaired mitophagy.

Neuroinflammation serves as one of the pathological hallmarks

of ALS. After central nervous system (CNS) injury, various types of

innate and adaptive immune cells from the peripheral circulation,

including granulocytes, monocyte-derived macrophages,

lymphocytes, and natural killer (NK) cells, can be recruited across

the blood-brain barrier (BBB) (39, 40). Post-mortem analysis of

ALS patient tissue revealed infiltration of peripheral cells, such as

CD4+ and CD8+ T cells, macrophages, and NK cells, into multiple

CNS regions, indicating the involvement of immune-mediated

events in ALS pathogenesis (41, 42). An annotation-based

enrichment analysis revealed that DEGs associated with

neutrophils were increased in patients with ALS (16).Our study
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identified peripheral blood immune cells potentially associated with

ALS prognosis, including B naive cells, CD4 naive T cells, CD8 T

cells, M0 and M2 macrophages, and neutrophils. Shi et al. also used

the GSE112676 and GSE112680 datasets to construct a risk model

involving four genes (TRPM2, ROCK1, HSP90AA1, and HSPA4)

(43). Moreover, external validation from dataset GSE112681

confirmed the predictive power of the model. TRPM2 down-

regulation and ROCK1 up-regulation were also found at the

initial stage of our study, but they were not aggregated into

further studies due to different directions of subsequent research.

Currently, the establishment of prediction models for ALS solely

considers DEGs as a single factor, disregarding the variability of the

disease. By constructing a gene model, this study not only improves

the accuracy of feature gene selection but also enhances the

specificity of gene screening.

Currently, there is limited research on mitophagy and immune

infiltration in ALS. The expression levels of four key genes in

peripheral blood and lumbar spinal cord tissues of ALS mic and

found statistically significant expression differences, indicating that

JTB, KYNU, BCKDHA, and GTF2H5 in peripheral blood can serve

as practical clinical biomarkers for diagnosing ALS patients.

However, this study also has some limitations (1): Even though

the prognostic risk score performed well, large prospective cohort

studies are still needed to validate it; (2) As mitophagy-related genes

continue to be discovered, the model needs constant improvement;

(3) The expression levels of four prognostic model genes were

verified using qRT-PCR in vitro through the collection of clinical

samples and mouse models, without delving into the underlying

mechanism. Hence, additional research is warranted to elucidate

the molecular mechanisms involved.

In conclusion, we have created and verified a new prognostic

predictive risk score for ALS based on four mitophagy-related

genes. This risk score demonstrated its independence as a

prognostic factor for ALS outcomes. Furthermore, the analysis of

the correlation between these four genes and immune infiltration in

ALS indicated a potential involvement of the interaction between

mitophagy-related genes and immune cell infiltration in the

regulation of ALS pathogenesis. These results offer a fresh

perspective on the roles of mitophagy and immune infiltration in

ALS and lay the groundwork for further investigations.
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