
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chao Cheng,
Wuxi People’s Hospital of Nanjing Medical
University, China

REVIEWED BY

Huaide Qiu,
Nanjing Normal University of Special
Education, China
Victor Salinas,
University of Texas Southwestern Medical
Center, United States
Zhirui Zeng,
Guizhou Medical University, China

*CORRESPONDENCE

Quan Liu

liuq0928@163.com

Shan Deng

dengshan399@sina.com

†These authors have contributed equally to
this work

RECEIVED 23 December 2023

ACCEPTED 06 February 2024
PUBLISHED 23 February 2024

CITATION

Li J, Zhang Y, You Y, Huang Z, Wu L, Liang C,
Weng B, Pan L, Huang Y, Huang Y, Yang M,
Lu M, Li R, Yan X, Liu Q and Deng S (2024)
Unraveling the mechanisms of NK cell
dysfunction in aging and Alzheimer’s
disease: insights from GWAS and
single-cell transcriptomics.
Front. Immunol. 15:1360687.
doi: 10.3389/fimmu.2024.1360687

COPYRIGHT

© 2024 Li, Zhang, You, Huang, Wu, Liang,
Weng, Pan, Huang, Huang, Yang, Lu, Li, Yan,
Liu and Deng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 23 February 2024

DOI 10.3389/fimmu.2024.1360687
Unraveling the mechanisms of
NK cell dysfunction in aging and
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Background: Aging is an important factor in the development of Alzheimer’s

disease (AD). The senescent cells can be recognized and removed by NK

cells. However, NK cell function is gradually inactivated with age. Therefore,

this study used senescence as an entry point to investigate how NK cells

affect AD.

Methods: The study validated the correlation between cognition and aging

through a prospective cohort of the National Health and Nutrition

Examination Survey database. A cellular trajectory analysis of the aging

population was performed using single-cell nuclear transcriptome

sequencing data from patients with AD and different ages. The genome-

wide association study (GWAS) cohort of AD patients was used as the

outcome event, and the expression quantitative trait locus was used as an

instrumental variable. Causal associations between genes and AD were

analyzed by bidirectional Mendelian randomization (MR) and co-

localization. Finally, clinical cohorts were constructed to validate the

expression of key genes.

Results: A correlation between cognition and aging was demonstrated using

2,171 older adults over 60 years of age. Gene regulation analysis revealed that

most of the highly active transcription factors were concentrated in the NK cell

subpopulation of AD. NK cell trajectories were constructed for different age

populations. MR and co-localization analyses revealed that CHD6may be one of

the factors influencing AD.
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Conclusion: We explored different levels of AD and aging from population

cohorts, single-cell data, and GWAS cohorts and found that there may be

some correlations of NK cells between aging and AD. It also provides some

basis for potential causation.
KEYWORDS
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1 Introduction

With the aging of the population, dementia has become a

common disease among the elderly. Alzheimer’s disease (AD)

dementia accounts for 60% to 80%, and AD patients will reach

152 million by 2050 (1). In addition, people with Alzheimer’s

disease experience a gradual decline in cognitive abilities, leading

to loss of language skills, learning difficulties, memory loss, and

personality and mood changes (2). However, AD prevention and

treatment are a worldwide challenge. There is an urgent need to find

biological markers for early diagnosis, differential diagnosis, and

early outcome prediction.

Aging is the biggest risk factor for almost all major chronic

diseases. Moreover, aging is characterized by the gradual loss

of physiological integrity, resulting in impaired function and

increased susceptibility to death. This deterioration is a major risk

factor for human pathology, including cancer, diabetes,

cardiovascular disease, and neurodegenerative diseases (3). In

addition, studies have shown that aging is a key risk factor for

AD. Some studies have shown that senescent cells accumulate in

tissues and lead to age-related pathological changes by releasing

inflammatory factors (4). Therefore, it is very important to

understand the relationship between aging and AD and the

related mechanisms.

When it comes to AD, the immune system plays a crucial role

in the development and progression of the disease (5, 6). Tau

protein serves as an important AD-specific biomarker. The

number of T cells, particularly cytotoxic T cells, significantly

increases in the tau pathology regions of tau transgenic mice

and AD brains (7). By integrating single-cell RNA sequencing

(scRNA-seq) and single-cell T cell receptor (TCR) sequencing

(scTCR-seq) analysis, this study demonstrated the association

of CD8 T cells with age-dependent accumulation of disease in
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the brain parenchyma (8). The application of multi-omics

studies in AD patients can provide comprehensive molecular-

level information, assisting researchers in gaining a deeper

understanding of the pathogenesis of AD and identifying

potential biomarkers (9–12). AD patients exhibit multiple

cellular subpopulations in their blood, which may play different

roles in the development and progression of the disease (13).

Bioinformatics-based scRNA-seq can aid researchers in analyzing

and comparing the cellular subpopulations in the blood of AD

patients (14). The gene regulatory network (GRN) determines and

maintains the cell-type-specific transcriptional states, which, in

turn, form the basis of cellular morphology and function (15).

Therefore, it is crucial to identify the GRN of the cell

subpopulations associated with the pathogenesis of AD and

further investigate their functions and interactions.
Recent studies have shown that NK cells are the core

participants in the monitoring of aging cellular immunity. With

age, NK cell dysfunction is associated with an increased burden of

infection, malignant tumors, inflammatory diseases, and

senescent cells (16). NK cells can help clear a-synuclein, reduce
inflammation produced by autologous active T cells, and clear

damaged neurons. NK cells are essential for regulating and

inhibiting inflammation and abnormal protein accumulation in

brain tissue (17). The expanded and cultured autologous NK cells

not only showed a strong ability to kill tumor cells and scavenge

senescent cells but also reduced the senescence markers of

peripheral blood mononuclear cells (PBMC) in blood after

reinfusion (18). NKGen Biotech recently presented data from its

phase 1 clinical trial of NK cell therapy SNK01 in patients with

Alzheimer’s disease at the Alzheimer’s Association International

Conference. The functional score of 70% of the patients remained

stable or improved in the 11th week. As the key to non-invasive

diagnosis, human blood reflects the physiological and pathological

status of patients to a certain extent. Some studies have explored

the key role of peripheral blood in the diagnosis of AD (13, 19, 20).

Therefore, it is necessary to further explore the NK cells in aging

and AD patients.
We further explore the biomarkers of early diagnosis and early

prediction of curative effect and provide a theoretical basis for the

study of AD in elderly patients. A large sample of the National

Health and Nutrition Examination Survey (NHANES) database was

used to prospectively evaluate the correlation between cognitive
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impairment and aging. Moreover, scRNA-seq from normal

patients, AD, umbilical cord blood, and young and aging patients

was used to explore the developmental trajectory of NK cells in

different age groups, combined with high transcriptional activity

genes in transcriptional gene regulation in AD patients to construct

aging cytokinetic clusters. In addition, combined with expression

quantitative trait locus (eQTLs) data, two-way Mendelian

randomization (MR) and Bayesian co-location analysis were used

to explore the causal relationship between senescence genes and AD

in NK cells.
2 Method

2.1 Data source and processing

The study group in this study met the clinical diagnostic criteria

established by the National Institute on Aging and the Alzheimer’s

Disease Association in 2011, which consisted of (1) meeting the

diagnostic criteria for dementia, (2) having an insidious onset, with

symptoms appearing progressively over months to years, (3) having

a clear history of cognitive impairment, and (4) presenting with

amnestic syndrome (decline in learning and near-memory with

impairment in one or more other cognitive domains) or non-

amnesic syndrome (impairment of one of the three domains of

language, visuospatial, or executive functioning, accompanied by

impairment in one or more other cognitive domains). The control

group was selected from healthy adults who underwent physical

examination at the Liuzhou Workers ’ Hospital Physical

Examination Center (2). A total of four AD patients and four

normal patients were selected. The study was approved by the

Institutional Ethics Committee and Institutional Review Board of

Liuzhou Workers’ Hospital (Ethics Code: KY2023140), and all

participants signed an informed consent form.

Single-cell datasets were collected from the Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database,

including four patients with AD (two early and two late) and two

normal controls (GSE168522) as well as three cord blood samples,

three healthy young people, and six healthy aging participants

(GSE157007). The aging participants were defined as 60 years or

older. The AD patients fulfilled the following inclusion criteria: a

clinical diagnosis of mild or severe AD, a Mini-Mental State

Examination (MMSE) score >19, an age range of 60–90 years,

and stable administration of anti-dementia or mood-stabilizing

medication (21). All of these patients had a neurologist’s

diagnosis. The quality control process was as follows: set the

number of genes and ribosomal ratio minGene = 200,

maxGene = 3,000, and pctMT = 5. A total of 2,000 high variants

are selected for the following analysis, and each sample is carried

out in batches using the R package “harmony”. After clustering, the

cell clusters were annotated by manual annotation as follows: CD4

(“CD3E”, “IL7R”, and “CD4”), NK (“NKG7”, “KLRB1”, and

“CCL5”), Mac (“CD68” and “MARCO”), CD8 (“CD8A”), B

(“CD79A”, “CD19”, and “MS4A1”), Mono (“CD14”, “S100A9”,
Frontiers in Immunology 03
and “S100A12”), mDC (“CD1C”, “FCER1A”, and “CLEC9A”), pDC

(“JCHAIN”, “CLEC4C”, and “LILRA4”), and plasma (“IGHG1” and

“IGKC”). The maker of cell annotation comes from CellMarker and

related literature (13, 22, 23).

Transcriptome data were obtained from the GEO dataset

(GSE63060 and GSE63061) with 139 AD patients and 238 normal

patients. Dataset GSE63060 and dataset GSE63060 were merged for

analysis (24). The Combat method in the “sva” package performs

batch corrections on the merged data.

GWAS data comes from public datasets called “ieu-b-5067” and

“ebi-a-GCST90027158”. In the ieu-b-5067 dataset, there were 954

AD cases and 487,331 healthy people. The number of AD cases in

the verified dataset ebi-a-GCST90027158 was 39,106 and that of

healthy persons was 46,828. The eQTLs are a kind of genetic loci

that can affect gene expression; most of them are single-nucleotide

polymorphisms (SNP), which have a certain biological significance.

The eQTLs data of genes were obtained from the IEU database

(https://gwas.mrcieu.ac.uk/).

The present prospective cohort investigation was predicated on

an analysis of openly accessible and identified data sourced from the

NHANES. Consequently, no supplementary institutional review

board authorization or explicit informed consent was required.

The NHANES constituted a comprehensive nationwide survey

encompassing civilian, non-institutionalized respondents within

the United States. This annual survey was administered by the

National Center for Health Statistics, an entity under the aegis of the

Centers for Disease Control and Prevention. Detailed elucidation

regarding ethical clearances and procedures for informed consent

can be obtained from the NHANES website (https://wwwn.cdc.gov/

Nchs/Nhanes/). Comprehensive insights into the NHANES

framework, methodology, and weighting schema have been

expounded elsewhere. In succinct terms, the NHANES adopts a

multifaceted stratified sampling methodology, characterized by a

complex multistage design, for household selection from randomly

allocated clusters.

In the initial cohort of NHANES 1999–2002, 3,234 individuals

aged 60 and above were enrolled in the study. Subsequently, those

lacking cognitive assessment data (n = 298) were omitted, resulting

in a subsample of 2,936. Further refinement involved the exclusion

of participants without requisite information for phenotypic age

(PhenoAge) calculation (n = 212), yielding a subsample of 2,724.

Lastly, 553 individuals without complete covariate data were

excluded from the analytical cohort, culminating in a final study

population of 2,171 individuals.
2.2 Measurement of PhenoAge and
cognitive test

The emergence of a novel phenotypic age metric, as opposed to

reliance on chronological age in isolation, emerges as a pivotal

advancement in forecasting aging-related prognoses. Drawing from

established literature (25–27), an array of 10 variables,

encompassing metrics such as chronological age and albumin
frontiersin.org
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level, were employed in the computation of PhenoAge. This metric

is precisely defined by the following formula:

Phenotypic age = 141:50 

+  
Ln½−0:00553� Ln( exp   −1:51714�exp (xbÞ

0:0076927

� �
)�

0:09165

xb = −19:907 − 0:0336� albumin(g=L) + 0:0095� creatinine(umol=L)

+0:1953� glucose(mmol=L) + 0:0954� ln(CRP)(mg=dl)

− 0:0120� lymphocyte   percent( % ) + 0:0268

� mean   cell   volume(fL) + 0:3306

� red   cell   distribution  width( % ) + 0:00188

� alkaline   phosphatase(U=L) + 0:0554

� white   blood   cell   count(1000cell=uL) + 0:0804

� chronological   age(years)

In consonance with precedent investigations utilizing the

NHANES datasets, cognitive function was assessed by employing

the Digit Symbol Substitution test (DSST) (28, 29). The DSST, an

integral module of the Wechsler Adult Intelligence Scale (WAIS-

III), gauges processing speed, sustained attention, and working

memory capacities. This assessment tool has found wide-ranging

applications in diverse contexts, spanning extensive screenings,

epidemiological surveys, and clinical appraisals. Administered

during the household interviews in NHANES 1999–2002, the

exercise entails the use of a paper form featuring a key section at

the apex, enumerating nine numbers each concomitantly paired

with symbols. The participants are allocated 2 min to replicate the

corresponding symbols in the 133 adjoining boxes alongside the

numbers. The score derives from the aggregate of correct

matches accomplished.
2.3 Covariate assessment statistical analysis

In the present study, covariates encompassed sex, race, body

mass index, education, marital status, poverty status, and

prevalent chronic disease conditions, including cardiovascular

diseases, hypertension, and diabetes mellitus. The analytical

procedures appropriately integrated NHANES sampling weights,

duly accounting for the intricate multistage cluster survey design.

Weighted linear regression models were employed to discern the

relationship between PhenoAge and cognitive function test

outcomes. Consistent with established research paradigms (30–

32), both multivariate adjusted and unadjusted models were

applied: The crude model entailed no covariate adjustments.

Model 1 was calibrated for sex and race, while model 2

accounted for sex, race, body mass index, education, marital

status, poverty status, and chronic disease conditions. All

statistical analyses adhered to the methodological guidelines

outlined by the Centers for Disease Control and Prevention

(33). Significance was denoted by P< 0.05. The entire analytical

framework was executed using R version 4.2.0 (http://www.R-

project.org, The R Foundation).
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2.4 Identification of transcription factor
gene regulatory network in AD

Firstly, AD and normal meta-cell matrices were constructed to

make it clear that transcription factors drive transcriptome changes

in patients with AD (34). The transcription factor gene set from the

reference genomic hg38 of cistarget was defined (https://

resources.aertslab.org/cistarget/tf_lists/allTFs_hg38.txt). To filter

the low-expression genes, the standard is mc. mat > 0pr. In. Cells

> = 5. Genes that are not in cisTargetDB (35) were filtered. To

construct the gene regulatory network of AD and normal people,

filter the regulon and set the minimum number of regulon genes. To

identify the PBMC cell type with the greatest transcriptional activity

in AD, the regulon activity score (RAS) matrix was calculated with

AUCell (36). Uniform Manifold Approximation and Projection

(UMAP) showed the results of “harmony”, “PCA”, and RAS. The

comparison showed the activity of regulatory transcription factors

related to cell type and AD. UMAP was constructed to classify cells

by transcriptional activity and gene expression. The algorithm

random forest inferred the co-expression module between

transcription factors and candidate target genes (37–39).

According to the clustering results, 9 was selected as the

appropriate cut tree. The R packets “ComplexHeatmap” and

“plot1cell” were used to show the clustering results. The dryness

of AD cells was inferred by CytoTRACE.
2.5 Determine the timing trajectory of
aging cells

To identify the developmental trajectory of NK cells in

unicellular PBMC of umbilical cord blood, young, and aging, the

force-directed graph (FDG) was compared with other scRNA-seq

dimensionality reduction methods. Through the shortest path

algorithm, the lineage of the young and the aging was

constructed. The developmental branch plot was drawn, and the

differential potential (DP) was calculated to visualize the location of

the greatest change in DP and the maximum point of the gene in the

elderly. Moreover, the metabolic time sequence of the red curve

changed, and the blue curve represented the change in

differentiation potential. To determine the relationship between

different genes related to aging time series, we used k-nearest

neighbor conditional density resampling mutual information

estimation (KNN-DREMI). DREVIPlot was used for time series

clustering, and specific methods to refer to Leizhang were used (40).

The clustering cluster was set as 10. 0 through DREVI.

Furthermore, cluster 3 was selected in the following Mendelian

randomized analysis.
2.6 Cellular communication network in
aging and AD

To further understand the network of NK cells and other cell

subsets, we inferred the cellular communication network. We used a
frontiersin.org
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circle diagram to visualize the number of interactions or the total

interaction intensity between cell subsets. The hierarchical structure

map visualized the cell–cell communication regulated by a single

ligand–receptor pair.
2.7 Mendelian randomization analysis

We aimed to evaluate the causal effect between the expression of

NK aging-related genes and AD. In this study, we use

“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR)

(v0.5.6) for MR analysis. To obtain independent SNPs,

aggregation was performed to remove SNPs with linkage

disequilibrium (LD) R2 < 0.001. The traits were used at the

genome-wide level (p< 5 × 10-8). The instrumental strength of

each SNP was assessed using the F statistic = (b/SE). Mean F-

statistics are reported for SNPs used as instruments, with F-statistics

>10 indicating strong instruments (41). The main analysis is as

follows: (1) SNPs as a tool variable (eQTLs), senescence track gene

in NK cells as exposure, and AD as the outcome and (2) SNPs was a

tool, AD was exposure, and senescence trajectory gene in NK cells is

the outcome. Five MR methods (including MR Egger, weighted

median, inverse variance weighted, simple model, and weighted

model) are used for the robust analysis of causality. When there is

only one tool variable, the Wald ratio is used to estimate the effect of

exposure on the outcome. Finally, reverse causality is evaluated.
2.8 Bayesian co-localization analysis

In Bayesian co-mapping analysis, we used the “coloc” software

package (https://github.com/chr1swallace/coloc) and default

parameters to evaluate the probability of two traits sharing the

same causal variant. Bayesian co-mapping provides a posteriori

probability of five hypotheses about whether a single variant is

shared between two traits (42). In this study, we tested the posterior

probability of hypothesis 3 (PPH3) and hypothesis 4 (PPH4). In

hypothesis 3, both pQTL and MS are associated with this region

through different mutations; in hypothesis 4, both pQTL and MS

are associated with this region through shared variation. We use

coloc.abf and coloc.susie algorithms to define genes based on co-

mapping evidence based on gene PPH4 > 50% determined by at

least one algorithm (43).
2.9 Comparative transcriptomic and
immune cell infiltration analysis of risk
genes in AD

In AD transcriptional group sequencing, the “CIBERSORT”

and “MCPcounter” R packets were used to analyze immune cell

infiltration in AD and normal patients. At the same time,

determining the difference in CHD6 expression between AD and

normal patients was carried out. The single-sample gene set

enrichment analysis (ssGSEA) showed the correlation between

CHD6 and the signal pathway.
Frontiers in Immunology 05
2.10 Peripheral blood mononuclear
lymphocyte collection and
pretreatment procedure

The anticoagulant tube blood sample was transferred to a 15-mL

centrifuge tube, and PBS was added to 10 mL and mixed well. The

mixing night was transferred to a 50-mL centrifuge tube containing

10 mL of lymphatic isolate, without mixing, so that the mixing night

is in the upper layer of the lymphatic split, and it was centrifuged at

2,000 g/min for 20 min at 25°C. Taking the turbid intermediate layer

into a 15-mL centrifuge tube, PBS was added to 10 mL and

centrifuged again at 2,000 g/min for 10 min at 25°C. The

supernatant was discarded, and desktop centrifugation was

performed. Furthermore, 1 mL of erythrocyte lysate (Beijing

Solepol)-purified PBMC added, blown to mix, and centrifuged at

1,500 g/min for 3 min at 25°C. The supernatant was discarded, and

tabletop centrifugation proceeded. In addition, 1 mL trizol was

added, blown to mix well, and transferred to 2-mL EP tubes. The

whole process was carried out at room temperature.
2.11 RNA extraction and quantitative real-
time polymerase reaction

Human peripheral blood mononuclear lymphocyte (PBMC)

total RNA was extracted using TRIzol Reagent RNAiso plus Total

RNA Extraction Reagent (Takara, Japan). The concentration and

purity of the RNA samples were measured by using Nanodrop 2000

(Thermo Fisher Scientific, USA). Reverse transcription was

performed using the PrimeScript TMRT Reagent Kit with gDNA

Eraser with random primers and gDNA removal (Takara, Japan).

Then, cDNA amplification was performed using TB Green Premix

Ex Taq II (Takara, Japan) and Applied Biosystems 7500 Fast Real-

time PCR System Sequence Detection System (Applied Biosystems,

USA). GAPDH or b-actin was used as an internal reference, and

each sample was repeated three times. The relative quantification of

mRNA expression was compared with the internal reference and

analyzed using the 2-DDCT method. The primer sequences are shown

in Supplementary Table S1.
3 Results

3.1 Prospective cohort database to explore
the correlation between cognitive
performance and PhenoAge

The cohort comprised 2,171 individuals aged 60 years or older,

reflecting a weighted population estimate of 31,235,578. The

sociodemographic characteristics of the participants are

delineated in Table 1. The mean PhenoAge, denominated in

years, was 66.13 ± 0.34, with male patients constituting 45.12% of

the sample. The Digit Symbol Substitution test, an indicator of

processing speed, sustained attention, and working memory,

yielded an average score of 47.19 ± 0.80. Utilizing a weighted

linear regression model, the relationship between Digit Symbol
frontiersin.org
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Substitution test scores and PhenoAge was examined. When

PhenoAge was treated as a continuous variable, the results

presented in Table 2 divulge a negative association with cognitive

performance across all models [crude model, b (95% CI): -0.569

(-0.648, -0.490), p< 0.001; model 1, b (95% CI): -0.599 (-0.684,

-0.513), p< 0.001; model 2, b (95% CI): -0.383 (-0.463, -0.303), p<

0.001]. Additionally, an association between PhenoAge, considered

a categorical variable, and test scores was observed. In the fully

adjusted model 2, with Q1 as the reference, Q2, Q3, and Q4 were all

significantly correlated with test scores [Q2, b (95% CI): -4.053

(-5.942, -2.165), p< 0.001; Q3, b (95% CI): -8.304 (-10.544, -6.064),

p< 0.001; Q4, b (95% CI): -12.937 (-15.135, -10.739), p< 0.001].

Furthermore, stratified analyses (as outlined in Supplementary

Table S2) underscored the consistency of these associations across

various subgroups.
3.2 Alterations in the microenvironment of
PBMC monocytes in different age groups

First of all, we drew the research route, which was mainly divided

into three steps (Figure 1). The analysis was carried out in three main

steps. In the first step, the correlation between aging and cognitive

dysfunction was demonstrated by a large cohort sample. Moreover,

senescence genes in NK cells were identified by blood single-cell

sequencing analysis of AD. In the second step, the causal relationship

between AD and senescence-related genes in NK cells was

demonstrated using MR. In the third step, the expression of key

genes was demonstrated by transcriptome sequencing in AD as well

as immune cell infiltration in AD and signaling pathways involved in

key genes (Figure 1). To analyze the cellular immune cell composition

of blood at different ages, we next analyzed single-cell sequencing

of blood. The heat map in Figure 2A shows the expression of marker

genes in different cell subsets. The proportion of CD4+ T cells and

NK cells increased gradually in cord blood, young participants, and

aging participants by comparison of cell ratio histogram. Most of the

cells in the aging population are NK cells (44.6%), CD4+ T cells

(31.5%), macrophage (13%), CD8+ T cells (3.6%), B cells (1.5%), and

monocyte (1.5%) (Figure 2B). UMAP visualized the distribution of

cell subsets in cord blood (nCells = 17,687), young people (nCells =

26,264), and aging participants (nCells = 45,811) (Figures 2C, D).

Furthermore, it demonstrated the importance of NK cells in

senescent patients. Stemness differentiation of NK cells was analyzed

by using CytoTRACE. CytoTRACE evaluated the differentiation

potential of different single-cell subsets and found that CD4+ T cells

had the highest differentiation potential (Figures 2E, F). NK cell

subpopulations play a crucial role in aging participants. Therefore,

we further investigated the weight relationship between NK cells and

other cell subpopulations as well as the signaling pathways that may be

influenced. The cell-chat inference of the aging participant showed the

number of NK cell interactions or the total interaction intensity

(Supplementary Figures S1A, B). The output signal pathways of NK

cells are MIF, ANNEXIN, CCL, IL16, and PARs (Supplementary

Figure S1C). The hierarchical diagram showed the communication

network between NK cells and other subsets of cells in the ANNEXIN,

CLL, FTL3, IL16, MIF, and PARs signaling pathways (Supplementary
TABLE 1 Demographic characteristics of study participants in National
Health and Nutrition Examination Survey.

Variable Valuea

Age

<65 26.73

(65–72) 34.67

≥72 38.60

Sex

Male 45.12

Female 54.88

Race/ethnicity

Non-Hispanic white 83.07

Non-Hispanic black 6.56

Mexican American 2.86

Other race/ethnicity 7.51

Marital status

Never married 2.35

Married/living with partner 65.39

Widowed/divorced 32.26

Education

Below high school 13.30

High school 46.13

College or above 40.57

Poverty income ratio

<1 12.10

(1–3) 45.66

≥3 42.24

Body mass index (kg/m2)

<25 28.84

(25–30) 39.60

≥30 31.56

Cardiovascular diseases

No 76.46

Yes 23.54

Hypertension

No 31.79

Yes 68.21

Diabetes mellitus

No 79.96

Yes 20.04

Phenotypic age (year) 66.13 ± 0.34

Score of the Digit Symbol Substitution test 47.19 ± 0.80
aWeighted percentage for category variables and weighted mean ± SE for
continuous variables.
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Figures S1D–I). By analyzing these communication networks, we can

better understand the functional and regulatory roles of NK cells

involved in the immune response of aging patients. This was

important for an in-depth study of the function and disease

development of the aging immune system.
3.3 Cell trajectories at different ages

Furthermore, we extracted the NK cell trajectory analysis

separately. The diffusion map shows the unique force-directed
Frontiers in Immunology 07
graph (FDG) of young and aging participants (Figure 3A).

Moreover, the increase in visualization age was accompanied by

the change in trajectory (Figure 3B). In addition, the blue curve

represents the temporal change in age, and the red curve represents

the change in differentiation potential. The aging population NK

cell clusters incremented with chronological order, while the

differentiation potential began to decline (Figure 3C). Looking for

key molecular events, aging genes decreased in differentiation

potential with increasing temporal order (Figure 3D). By DREVI

plot temporal clustering, the potential of cluster 3 was found to

gradually decrease with time (Figure 3E).
FIGURE 1

Flowchart. The first step involves the National Health and Nutrition Examination Survey cohort demonstrating the relationship between cognition
and aging as well as single-cell analysis of aging and Alzheimer’s disease (AD). The second step entails genome-wide association study analysis of
AD. The third step focuses on the transcriptomic validation of key genes’ significance.
TABLE 2 Associations between PhenoAge and score of the digit symbol substitution test.

Crude modela Model 1b Model 2c

b (95% CI) p-value b (95% CI) p-value b (95% CI) p-value

PhenoAge as continuous variable -0.569 (-0.648, -0.490) <0.001 -0.599 (-0.684, -0.513) <0.001 -0.383 (-0.463, -0.303) <0.001

PhenoAge as category variable

Q1 (42.24, 58.17) Reference Reference Reference

Q2 (58.17, 65.36) -6.043 (-7.925, -4.161) <0.001 -6.381 (-8.473, -4.289) <0.001 -4.053 (-5.942, -2.165) <0.001

Q3 (65.36, 74.26) -12.813 (-15.286, -10.341) <0.001 -13.229 (-15.727, -10.730) <0.001 -8.304 (-10.544, -6.064) <0.001

Q4 (74.26, 156.58) -18.489 (-20.767, -16.210) <0.001 -19.515 (-21.920, -17.110) <0.001 -12.937 (-15.135, -10.739) <0.001
fro
CI, confidence interval.
aCrude model: no covariates were adjusted.
bModel 1: sex and race were adjusted.
cModel 2: sex, race, body mass index, education, marital status, poverty status, and chronic disease conditions were adjusted.
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FIGURE 2

Single-cell analysis of peripheral blood of different age groups. (A) Heat map displaying the marker genes of cell subpopulations. The darker the
color, the higher the gene expression. (B) Bar plot showing the proportions of cell subpopulations in different age groups. The numbers and scale
graphs represent the percentage of total cells accounted for. (C) Circular plot visualizing cell subpopulations. Different subpopulations of cells are
composed of individual points. (D) Uniform Manifold Approximation and Projection visualization of cell subpopulation distribution. The distribution of
blood cell subpopulations in cord, young, and aging participants are shown separately. (E) Evaluation of the differentiation potential of different
single-cell subpopulations using CytoTRACE. The darker the color, the higher the predicted dryness score. (F) Box plot comparing the differentiation
potential of cell subpopulations. The dots and box lines show subgroup scores.
A B

D EC

FIGURE 3

Construction of aging cell trajectories. (A) The force-directed graph (FDG) network depicting the trajectories of NK cells in young and elderly
populations. The red dots represent the gene expression trajectories visualized. (B) Uniform Manifold Approximation and Projection (UMAP)
visualization of FDG for cord blood, young individuals, and elderly individuals. The different colored dots represent the cord, young, and aging
composition of the trajectory map. (C) Relationship between NK cell clusters and differentiation potential. The blue curve represents age-related
temporal changes, while the red curve represents changes in differentiation potential. (D) UMAP visualization of the temporal changes in the
differentiation potential of aging genes. Simulated temporal trajectories of senescence genes at different periods of Cord, young, and aging
participants. (E) The temporal clustering of aging-related genes by DREVI plots revealed that the differentiation potential of cluster 3 gradually
decreased over time. The brighter the color, the denser the expression.
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3.4 Single-cell microenvironmental
changes in AD and normal populations

Next, we analyzed the cellular and differentiation levels of the

cellular microenvironment in blood differing between AD patients

and normal patients by single-cell sequencing. A heat map showing

the marker genes of PBMC cell subpopulations in AD is presented

(Figure 4A). The cell histogram scale showed the changes in the

proportion of cells in AD versus normal patients, where NK cells

(54.8%), T cells (19.7%), macrophages (16.2%), B cells (4.8%), and

monocytes (3.3%) accounted for the majority of the cells (Figure 4B).

Moreover, the UMAP visualized the cell subpopulation fractionation

in AD (nCells = 30,759) and normal patients (nCells = 32,003)

(Figures 4C, D). To assess the differentiation of immune cells in AD,

CytoTRACE assessed the differentiation potential of monocyte

subpopulations and found that T cells had a higher differentiation

potential (Figures 4E, F). Moreover, direct interactions of NK cells in

AD with other subpopulations were further analyzed. The cell-chat

showed that the NK cell has a higher number of interactions or total

interaction strength (Supplementary Figures S2A, B). The heat map
Frontiers in Immunology 09
showed that the output signaling pathways of the NK cell

subpopulation were MIF and ANNEXIN. The input signaling

pathways for the NK cell subpopulation were GALECTI and

RESISTIN (Supplementary Figure S2C). Hierarchical diagrams

showed the communication network of NK cells in the MIF

signaling pathway and the ANNEXIN signaling pathway

(Supplementary Figures S2D, E). The higher number of

interactions or total interaction strength observed in NK cells

suggests that they are actively involved in the immune response

and can modulate the function of other cell populations.
3.5 Identifying gene regulation in
AD populations

Subsequently, we identified the gene regulatory network of

patients through AD blood single-cell sequencing analysis. The

UMAP showed the distribution of cellular subpopulations in AD

and normal patients (Figure 5A). The UMAP showed the distribution

of cell subpopulations (Figure 5B). The expression distribution of cell
A B

D
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FIGURE 4

Single-cell analysis of Alzheimer’s disease (AD) and healthy individuals. (A) Heat map displaying the marker gene expression of cell subpopulations. The darker
the color, the higher the gene expression. (B) Bar plot showing the proportions of cell subpopulations in AD and healthy individuals. The percentages
represent cell ratios. (C) UMAP visualization of cell subpopulation distribution. The colors represent different cell subpopulations. (D) Circular plot visualizing
cell subpopulations in AD. The colors represent different subpopulations of cells; the more cells, the denser. (E) Evaluation of the differentiation potential of
AD subpopulations using CytoTRACE. The darker the color, the higher the rating. (F) Box plot comparing the differentiation potential of cell subpopulations.
The colors represent different subgroups.
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subsets in AD patients was almost coincident with that in healthy

patients (Figure 5C). The UMAP showed the distribution of

transcription factors in AD and normal patients (Figure 5D). PCA

downscaling was performed to analyze transcription factor activity

expression, and the AD and normal distributions had a little overlap

(Figure 5E). Moreover, in most cell subpopulations, AD had a higher

transcription factor activity than the normal population (Figure 5F).

By comparing groups and cell types, ARID3A, THAP11, RFX2,

ZBTB25, and MBD2 were found to be some of the high

transcription activity factors (Figure 5G). Transcription factor

clustering was performed and divided into eight subgroups

(Figure 6A). Compared with the normal population, AD patients

had a higher expression of transcription factor activity in the M6

cluster, and most of them were concentrated in NK cells (Figure 6B).

The expression of the top transcription factors in each cell population

was shown separately (Figure 6C).
3.6 Mendelian randomization and case–
control cohort identification of genes that
may affect AD

To find the causal relationship between aging-related genes

and AD, we next performed an MR analysis. The gene set of

cluster 3 after kinetic analysis was used for the subsequent MR

analysis (Supplementary Table S3). The two-sample MR analysis

showed that the expression of PAFAH1B1, IFNGR1, CDK13,
Frontiers in Immunology 10
ZZEF1, FNBP4, SLC38A1, UBL3, MT2A, ANP32E, TNIP1,

ADAR, MIDN, and E2F4 was potentially associated with the

prevalence of AD (Figure 7A). After replacing the cohort, FNBP4

(OR = 0.8801; 95% CI, 0.8173–0.9477; p = 0.0007199274) and

CHD6 (OR = 0.8785; 95% CI, 0.7797–0.9899; p = 0.0333974294)

were found to reduce the risk of AD (Figure 7B). The volcano

map showed the effect of MR analysis of gene eQTL on the risk of

Alzheimer’s disease (Figure 7C). The bidirectional Mendelian

randomization analysis did not show a causal effect of AD on

FNBP4 and CHD6 (Supplementary Table S4). The Bayesian co-

localization showed that CHD6 (coloc.abf-PPH4 = 0.674) had

the same variant as MS (Figure 7D). Compared with the normal

group, PAFAH1B1, CDK13, and TNIP1 were highly expressed in

AD patients (p< 0.05) (Figure 7E). The expression of FNBP4,

CHD6, and E2F4 was low in AD (p< 0.05) (Figure 7E).
3.7 Verification of CHD6 expression and
immune cell infiltration in the
transcriptional group

To explore the involvement of CHD6+ NK cells in the

interactions between other immune cells, we performed a cell

communication analysis. The cellular communication showed

that CHD6+ NK cells interacted with most immune cells

(Figure 8A). CHD6+ NK cells communicate cellularly with

pDC, monocyte, mDC, and macrophage in the MIF signaling
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FIGURE 5

Differences in transcription factor activity between Alzheimer’s disease (AD) and healthy individuals. The colors represent different cell
subpopulations. (A) Uniform Manifold Approximation and Projection (UMAP) visualization of cell subpopulation clustering. (B) UMAP visualization of
gene expression in AD and healthy individuals. (C) Expression of transcription factor activity in different cell subpopulations. (D) UMAP visualization of
transcription factor activity expression in AD and healthy individuals. (E) Visualization of cell subpopulation distribution after PCA dimensionality
reduction. Visualization of distribution of AD and healthy individuals after PCA dimensionality reduction. (F) Comparison of transcription factor
activity in different cell subpopulations between AD and healthy patients. (G) Identification of transcription factors with high expression in both
grouping and cell types. The horizontal coordinate is the difference in proportions by cell type, and the vertical coordinate is the difference in
proportions by group.
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pathway (Figure 8B). CHD6+ NK cell metabolic signaling

pathways were mainly enriched for terpenoid backbone

biosynthesis , s teroid biosynthesis , inositol phosphate

metabolism, glycosaminoglycan biosynthesis chondroitin

sulfate/dermatan sulfate, and fatty acid elongation (Figure 8C).

The CIBERSORT immunocyte infiltration analysis showed that

the proportion of CD4 naïve T cells, T cells regulatory, NK cells

resting, macrophages M0, and neutrophils in AD was increased

(Figure 8D). The proportion of CD8+ T cells and NK cells

activated in AD decreased (p< 0 01) (Figure 8D). After a

MCPcounter analysis, the proportion of NK cells and

neutrophils in AD patients was found to be higher than that in

normal people (p< 0.05) (Figure 8E). This demonstrated the

involvement of NK cells as an important immune cell in the

disease process of AD patients. The next analysis explored the

expression and biological role of CHD6 in AD. We used a

transcriptional cohort of AD for the next analysis. In addition,

transcriptional sequencing showed that CHD6 was highly

expressed in AD (p< 0.001) (Figure 8F). The ssGSEA

enrichment analysis showed that CHD6 was associated with

androgen response, protein secretion, bile acid metabolism,

DNA repair, MTORC1 signaling, IL2 STAT5 signaling, fatty

acid metabolism, and E2F target signal pathways (Figure 8G).
4 Discussion

Alzheimer’s disease is the most common cause of dementia

worldwide. With the advent of the aging era, the number of patients
Frontiers in Immunology 11
with AD is increasing. First of all, we conducted a prospective

cohort through the NHANES database to demonstrate the

correlation between aging and cognition. At the same time, there

have been more and more immunotherapy for AD in recent years.

We exp lo r ed the compos i t i on o f c e l l u l a r immune

microenvironment in different ages and AD from the single-cell

level of PBMC and found that the proportion of NK cells increased

with age. By employing transcriptional factor regulation analysis,

compared with the normal population, it was found that most of the

high transcriptional active factors were concentrated in NK cells of

AD. The time sequence of NK cell trajectory in an aging population

was constructed by using transcription factors and aging differential

genes of NK cells in AD. A cluster with decreased differentiation

potential was selected for MR analysis. Finally, we found that CHD6

may be one of the pathogenic genes affecting AD.

At the same time, our results and previous literature confirm

the correlation between cognition and aging (44–46). AD, which is

characterized by progressive memory loss and cognitive decline, is

thought to account for 60% and 80% of dementia cases (1). In

addition, the main risk factor is age (47, 48). Human aging is an

inevitable, gradual, whole-biological process. Moreover, some

studies have explored the changes in aging-related gene

expression in monocytes and other immune cell groups through

peripheral blood PBMC transcriptome sequencing (49, 50).

Related studies have explored that senescent cells accumulate in

aging tissue, which leads to tissue dysfunction (51, 52). Moreover,

1,497 genes were found to be associated with aging (50). At the

same time, we also found some NK cell track genes in

aging people.
A B

C

FIGURE 6

Gene transcription regulation in Alzheimer’s disease (AD). Transcription factor expression clustered into eight modules. (A) Identification of different
transcription factor clusters through clustering. The darker the color, the higher the transcription factor activity. (B) Uniform Manifold Approximation
and Projection visualization of transcriptional activity in eight clusters of AD and healthy individuals. (C) Top transcription factors in different clusters.
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Interestingly, we found that the proportion of NK cells

inc r ea s ed in bo th sene s cen t and AD s ing l e - c e l l ed

microenvironments in our study. NK cells are congenital

lymphocytes with dual functions of cytotoxicity and immune

regulation and play a key role in the control of malignant tumors

and infections (53). NK cells are the core participants in cellular

immune monitoring of senescence. With the increase of age, the

dysfunction of NK cells is related to the increased burden of

infection, malignant tumors, inflammatory diseases, and aging

cells (54–56). Aging will seriously affect the immune function of

human NK cells. Unlike most immune cells, NK cells increase in

number and decrease in function with senescence (57, 58). The

possible reason may be the decrease in cytokine secretion and the

decrease in cytotoxicity of target cells (59, 60). Senescent cells

trigger an immune response, and NK cells eliminate senescent
Frontiers in Immunology 12
cells through a variety of indirect pathways, such as direct killing

and secretion of cytokines or perforin (56). We tried to find the

common genes that affect aging and AD. Therefore, we used

differential genes in the aging population and genes with higher

transcriptional activity in AD. Cell trajectory models were

successfully constructed in umbilical cord blood, young people,

and aging patients.

The MR is a data analysis method that has gained popularity

in recent years in epidemiological etiology research. Its primary

objective is to utilize genetic data as a tool to investigate the

causal relationship between a specific exposure and an outcome.

By performing MR analysis on genes extracted from the aging

cell trajectory model, there is a suggestion that CHD6 could

potentially impact AD. The process of cell survival following

DNA oxidative damage involves signal transduction, repair
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FIGURE 7

Mendelian randomization analysis of aging trajectory genes and Alzheimer’s disease (AD). (A) Forest plot showing the causal correlation between AD
and genes. (B) Forest plot showing the causal correlation between AD and genes after changing the cohort. (C) Volcanic map showing the effect of
MR analysis of eQTL gene on the risk of Alzheimer’s disease. (D) Display of co-localization analysis of CHD6 gene. The darker the color, the higher
the correlation. (E) Bar graph comparing the PCR results of key genes in AD and healthy individuals. *p< 0.05, **p< 0.01, ***p< 0.001.
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mechanisms, and transcriptional events. These processes are

often facilitated by nucleosome translocation, exchange, or the

action of chromatin remodeling enzymes (61). Unlike other

CHD enzymes, CHD6 is stabilized by reduced degradation

during oxidative stress (61). CHD6 is thought to bind to

chromatin in the prostate, expelling nucleosomes from

promoters and genomes and transcriptionally activating

carcinogenic pathways (62). Moreover, CHD6 knockdown

inhibits cancer cell proliferation, migration, invasion, and

tumorigenesis (63). However, there is no in-depth study on the

mechanism of nervous system diseases.

This study investigated the relationship between aging and the

microenvironment of AD at the single-cell level. However, there are

still some limitations that need to be acknowledged. Firstly, it is

important to note that our data for this study were obtained

exclusively from PBMCs, in contrast to the differential gene

analysis performed on tissues. While this approach ensures data

consistency, it is essential to consider that the variation in blood cell

ratios itself may influence the results. Secondly, this study employed

a single-cell data analysis of an Asian population, whereas the

GWAS data used was derived from European data. This

discrepancy in population origin might potentially diminish the

reliability of the findings. Thus, further investigations should be
Frontiers in Immunology 13
conducted involving populations from other regions. Thirdly,

although the NHANES database was utilized to validate the

association between cognition and aging using larger populations,

additional clinical cohorts should be included for further

verification. Further studies with larger sample sizes and more

diverse patient populations are necessary for the next steps to

validate and extend our findings. Lastly, i t is worth

acknowledging that there may exist confounding factors or

multiple effects in the MR study. Nonetheless, our primary focus

remains on establishing causal correlations based on two or more

tools, thereby enhancing the reliability of our results. Furthermore,

we performed a co-location analysis as a sensitivity analysis to

validate the MR results.
5 Conclusion

In summary, our study explored AD and aging patients at the

cohort, transcriptome sequencing, scRNA-seq, and GWAS levels,

providing insights into potential causality. However, further studies

are needed to confirm the clinical significance of the relevant

experimental results, which may be helpful to guide the diagnosis

and treatment of AD in elderly patients.
A B

D E

F G

C

FIGURE 8

The role of the CHD6 gene in Alzheimer’s disease (AD). (A) Circular plot showing the interaction between CHD6+ NK cells and other cell types. (B) Bubble
plot showing the ligand–receptor relationships between CHD6+ NK cells. (C) Bubble plot showing the metabolic signaling pathways between CHD6+ NK
cells and other cell subpopulations. The darker the color, the higher the expression of the signaling pathway. (D, E) Box plots comparing immune cell
infiltration in AD and healthy individuals. (F) Box plot comparing the expression difference of CHD6 in the transcriptome between normal and AD individuals.
(G) Correlation of CHD6 with signaling pathways. The darker the color, the higher the correlation. *p< 0.05, **p< 0.01, ***p< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1360687
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1360687
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by the

Institutional Ethics Committee and the Institutional Review

Board of Liuzhou Workers’ Hospital (Ethics Code: KY2023140).

The studies were conducted in accordance with the local legislation

and institutional requirements. The human samples used in this

study were acquired from primarily isolated as part of your previous

study for which ethical approval was obtained. Written informed

consent for participation was not required from the participants or

the participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.
Author contributions

JL: Conceptualization, Data curation, Formal Analysis,

Writing – original draft, Writing – review & editing. YZ:

Conceptualization, Data curation, Investigation, Writing –

original draft. YY: Conceptualization, Data curation, Validation,

Writing – original draft. ZH: Conceptualization, Data curation,

Formal Analysis, Writing – review & editing. LW: Investigation,

Methodology, Writing – review & editing. CL: Formal Analysis,

Project administration, Writing – review & editing. BW: Formal

Analysis, Funding acquisition, Project administration, Writing –

review & editing. LP: Data curation, Funding acquisition,

Methodology, Writing – review & editing. YH: Investigation,

Software, Writing – review & editing. YSH: Methodology, Project

administration, Writing – review & editing. MY: Data curation,

Methodology, Writing – review & editing. ML: Investigation,

Methodology, Validation, Writing – review & editing. RL:

Writing – review & editing. XY: Data curation, Methodology,

Writing – original draft. QL: Methodology, Resources, Writing –

review & editing. SD: Methodology, Writing – review &

editing, Investigation.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Thanks to

Liuzhou Science and Technology Bureau and Liuzhou Workers'
Frontiers in Immunology 14
Hospital Jiakang Chen's Ten Hundred Talents Fund for the funds.

This study was supported by the Guangxi Natural Science

Foundation, Grant No. 2023GXNSFBA026334. Liuzhou City's

Top Ten Hundred Talents Project, Liuzhou Science, and

Technology Project, Grant No. 2022CAC0227, 2021CBC0121,

and 2022SB018. Guangxi Autonomous Region Health

Commission self-funded scientific research project, project

number Z20210903, Z20200017, Z-B20231388, and Z20210880.
Acknowledgments

The Study Flowchart was created using BioRender.com (https://

www.biorender.com/).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360687/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Cell communication between cell subpopulations in different age groups. (A, B)
Circular plots displaying the quantity and weight of cell communication. (C) Heat
map illustrating the input and output signaling pathways of different cell

subpopulations. Hierarchical graphs depict the interactions between target cells
and ANNEXIN (D), CCL (E), FLT3 (F), IL16 (G), MIF (H), and PARs (I).

SUPPLEMENTARY FIGURE 2

Cell communication between cell subpopulations in Alzheimer’s disease (AD).

(A, B)Circular plots displaying the quantity and weight of cell communication.
(C) Heat map illustrating the input and output signaling pathways of different

cell subpopulations in AD. Hierarchical graphs depict the interactions
between target cells and MIF (D) and ANNEXIN (E).
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36. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083–6. doi: 10.1038/nmeth.4463

37. Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code.
Mol Cell. (2023) 83:373–92. doi: 10.1016/j.molcel.2022.12.032

38. Gasperini M, Tome JM, Shendure J. Towards a comprehensive catalogue of
validated and target-linked human enhancers. Nat Rev Genet. (2020) 21:292–310.
doi: 10.1038/s41576-019-0209-0

39. Ibarra IL, Hollmann NM, Klaus B, Augsten S, Velten B, Hennig J, et al.
Mechanistic insights into transcription factor cooperativity and its impact on
protein-phenotype interactions. Nat Commun. (2020) 11:124. doi: 10.1038/s41467-
019-13888-7

40. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals
dynamic relationships of T cells in colorectal cancer. Nature. (2018) 564:268–72.
doi: 10.1038/s41586-018-0694-x

41. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in
Mendelian randomization studies. Int J Epidemiol. (2013) 42:1497–501. doi: 10.1093/
ije/dyt179

42. Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Frånberg M, Sennblad
B, et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease.
PloS Genet. (2017) 13:e1006706. doi: 10.1371/journal.pgen.1006706

43. Breen MS, Dobbyn A, Li Q, Roussos P, Hoffman GE, Stahl E, et al.
Global landscape and genetic regulation of RNA editing in cortical samples from
individuals with schizophrenia. Nat Neurosci. (2019) 22:1402–12. doi: 10.1038/s41593-
019-0463-7

44. Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A, Grady CL, et al.
Maintenance, reserve and compensation: the cognitive neuroscience of healthy
ageing. Nat Rev Neurosci. (2018) 19:701–10. doi: 10.1038/s41583-018-0068-2

45. Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: Time for a clinical
trial? Sci Transl Med. (2019) 476:eaar4289. doi: 10.1126/scitranslmed.aar4289

46. Winer JR, Maass A, Pressman P, Stiver J, Schonhaut DR, Baker SL, et al.
Associations between tau, b-amyloid, and cognition in parkinson disease. JAMA
Neurol. (2018) 75:227–35. doi: 10.1001/jamaneurol.2017.3713
frontiersin.org

https://doi.org/10.14283/jpad.2021.23
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1016/j.tins.2021.06.007
https://doi.org/10.1038/s41582-021-00579-5
https://doi.org/10.1038/s41582-020-00435-y
https://doi.org/10.1038/s41582-020-00435-y
https://doi.org/10.1038/s41586-023-05788-0
https://doi.org/10.1038/s41590-023-01604-z
https://doi.org/10.1101/2023.10.20.563319
https://doi.org/10.1111/acel.14044
https://doi.org/10.1007/s12035-023-03903-w
https://doi.org/10.3389/fnagi.2023.1161405
https://doi.org/10.1038/s12276-021-00714-8
https://doi.org/10.3389/fimmu.2022.1037318
https://doi.org/10.1093/bfgp/elx046
https://doi.org/10.1182/blood-2007-09-077438
https://doi.org/10.1182/blood-2007-09-077438
https://doi.org/10.1073/pnas.1909110117
https://doi.org/10.1016/j.bbrep.2022.101380
https://doi.org/10.1007/s00401-017-1721-y
https://doi.org/10.1038/tp.2015.146
https://doi.org/10.1159/000354632
https://doi.org/10.1038/s43587-022-00198-9
https://doi.org/10.1038/s43587-022-00198-9
https://doi.org/10.1093/nar/gkac947
https://doi.org/10.1186/s13059-015-0750-x
https://doi.org/10.18632/aging.101414
https://doi.org/10.1186/s12916-022-02403-3
https://doi.org/10.1016/j.heliyon.2023.e19158
https://doi.org/10.1007/s11356-023-27053-7
https://doi.org/10.1007/s11356-023-27053-7
https://doi.org/10.3389/fnagi.2023.1214748
https://doi.org/10.3389/fimmu.2022.1080782
https://doi.org/10.3389/fimmu.2022.1080782
https://doi.org/10.1186/s12889-023-15411-6
https://doi.org/10.1186/s12889-023-16358-4
https://doi.org/10.1038/s41576-023-00618-5
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1038/s41592-023-01938-4
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.molcel.2022.12.032
https://doi.org/10.1038/s41576-019-0209-0
https://doi.org/10.1038/s41467-019-13888-7
https://doi.org/10.1038/s41467-019-13888-7
https://doi.org/10.1038/s41586-018-0694-x
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1093/ije/dyt179
https://doi.org/10.1371/journal.pgen.1006706
https://doi.org/10.1038/s41593-019-0463-7
https://doi.org/10.1038/s41593-019-0463-7
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1126/scitranslmed.aar4289
https://doi.org/10.1001/jamaneurol.2017.3713
https://doi.org/10.3389/fimmu.2024.1360687
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1360687
47. Troncone L, Luciani M, Coggins M, Wilker EH, Ho CY, Codispoti KE,
et al. Ab Amyloid pathology affects the hearts of patients with alzheimer's
disease: mind the heart. J Am Coll Cardiol. (2016) 68:2395–407. doi: 10.1016/
j.jacc.2016.08.073

48. Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: A
new player in neurophysiology. Neuron. (2018) 100:375–88. doi: 10.1016/
j.neuron.2018.09.022

49. Reynolds LM, Ding J, Taylor JR, Lohman K, Soranzo N, de la Fuente A, et al.
Transcriptomic profiles of aging in purified human immune cells. BMC Genomics.
(2015) 16:333. doi: 10.1186/s12864-015-1522-4

50. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al.
The transcriptional landscape of age in human peripheral blood. Nat Commun. (2015)
6:8570. doi: 10.1038/ncomms9570

51. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. (2013)
75:685–705. doi: 10.1146/annurev-physiol-030212-183653

52. van Deursen JM. The role of senescent cells in ageing. Nature. (2014) 509:439–
46. doi: 10.1038/nature13193

53. Dogra P, Rancan C, Ma W, Toth M, Senda T, Carpenter DJ, et al. Tissue
determinants of human NK cell development, function, and residence. Cell. (2020)
180:749–763.e713. doi: 10.1016/j.cell.2020.01.022

54. Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing
and chronic diseases. Cells. (2020) 3:671. doi: 10.3390/cells9030671

55. Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in
the removal of deleterious senescent cells. Immun Ageing. (2020) 17:16. doi: 10.1186/
s12979-020-00187-9
Frontiers in Immunology 16
56. Antonangeli F, Zingoni A, Soriani A, Santoni A. Senescent cells: Living or dying is
a matter of NK cells. J Leukoc Biol. (2019) 105:1275–83. doi: 10.1002/JLB.MR0718-299R

57. Qin L, Jing X, Qiu Z, Cao W, Jiao Y, Routy JP, et al. Aging of immune system:
Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.
Aging (Albany NY). (2016) 8:848–59. doi: 10.18632/aging.100894

58. Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, et al. Aging of the
immune system: focus on natural killer cells phenotype and functions. Cells. (2022)
6:1017. doi: 10.3390/cells11061017

59. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and
potential consequences for health in older adults. Ageing Res Rev. (2013) 12:1069–78.
doi: 10.1016/j.arr.2013.04.003

60. Kaszubowska L, Foerster J, Kaczor JJ, Schetz D, Ślebioda TJ, Kmieć Z. NK cells of
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