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Carcinogenic mechanisms of
virus-associated lymphoma
Ying Zhang, Wei Guo, Zhumei Zhan and Ou Bai*

Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
The development of lymphoma is a complex multistep process that integrates

numerous experimental findings and clinical data that have not yet yielded a

definitive explanation. Studies of oncogenic viruses can help to deepen insight

into the pathogenesis of lymphoma, and identifying associations between

lymphoma and viruses that are established and unidentified should lead to

cellular and pharmacologically targeted antiviral strategies for treating

malignant lymphoma. This review focuses on the pathogenesis of lymphomas

associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency

viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current

status of basic information and recent advances in the development of virus-

associated lymphomas.
KEYWORDS

virus, lymphoma, pathogenesis, EBV, HBV, HCV, HIV
1 Introduction

The most consistent risk factors for malignant lymphoma comprise immune dysfunction

and infectious agents that are primarily viruses. The concept of virus-induced lymphoma is

not new, because viruses are associated with ~ 15% of all types of cancer (1). The pathogenesis

of virus-associated lymphoma is complex and involves viral infection, immune disorders or

deprivation of immunity, the tumor microenvironment (TME), and several viral co-

infections. The complex biological properties of the virus itself, a delicate balance between

viral and host immunity, and difficulties with establishing animal models have hindered

research and understanding of the pathogenesis of virus-associated lymphoma. Lymphoma-

associated viruses are very diverse (Table 1). Examples are large double-stranded DNA

genomes (Epstein-Barr virus, EBV; Kaposi sarcoma-associated herpesvirus, KSHV), small

double-stranded DNA genomes (hepatitis B virus; HBV), and positive-sense single-stranded

RNA genomes (hepatitis C virus; HCV). Sufficient evidence indicates that human

immunodeficiency virus (HIV), EBV and KSHV are pathogenic factors in lymphoma.

However, other evidence indicates a possible relationship between HIV and viruses that

cause hepatitis (HBV and HCV) and might be more limited and indirect than EBV and

KSHV (2–4). Overall, general pathogenic mechanisms for the development of virus-

associated lymphoma have been identified. Viruses can directly infect and transform

lymphocytes, and viral antigen products or soluble factors induce chronic B-cell activation
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and promote transformation. Long-term immunodeficiency, such as

that caused by HIV, facilitates viral evasion of the immune response

and leads to tumor cloning. Current options for treating virus-

associated lymphoma include radiotherapy, chemotherapy,

immunotherapy, as well as antiretroviral, antiviral, and targeted

therapy. Nevertheless, most virus-associated lymphomas are

typically more chemoresistant and have a poorer prognosis than

solid tumors. Therefore, a deeper understanding of the molecular

mechanisms of virus-associated lymphoma will provide directions to

develop targeted therapies.
2 Epstein-Barr virus

Epstein-Barr virus (EBV) is the most prevalent human

oncovirus (5), and > 90% of adults are infected during their

lifetime (6). The main mode of transmission of EBV is through

oral transmission via saliva, and the current study confirms that the

main tropism of EBV is for B cells and epithelial cells, and the

presence of EBV has been demonstrated in tumor cells derived from

NK/T cells and leiomyosarcoma (7). When EBV was first isolated

from a Burkitt lymphoma (BL) cell line in 1964 (8), its association

with cancer was widely studied. According to the 2016 WHO

classification, EBV is associated with lymphomas, including

mature B-cell tumors, mature T-cell and Natural killer (NK)-cell

tumors, Hodgkin lymphoma (HL), and post-transplant

lymphoproliferative disorders (9). The prognosis is worse for

patients with HL and diffuse large B-cell lymphoma (DLBCL)

who are EBV+ than EBV-. (10) NK/T-cell lymphoma (NKTCL), a

rare subtype of EBV-associated non-Hodgkin lymphoma (NHL),

has similarly shown poorer outcomes (11).
2.1 Epstein-Barr virus structure

Epstein-Barr virus (also known as human herpesvirus 4;

HHV-4), belongs to the gamma herpesvirus family. The EBV
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virion has a diameter of 150-170 nm and consists of a lipoprotein

capsule and an icosahedral nucleocapsid, including 162 capsid

particles. The viral genome comprises double-stranded DNA of ~

170 kb. This virus is permanently latent in lymphocytes, free in the

cytoplasm as circular DNA and can integrate into cellular

chromosomes (12). The life cycle of EBV is biphasic, with lytic

replication and a latent phase, and the usual progression of EBV

latency in B cells from type III to types II to I has been detailed in a

review (13). After infecting resting naïve B cells, EBV enters type

III latency, when all latency genes are expressed. The production

of highly immunogenic viral proteins triggers a powerful cytotoxic

T cell response. Subsequently, the virus restricts gene expression

and enters type II latency by expressing Epstein-Barr nuclear

antigen (EBNA)-1, latent membrane protein (LMP)-1, and LMP-

2. B cells differentiate into memory B cells during this phase.

Finally, EBV restricts gene expression to latency type I, where only

EBNA-1 and EBV-encoded small RNAs (EBERs) are expressed

(14). Table 2 shows EBV gene expression during various

latent infections.
2.2 Carcinogenic mechanisms of EBV

The range of EBV-associated lymphomas is extraordinarily

broad, and each has unique developmental pathways. Differences

in EBV gene expression among them reflect the different pathogenic

roles of EBV. Despite the current scale of research into the

relationship between EBV and lymphoma, the etiological role of

EBV is difficult to explain. This is partly because the virus acts

differently on various tumors and partly because current disease

models do not adequately replicate subtle changes in the virus-host

balance among EBV-associated cancers. Moreover, although 95% of

adults are persistently infected with EBV, most do not develop

EBV-associated lymphomas. Therefore, the virus does not act alone,

which warrants further exploration. Therefore, we would like to

further summarize the mechanism of EBV-associated lymphoma

from the perspective of the virus itself.
TABLE 1 Human viruses that are associated with lymphoma and other diseases.

Virus Gene Other disease Lymphoma
Lymphoma in
experimental
animal model

HBV
Small double-stranded

DNA genomes
Hepatitis, cirrhosis,

Hepatocellular carcinoma
Various NHL,

HL (Controversial)
Unknown

HCV
Positive-sense single-

stranded RNA genomes
Hepatitis, cirrhosis,

Hepatocellular carcinoma
Various B-cell NHL Yes

HIV Retroviruses
Opportunistic infection,

malnutrition, Kaposi sarcoma
DLBCL, BL, PEL, PBL, plasmablastic lymphoma of the oral
cavity, HL, PCNSL, MCD-associated large cell lymphoma

Unknown

EBV
Large double-stranded

DNA genomes
Infectious mononucleosis,
oral hairy leukoplakia

BL, HL, PTLD, DLBCL, PCNSL, NK/T cell lymphoma, Yes

KSHV
Large double-stranded

DNA genomes
Kaposi sarcoma PEL, MCD, large B-cell lymphoma (NOS), GLPD Yes
BL, Burkitt lymphoma; DLBCL, diffuse large B-cell lymphoma; GLPD, germinotropic lymphoproliferative disorder; HL, Hodgkin lymphoma; MCD, multicentric Castleman disease; NHL, non-
Hodgkin lymphoma; NOS, large B-cell lymphoma not otherwise specified; PCNSL, primary central nervous system lymphoma; PEL, primary exudative lymphoma; PTLD, post-transplant
lymphoproliferative disorder.
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2.2.1 Expression of viral protein
Latent proteins are essential for the transformation of normal B

lymphocytes into lymphoblastoid cell lines (LCLs), and they are

involved not only in driving the overexpression of oncogenes, the

silencing of tumor suppressors, the cell cycle, migration, but also in

the regulation of adhesion.

2.2.1.1 EBNA1

EBNA1 is the only consistently expressed viral protein during

the latent phase of EBV, and it is indispensable for the propagation

and propagation of the latent viral genome. The current study finds

that EBNA1 has significant pleiotropic effects, (15) including

disruption of p53 stability (16–18) and promyelocytic leukemia

(PML) nuclear bodies (19), and EBNA1 also affects several currently

known signaling pathways involved in cell proliferation and

apoptosis, known to include interference of EBNA1 with TGF-b
signaling (20, 21) and inhibition of NF-kB activity. (22) Moreover,

previous studies have also found that stable or transient infection

with EBNA1 leads to oxidative stress, allowing reactive oxygen

species accumulation and has a variety of effects on cell growth and

survival, involving the induction of apoptosis as well as DNA

damage. (23, 24) In particular, EBNA1 can co-immunoprecipitate

with Nm23-H1 in lymphocytes, which may contribute to the spread

of EBV-associated tumors (25, 26). In fact, EBNA1 is actually highly

antigenic, and T cells targeting ENBA1 are present in infected

individuals (27). Therefore clarifying the immunomodulatory role

of EBNA1 for the host has long been a focus of attention for

researchers, which has been comprehensively summarized in a

recently published review (28). Most published studies have now

been limited to immune evasion or immunosuppression (28),

include that EBNA1 can specifically bind to viral and cellular

DNA for sequences (29–31) and can also enhance and inhibit the

transcription of viral and cellular genes (32, 33), and mediate the

maintenance of the EBV genome (34). Recent studies have

confirmed the trans-immune evasion ability of EBNA1. EBNA1
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can inhibit the expression of these genes and enhance the survival

and proliferation of infected cells by binding to DNA near the

transcriptional start site of NKG2D ligand and c-Myc gene (35). In

another study (36), EBNA1 was found to target c-Myc by chromatin

immunoprecipitation (ChIP) sequencing of endogenous

bromodomain-containing protein 7 (BRD7) in Burkitt lymphoma

(BL), thereby regulating the viral infection status by coordinating

with host BRD7. In addition, other studies have found that the

expression of Galectin-9 (Gal-9) is positively regulated by EBNA1 at

both the mRNA and protein levels (37), and Gal-9 has been shown

to be a ligand for immune proteins on immune cell subpopulations

and is also involved in cell proliferation and differentiation (38).
2.2.1.2 EBNA2

Many of the virus’ latent genes are expressed in currently

established EBV-infected cell lines. Of high interest, Pich et al. (39)

explored in depth the first 8 days of infection by using EBV

derivatives with a single mutation in EBV and found that EBNA2

played and its important role in activating naïve human B

lymphocytes, inducing growth, and facilitating division, and in

particular EBNA2 prevented the death of a subpopulation of

infected cells. However, EBNA-LP, LMP2A, and miRNAs only

have supportive and auxiliary functions. Even EBNA1, which has

been in the spotlight, seems to be nonessential for cell activation in

early viral infection. Previously known studies have extensively

explored the mechanism of action of EBNA2, which is not only a

potent activator of transcription of genes such as CD23 (40) and C-

myc (41), but also negatively regulates genes such as BCL6 and lg (42).

Of interest is the previous finding that restricted expression of EBV

latent genes contributes to viral persistence by down-regulating the

plasma cell master regulator Blimp1, which induces and maintains

the mature B-cell phenotype (43). EBNA2 is also a functional

homologue of activated Notch (44), while both C-myc and

activated Notch have oncogenic properties. In a recent study by

Zhang et al. (45) it was demonstrated that LMP1 and EBNA2

constitute the minimum EBV proteins required for B-cell

transformation, emphasizing the important role of EBNA2 in B-cell

transformation, even though the study did not provide an in-depth

investigation of the mechanism. EBNA2 is involved in host

immunomodulation through its regulation of miRNAs. In B-cell

lymphoma, EBNA2 positively regulates miRNA-21 and negatively

regulates the expression of miRNA-146a, which affects the antiviral

response of the innate immune system and is involved in EBV-

induced B-cell transformation. The detailed mechanism has not been

published up to now. The study by Anastasiadou et al. (46) found that

EBNA2 down-regulated miRNA-34 by recruiting early B-cell factor 1

(EBF1) to the promoter and increased PD-L1 expression in BL and

DLBCL. Other research found that EBNA2 also reduces ICOSL

expression by inducing miRNA-24 while maintaining pro-

proliferative C-myc levels to evade host immune responses (47).

2.2.1.3 EBNA-LP

Current studies on EBNA-LP are limited. Like EBNA2, EBNA-

LP is also expressed early in infection, and EBNA-LP acts mainly as

a co-activator of EBNA2 and participates in B-cell transformation
TABLE 2 EBV viral gene expression during different types of
latent infection.

Genes
Latency

0
Latency

I
Latency

II
Latency

III

EBNA1 – + + +

EBNA2 – – – +

EBNA3s – – – +

EBNA-LP – – – +

LMP1 – – + +

LMP2A – – + +

LMP2B – – + +

EBERs + + + +

BHRF1miRNAs – – – +

BARTs
miRNAs

+ + + +
Represent positive and negative gene expression is shown as + and –, respectively.
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by activating viral and cellular transcription (48). In addition, some

studies have demonstrated other effects of EBNA-LP. These include

regulation of specific alternative splicing (49), promotion of

transcription factor recruitment, and involvement in cell growth

and survival (50).

2.2.1.4 EBNA3

The EBNA3 family, consisting of the EBNA3A, EBNA3B, and

EBNA3C genes, is thought to be a nonredundant family of EBV

genes that likely arose from gene duplication during the evolution

of primate gamma herpesviruses (51). The production of EBNA3

proteins is thought to be tightly regulated and, because of their low

protein levels and turnover efficiency, these proteins are very

stable (52). Interestingly, the EBNA3 family has conflicting

roles in carcinogenesis. EBNA3A and EBNA3C promote

carcinogenesis, whereas EBNA3B inhibits carcinogenesis (53).

EBNA3A stimulates cell proliferation by inhibiting p21WAF/CIPI,

targeting tumor suppressor pathways and altering cell cycle

regulation (54). The mechanisms by which EBNA3C promotes

lymphoma development are more diverse, including regulation of

cyclin D2 (55) and targeting of tumor suppressor pathways (53).

The role of EBNA3 family proteins in EBV-associated B-cell

lymphomagenesis has been systematically described (51).

Numerous synergistic collaborations between the EBNA3

protein families have been recognized, mostly involving

cooperation between EBNA3C and EBNA3A or EBNA3B. Only

in the absence of EBNA3C is there moderate cooperation between

EBNA3A and 3B. The cooperation between the EBNA3 protein

families has been described in detail in the review by Styles

et al. (56).

2.2.1.5 LMP1

Among the proteins expressed during EBV viral latency, LMP1

has been of great interest, which is expressed in HL, DLBCL, and

post-transplant lymphoproliferative disorder(PTLD) (57, 58), and

is essential for the transformation of viral B cells into

lymphoblastoid cell lineages, which has been meticulously

reviewed in many previous studies (59) (60, 61) (62). The

oncogenic mechanism of LMP1 in EBV-associated lymphomas is

very complex. EBV not only promotes oncogenic pathways such as

Janus kinase/signal transducer, nuclear factor-kB (NF-kB),
phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT),

mitogen-activated protein kinase (MAPK), and transcriptional

activator of transcription (JAK/STAT) (63), but also, because of

its own weaker immunogenicity, it can bypass the targeting effect of

CD8+ T-cells and fail to elicit an appreciable immune response in

EBV-positive healthy people (62). More importantly, LMP1 was

associated with increased expression of PD-L1 in a variety of

lymphomas (64), which provided new clues to further explore the

immunomodulatory role of LMP1. The latest study by Giehler et al.

(65) demonstrates a direct protein-protein interaction between

LMP1 and TNF receptor-associated factor 6 (TRAF6), which

underlies C-terminal activation region 2 (CTAR2) signaling and

the survival of LMP1-transformed B-cells, resolving what we have

always wondered.
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2.2.1.6 LMP2A and LMP2B

LMP2A is expressed in various B-cell malignancies,

including HL, PTLD, and BL, but our current studies on the

mechanism by which LMP2A promotes lymphomagenesis are

not in-depth. Using transgenic mice, Fish et al. (66, 67)

demonstrated that LMP2A accelerated lymphoma development

in vivo by exploiting the role of MYC in the cell cycle,

particularly during p27kip1 degradation. The latest study

utilized phosphoproteomics and transcriptomics to further

explore the molecular mechanisms by which LMP2A affects B-

cell biology, and found that LMP2A down-regulates cyclic

checkpoint genes, including CDKN1B(p27) and CHEK1, as

well as the tumor suppressor RB1 (68).

The function of LMP2B is largely unknown. Earlier studies

demonstrated that LMP2B negatively regulates the function of

LMP2A to prevent the transition from latent to lytic EBV

replication (69). In addition, LMP2B affects epithelial cell

behavior, such as cell adhesion and motility (70).
2.2.2 Genetic instability
Genetic instability is one of the major common features of

cancer and can be observed at the chromosomal or genetic level in

malignant cells (71). Integration of EBV into the host genome

may be a common occurrence in lymphomas, but our

understanding of this is limited. On the one hand, the large size

of the EBV genome itself makes it difficult to determine the

integration site with the host genome and to analyze it further, on

the other hand, the highly methylated DNA hinders the mapping

of the EBV genome, and not only that, multiple copies of the viral

exons can generate interference noise at the integration site (72),

which makes it more difficult to study it in depth. Previous studies

have demonstrated the integration of EBV in the chromosomal

genome of BL (73) and other B-cell lymphomas (74, 75).

Takakuwa et al. (71) demonstrated in Raji that integration of

EBV into 6q15 resulted in loss of expression of the human Bach2

gene (BACH2) at the mRNA and protein levels. BACH2 has been

shown to have a significant inhibitory effect on cellular

proliferation, and deletion of BACH2 expression may

contribute to the development of B-cell lymphomas, including

BL. Related studies have previously analyzed copy number

alterations (CNAs) and gene expression profiles of EBV+ and

EBV-DLBCL samples confirming that EBV+ DLBCL has fewer

genomic alterations (76). In a recent whole-exome sequencing of

EBV+DLBCL, it was shown that a heterogeneous mutational

landscape is associated with DNA double-strand break-

homologous recombination repair failure, and genes found to

have a high number and frequency of mutations include serine

protease 3 (PRSS3), MUC3A and MUC16 (77). A recent study by

Zhou et al. (78) demonstrated an elevated frequency of mutations

in MYC and RHOA in patients with EBV+DLBCL. An updated

mutational map of EBV+DLBCL has been comprehensively

characterized, complementing previous studies with recurrent

alterations in CCR6, CCR7, DAPK1, TNFRSF21, and YY1 (79),

further elucidating the mechanism by which EBV leads to B-

cell transformation.
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2.2.3 MicroRNAs
EBV was the first virus to detect viral miRNAs (80). The EBV

genome encodes 44 mature miRNAs belonging to two distinct

classes, BamHI-A region rightward transcript (BART) and Bam

HI fragment H rightward open reading frame 1 (BHRF1), which

have different expression levels in different EBV latency types (81).

Among them, BART transcripts encode 22 miRNA precursors and

40 mature miRNAs, while BHRF1 transcripts express three

miRNA precursors to produce four mature miRNAs. Current

published literature has demonstrated that EBV-encoded miRNAs

play an important role in the development and progression of

EBV-associated malignancies, including cell proliferation,

apoptosis, invasion, and transformation (82, 83).Moreover, EBV

miRNAs can even directly target immune-related genes, allowing

infected cells to evade surveillance and destruction of the immune

system (84), (85). However, EBV miRNAs have different

expression profiles in different cancer types. In EBV-infected

DLBCL, all EBV-miRNAs except BHRF1 cluster and EBV-miR-

BART15 and -20 could be detected, as demonstrated in Imig et al.

And in NK/T-cell lymphomas, the most highly expressed viral

miRNAs were miR-BART1-5p, miR-BART5, miR-BART7, miR-

BART11-5p, and miR-BART19-3p, accounting for 50% of viral

miRNAs and approximately 1% of total miRNAs (86). Studies

have described the presence and expression levels of EBV miRNAs

and host miRNAs in different lymphomas, with some focusing on

patient samples and others on different cell line models for in vitro

experiments. EBV microRNA profiles and human microRNA

profiles for EBV-associated lymphomas are detailed in a recent

study by Soltani et al. (87) What’s more, published studies have

confirmed that EBV-encoded miRNAs may interfere with host

miRNAs, which actually leads to even more complications (87).

EBV miRNAs are essential for regulating the viral life cycle. It was

demonstrated as early as lizasa et al. (88) that EBV-miRNA-BART6-5p

targets four sites within the 3’-UTR of human Dicer mRNA and

comprehensively affects the maturation of the miRNAs, resulting in the

total repression of these molecules, which helps to maintain latent

infection. Of particular note, in addition to EBV miRNAs, EBV-

associated products also contribute to the downregulation of Dicer,

such as the EBNA1 protein, which has been described in detail in

Mansouri et al. (89) EBV miRNA biogenesis and action are also

affected by adenosine to inosine (A-to-I) RNA editing. A-to-I editing of

pri-miR-BART6-5p was found in EBV-infected BL to activate Zta and

Rta viral proteins encoding EBNA2 viral oncogenes and essential for

lysis and replication, leading to the transition of the viral cycle to type

III latency (88). Of interest, EBV-encoded miRNAs are also involved in

host cell growth, cell cycle, and apoptosis. PRDM1/Blimp1 is a major

regulator of terminal B-cell differentiation and is well known as an

oncogene in aggressive lymphomas. Nie et al. (90) have demonstrated

that the cellular target of the EBV-miRNA-BHRF1-2 is PRDM1, and

that by inhibiting the PRDM1-mediated function and conferred a

growth advantage to EBV-infected B cells, promoting lymphoma

development. Another study confirmed that the EBV-miRNAs-

BART9 were involved in the proliferation of Nasal NK/T cell

lymphomas (NKTCL) by regulating the level of LMP-1 (91).
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The success and persistence of any viral infection depends on a

complex balance with the host immune system, and EBV miRNAs

are also involved in the regulation of the host immune system.

(Figure 1) EBV-miRNAs-BART6-3p was found to mediate down-

regulation of the interleukin-6 receptor (IL-6R) in BL (92), which is

involved in regulating key cellular processes, including cell

proliferation, survival, and response to host pathogens after

dimerization receptor binding to interferon-a, IL-12, or IL-27

(93). In addition, the EBV-miRNAs-BART20-5p were shown to

inhibit T-bet translation through secondary inhibition of p53 (94).

The role of EBV-encoded miRNAs in immunomodulation has been

well and exhaustively described (84, 95–97). The latest research has

confirmed that in DLBCL, EBV-miRNA-BHRF1-2-5p targets

LMP1 to drive the expression of PD-L1 and PD-L2, exerting

context-dependent immune counter-regulation, leading to

immune escape and contributing to persistent viral infection (98).

In another study, Murer et al. (99) used NOD-SCID gc null (NSG)

and HLA-A2 transgenic NSG mice to construct a mice model

infected with an EBV variant infection lacking viral miRNAs and a

mice model infected with wild-type EBV, which found that the viral

load in mice infected with EBV variants lacking viral miRNAs was

significantly reduced, and the proliferation frequency of EBV-

infected B cells was also decreased. What’s more, the depletion of

T CD8+ cells led to the formation of lymphomas n the mouse model

infected with the viral miRNA-deficient variant, which supports the

notion that EBV miRNAs play a major role in immune evasion in

vivo and support tumor development. The role of EBV virus-

encoded microRNAs in human lymphomas can be found in the

review by Navari et al. (82).

3 Hepatitis B virus

According to the World Health Organization (WHO), 257

million people worldwide have chronic HBV infection defined as

hepatitis B surface antigen (HbSAg) positivity. The geographic

epidemiological profile of HBV is clear according to the WHO; the

prevalence is 6.1% in Africa, the Western Pacific, and Southeast

Asia, and 1.6% in Europe and North America. (100) Worldwide,

the most common route of transmission of HBV is perinatal, but it

can also be transmitted percutaneously and via mucous

membranes, as well as through sexual intercourse. (101) When

infection occurs, the host may experience acute infection with full

recovery, or chronic infection or an acute course leading to hepatic

failure. (102) The relationship between HBV infection and NHL

has been explored (103–105). However, HBsAg+ is not associated

with elevated risk of HL, multiple myeloma (MM), or various

types of leukemia (106). Compared with HBsAg- DLBCL, the

median age of HBsAg+ DLBCL onset is younger, with more

frequent splenic or retroperitoneal lymph node involvement,

more advanced disease, and significantly worse outcomes (107).

The results of other studies are similar (106, 108–110). A meta-

analysis of 58 studies revealed that HBV infection leads to a 2.5-

fold increased risk of NHL, and data from a stratified analysis

suggest a closer association between HBV infection and B-cell,
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than T-cell NHL (111). Why HBV infection is more closely

associated with B- than T-cell lymphoma requires elucidation in

functional studies.
3.1 Hepatitis B virus structure

The hepatitis B virus (HBV) is a prototype that belongs to a

family of small, enveloped, hepatotropic DNA viruses that infect a

narrow host range of mammals and birds and preferentially

orientate towards hepatocytes (112). After HBV infection of

hepatocytes, the genome of HBV is delivered into the nucleus and

repaired in the nucleus to form covalently closed circular DNA

(cccDNA), which is then used as a template to guide the

transcription of viral RNA. cccDNA is highly stable in the

nucleus of infected hepatocytes, which is why chronic hepatitis B

is difficult to treat thoroughly (113). The HBV genome contains

four overlapping open reading frames (ORFs), four promoters, two

enhancer elements (EN1 and EN2), a polyadenylation site for viral

RNA transcription and several cis-acting signals for DNA

replication. The ORFs P, S, C, and X in the negative strand

respectively encode DNA polymerase, HBsAg protein, core and

pre-core proteins, and X protein (HBx). (114).

Such DNA viruses have unusual replication features through

RNA intermediates and can integrate into the host genome.
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3.2 Carcinogenic mechanisms

The biological mechanisms through which HBV infection

causes lymphoma are unclear. Those specific to HBV-associated

lymphoma have been inferred primarily from studies of HBV-

associated hepatocellular carcinoma (HCC) and HCV-associated

lymphoma. We emphasize the importance of the humoral and

cellular immune systems are important for viral clearance (115), as

both are activated by HBV infection and exert antiviral effects. The

two immune system might destroy host cells that are already

infected with HBV. Therefore, the potential role of HBV in the

development of lymphoid disease might be very complex. Various

hypotheses have been proposed to explain the mechanisms through

which HBV causes lymphoma, and these are summarized

below (Figure 2).
3.2.1 Chronic antigenic stimulation
The hypothesis that chronic antigenic stimulation causes

lymphomas remains controversial. Chronic local antigen-

stimulated immune responses caused by HBV infection might be

associated with the development of lymphoma (116). A large 14-

year follow-up cohort study in Korea (106) consistently associated

HBsAg+ with elevated risk of NHL, suggesting that chronic

infection promotes the development of lymphoma. Risk of B-
FIGURE 1

EBV miRNAs are involved in regulating the host immune response. Biogenesis of EBV-encoded miRNAs is dependent on host mechanisms and
comprehensively controls the antiviral adaptive immune response of infected B cells. Immediately after infection, the viral DNA genome is
circularized and virally encoded and noncoded RNAs are expressed. EBV miRNAs support immune evasion at multiple levels.1) EBV miRNA-BHRF1-
2-5p targets the viral antigen LMP1, driving the expression of PD-L1 and PD-L2, and facilitating viral persistence in host cells.2) EBV miRNAs also
effectively interfere with MHC class I-mediated antigen presentation by targeting the antigen transporter protein, TAP2. TAP2 is a target of miRNA-
BHRF -13 and -BART17.3)EBV miRNA inhibits the expression of lysosomal enzymes (IFI30, LGMN, and CTSB), of which IFI30 and LGMN are under the
control of miR-BART1 and -BART2, respectively, and CTSB is controlled by miRNA-BART2 and -BHRF1-2, inhibiting the antigen presentation ability
to CD4+ T cells via MHC class II.4) EBV miRNA-BART20-5p inhibits T-bet translation by secondary inhibition of p53 and thus inhibits T-bet
translation.5) EBV miRNAs also control the expression of inflammatory cytokines (IL-12, IL-6, and IFN-a), thus inhibiting cytokine-mediated immune
response.6) miRNA -BHRF1-3 reduces the secretion of the NK cell ligand CXCL-11, allowing infected B cells to evade immunization by NK cells and
T cells.7) EBV acts in trans on uninfected macrophages in tumors by secreting exosomes and promotes lymphoma development. CXCL-11,C-X-C
motif chemokine ligand 11; ER, endoplasmic reticulum; TCR, T-cell receptor; MHC, major histocompatibility complex; NKG2D, natural killer group
2D; MICB,MHC class I chain-related molecule B.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1361009
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1361009
NHL is not increased in individuals previously infected with HBV

or vaccinated against HBV (117, 118). Nucleic acid sequences

specific to HBV have been detected in peripheral blood nuclei

and hematopoietic tumor cells of patients with HBsAg+ (3, 119,

120), which might result in chronically stimulated B cells that

transform into B-cell NHL. Peripheral blood mononuclear cells

(PBMCs) derived from patients with chronic HBV infection have

immortalization potential when cultured in vitro (121). New cells

identified in the peripheral blood of some patients with non-

lymphoid chronical HBV infection were later confirmed as being

of B-cell origin. Moreover, the immunophenotype of these cells was

similar to that of most HBsAg+ B-cell NHL. This supported the

relevance of HBV-induced B-cell NHL, although none of the

patients developed lymphoma during > 1 year of follow-up.

Furthermore, a 42.1% and 65.5% bias towards Immunoglobulin

Heavy Variable 4-34 (IGHV4-34) heavy, and Immunoglobulin

Kappa Variable 4-1 (IGKV4-1), light-chain genes respectively in

HBsAg+ DLBCL, exceeded that in normal peripheral blood B cells

and B-cell NHLs (107). However, these results were contradicted by

a study that found no evidence of biased IGVH gene usage or the

stereotyped third complementarity determining region (CDR3)

(122). Unlike classical antigen-driven hepatitis C virus-associated

lymphoma, the chronic antigen stimulation model seems less

applicable to HBV-associated DLBCL.

3.2.2 Genomic instability or mutation
Hepatitis B viral DNA is integrated into the chromosomal DNA

of lymph node cells (123). A genome-wide investigation of HBV

integration in HCC found that HBV integration alters

chromosomal stability and gene expression, and shortens the

overall survival of infected individuals (124). Approximately 50%

of woodchuck hepatitis virus (WHV) is integrated into the
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myelocytomatosis oncogene (MYC) family of genes and it affects

the proto-oncogene in woodchuck models of HCC with chronic

WHV infection (125). In fact, HBV integration is common,

occurring in 80%-90% of HBV-associated HCC (126, 127).

Hepatitis B viral DNA can be integrated into the genome of

NHL cells, and like HCC, it has preferential targets in NHL, since

exons of the protein-coding genes FAT Atypical Cadherin 1 (FAT2),

Senataxin (SETX), Integrin Subunit Alpha 10 (ITGA10) and

Granulophysin (CD63) are disrupted by HBV DNA and the

expression of seven HBV preferential target genes, Ankyrin

Repeat and Sterile Alpha Motif Domain Containing 1B

(ANKS1B), Histone Deacetylase 4 (HDAC4), EGF Like,

Fibronectin Type III And Laminin G Domains (EGFLAM),

Mannosidase Alpha Class 1C Member 1 (MAN1C1), XK-Related

6 (XKR6), Zinc Finger And BTB Domain Containing 38 (ZBTB38),

and Coiled-Coil Domain Containing 91 (CCDC91) is significantly

altered in NHL (128). The expression of six of these genes is

increased in NHL whereas that of HDAC4 is not, suggesting that

HBV integration leads to the cis-activation of primary oncogenes

rather than the inactivation of tumor suppressor genes. However,

no evidence of HBV DNA integration into the tumor genome has

been found in either HBV-associated FL (129, 130) or DLBCL

(122). A trend towards an increased genome-wide mutational load

has been identified by whole genome, or whole exon sequencing in

the coding regions of HBsAg+ follicular lymphoma (FL) with

significantly more non-silent mutations per tumor (129). The

most significantly mutated genes were Histone-Lysine N-

methyltransferase 2D (KMT2D), Immunoglobulin Lambda‐Like

Polypeptide 5 (IGLL5), CREB-binding protein (CREBBP), B Cell

Lymphoma 2 (BCL2), Tumor Necrosis Factor Receptor Superfamily

14 (TNFRSF14), Interferon Regulatory Factor 8 (IRF8), Enhancer

Of Zeste 2 Polycomb Repressive Complex 2 (EZH2), Signal
FIGURE 2

Mechanism of HBV causing lymphoma development.
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Transducer And Activator Of Transcription 6 (STAT6), AT-Rich

Interaction Domain 1A (ARID1A), and Guanine Nucleotide-

Binding Protein Subunit Alpha-13 (GNA13). Furthermore, the

most obvious mutational pathways were HBV infection-

associated, followed by the Forkhead Box O (FoxO), Wingless/

Integrated (Wnt), Janus Kinase/STAT (JAK-STAT), B-Cell

Receptor (BCR), Phosphatidylinositol-3 Kinase (PI3K), and

Nuclear Factor Kappa B (NF-kB) signaling pathways.

3.2.3 Expression of viral protein
The HBx protein encoded by the X gene was once named “viral

oncoprotein.” This protein is involved in hepatocyte transformation

through regulation of the cell cycle and the pleiotropic activity of

DNA repair and signaling pathways (131–133). The expression of

HBV antigens, especially HBx protein, is abundant in HBV+

DLBCL sera (103). These findings were consistent with the

significantly elevated HBx levels in HCC due to stable HBV

integration (124, 134). The HBx protein inhibits p53 in

hepatocytes, which leads to abnormal hepatocyte division and

HCC (135, 136). A similar B cell mechanism might contribute to

the malignant transformation and development of B cell NHL (3).

Among the various activities of HBx, its transactivation might play a

crucial role in carcinogenesis. Interaction between HBx and the

acetyltransferase CREBBP/p300 facilitates the recruitment of these

cofactors to the CREB-responsive promoter, which leads to the

activation of gene expression (112). A Chinese study of HBV-

associated FL found significantly upregulated CREBBP-binding

genes in HBsAg+, compared with HBsAg- FL (129). This could

explain the low dependence of HBsAg+ FL on CREBBPmutations in

that study, as interaction between HBx and CREBBP/p300 might

mimic the role of mutant CREBBP during the early stages of

lymphoma. The contribution of HBx to the pathogenesis of

lymphoma remains obscure, and further investigation is needed

to verify its mechanism of action.

3.2.4 Tumor microenvironment
The tumor microenvironment is a complex system of cellular

and subcellular components with reciprocal signaling pathways

that play key roles in carcinogenesis (137). Tumorigenesis is

dependent on the TME, and stroma is uniformly and

inappropriately activated in cancer, thus contributing to the

malignant features of tumors (138). Chronic and persistent

HBV infection induces immune cell dysfunction, T-cell

failure, as well as the extensive activation and production

of numerous cytokines, chemokines and growth factors that

constitute a sophisticated TME that might affect cancer

development (139, 140). Hepatitis B surface antigen-positive FLs

might have an altered TME with increased infiltration of cluster of

differentiation (CD)8+ memory T cells, CD4+ Th1 cells, M1-

macrophages and increased T cell failure (129). This was

consistent with similar findings in HCC associated with HBV.

The unique biological characteristics of HBV complicates

exploring curative mechanisms, and animal models have various

strengths and weaknesses. This might explain to some degree, the

limited progress of investigations into HBV-related lymphoma.
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4 Hepatitis C virus

An estimated 71.1 million people worldwide are infected with

HCV, with an annual incidence of 1.75 million (141). The most

common routes of HCV transmission are blood transfusions, health

care-related injections and injecting drug use (142). Most people

(75-80%) will develop chronic infection after exposure to HCV, and

the clinical cases of acute hepatitis C are less than 25% (142). In

addition to infecting hepatocytes, HCV can infect other cells, such

as lymphocytes (143). A possible association between HCV

infection and NHL was first described in 1994 (144). A study of

150,000 patients with HCV in the USA found that HCV infection

increased risk of lymphoma by 20%–30% (145). Epidemiological

data show no, or only a slight increase in the risk of T-cell NHL and

HL (146, 147), while the strongest evidence is for B-cell NHL (148).

A meta-analysis found that the prevalence of HCV infection in

patients with B-cell NHL is ~ 15% (149), and others have reached

similar conclusions (150–152). We found that the histological

subtypes of NHL most closely associated with HCV infection

were marginal zone lymphoma (MZL), lymphoplasmacytic

lymphoma, and DLBCL (153–156). Clinical HCV+ NHL usually

occurs after infection for >15 years (157) and patients with HCV+

DLBCL usually have higher International Prognostic Index (IPI)

scores and LDH levels (158, 159).
4.1 Hepatitis C virus structure

The life cycle of HCV begins with the binding of HCV to

specific entry factors on hepatocytes, after which the virus is

internalized into the cytoplasm. Subsequently, its genomic RNA is

released and used for multiprotein translation and viral replication

(143). The small, enveloped, positive-sense, single-stranded RNA

HCV belongs to the Flaviviridae family of the genus Hepatophilus.

The icosahedral diameter of the envelope particles is 56-65 nm

(160), whereas that of the viral core is ~ 45 nm (161). The HCV

genome is a positive single-stranded RNA comprising ~ 9,600

nucleotides. It encodes a single open reading frame (ORF) flanked

by five and three untranslated regions (UTRs). The HCV

polyprotein encoded by a single ORF is ~ 3,000 amino acids long

and undergoes co-translational and post-translational processing by

cellular and viral proteases to form three structural proteins (core,

E1, and E2), an ion channel protein (p7), and the nonstructural

(NS) proteins, NS2, NS3A, NS4A, NS4B, NS5A, and NS5B. The

structural and NS proteins are located at the N-terminus, whereas

other proteins are located at the C-terminal end (162).
4.2 Carcinogenic mechanisms

The integration of single-stranded RNA into HCV nucleic acid

sequences of the host genome appears to be impossible owing to the

absence of a reverse transcriptase. Therefore, it indirectly exerts

oncogenic effects by modulating the host immune system (163).

Liver cells and lymphocytes share the HCV receptor, CD81 (164,
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165). Activation-mediated CD81 differs from other B cell stimuli

because it induces the preferential proliferation of naïve B cells.

Expression of the C-X-C Motif chemokine receptor 3(CXCR3) is

upregulated in CD81-activated B lymphocytes, but decreased when

stimulated with different substances (166). This interaction between

HCV and the immune system might underlie the immune and

lymphoid tissue proliferative disorders that frequently accompany

chronic HCV infections. Three theories might explain HCV

transformation (Figure 3).

4.2.1 Chronic antigenic stimulation
The defined pathogenic link between chronic Helicobacter

pylori infection and the development of mucosa-associated

lymphoid tissue (MALT) gastric lymphoma suggests that

chronic antigenic stimulation can determine the likelihood of

NHL (167). Notably, the regression of MALT lymphoma after

HP eradication makes this possibility more plausible (168).

Splenic lymphoma regression after antiviral therapy similarly

eradicates HCV (169). About 10% of patients with type II mixed

cryoglobulinemia (MC) develop overt B-NHL after 5-7 years of

follow-up (170), and HCV is a major etiological factor in MC and

might also be the cause of its evolution to overt NHL (171–173).

HCV-associated type II MC expresses immunoglobulins encoded

mainly by germline VH1-69 and VkA27 genes. A preference for

the VH1-69/VkA27 combination in HCV-associated lymphomas

is consistent with the possible role of antigen selection in the

expansion of B cell clones (174). In addition, B-cell receptors

expressed by lymphomas in patients infected with HCV rarely

react with viral proteins (175). Notably, the highly biased

stereotyped BCR sequence of HCV+ B-NHL has also been found

in other HCV-B-cell malignancies (176). This confirmed that

HCV-associated lymphoma cells originate from precursors with
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autoimmune properties rather than from B cells that express

antiviral BCR.

The HCV envelope protein E2 can bind to CD81 expressed on B

cells (164). This receptor is upregulated in HCV infection and MC

and positively correlates with viral load (177). Moreover, CD81

forms a conjugate complex with CD19 and CD21 in human B cells

(178, 179), and the attachment of the B cell antigen receptor (BCR)

to any component of this complex decreases the threshold required

for BCR-mediated B-cell proliferation (180). Bound E2-CD81 is

also involved in activating the transcription factor NF-kB, which
subsequently increases the expression of Bcl-2 protein, thus

enhancing B cell survival and protecting human B lymphocytes

from Fas-mediated apoptosis (181). In addition, HCV E2 binds to

CD81 antibodies on neonatal human B cells, which leads to the

activation and sequential proliferation of the C-JUN N-terminal

kinase pathway (166). Furthermore, HCV-E2 binding to CD81

directly prevents the functional activation of NK cells, providing an

effective immune escape strategy for the virus (182). Overall, the

interaction between HCV and CD81 promotes chronic infection

and facilitates the development of HCV-associated B-

cell lymphoma.

4.2.2 Hit-and-run theory
Some evidence indicates that intracellular viral replication is not

required for tumor transformation (183). The hit-and-run theory

suggests that viruses play a predisposing role in cancer formation

and that the viral genome can be completely lost after the host cell

has accumulated numerous mutations (184). This mechanism was

suggested for HCV (185). Infection with HCV results in a 5-10-fold

increase in the frequency of mutations in the Ig heavy chain, B cell

Lymphoma 6 (BCL-6), Protein 53 (p53) and Catenin genes in HCV-

infected B-cell lines and HCV-associated peripheral blood
FIGURE 3

Mechanism of HCV causing lymphoma development.
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mononuclear cells, lymphomas, and HCC in vitro. The authors

concluded that HCV induces a mutator phenotype by causing

changes in proto-oncogenes and oncogenes that successively lead

to oncogenic B cell transformation, even when the virus might have

already left the cells. The same group also conducted RNA

interference experiments and found that HCV induced error-

prone DNA polymerases z, i, and activation-induced cytidine

deaminase. All these together contribute to increased mutation

frequency, complementing the oncogenic mechanism of HCV

causing lymphoma. Some controversy remains regarding the

clinical applicability of these findings, as they have not been

confirmed in vivo (186, 187).

Infection with HCV stimulates nitric oxide (NO) production by

activating the inducible NOS (iNOS) gene through the viral core

and NS3 protein (188). Nitric oxide causes DNA breaks and

enhances DNA mutations. The HCV core protein binds to NBS1

and inhibits formation of the Mre11/NBS1/Rad50 complex, thus

affecting Ataxia Telangiectasia-Mutated (ATM) activation and

inhibiting DNA binding by repair enzymes (189). Infection with

HCV inhibits multiple DNA repair processes and leads to

chromosomal instability, which explains its oncogenicity from a

different perspective.
4.2.3 Expression of viral protein
Hepatitis C viral RNA and protein were detected in an

established HCV-infected B-NHL cell line in vitro using RNase

protection assays and immunoblotting (190). That study confirmed

that HCV can infect primary human hepatocytes, PBMCs and

established Raji B cell lines in vitro, indicating that HCV can

replicate in B cells. Ample evidence supports the notion that

intracellular viral proteins contribute to oncogenic transformation.

Interferon regulatory factor-1-null (irf-1(-/-)) mice with inducible

and persistent expression of HCV structural proteins (irf-1/CN2

mice) have been established (191). These mice have a high

incidence of lymphoma and lymphoproliferative disorders. The

HCV core and E2 proteins are responsible for the expression of

interleukin (IL)-2, -10, and -12, as well as the induction of Bcl-2 in the

presence of nucleocapsid proteins in the context of complex signaling

networks in these mice (191). Another transgenic mouse model

expressing HCV core protein frequently developed follicular center

cell-type lymphoma, and HCV core mRNA was detected in

lymphoma tissues (192). Transgenic RzCD19Cre mice express the

complete HCV genome in B cells (193). However, the incidence of

DLBCL in RzCD19Cre mice was only 25%. The incidence of B-cell

lymphoma correlated significantly with serum levels of soluble

interleukin-2 receptor a subunit (sIL-2Ra) only in the

RzCD19Cre mice.
4.2.4 MicroRNA and cytokines
Small non-coding MicroRNAs (miRNAs) sequence-specifically

regulate gene expression at the post-transcriptional level (194).

They play roles in controlling various biological functions such as

developmental patterns, cell differentiation, proliferation, genomic

rearrangement and transcriptional regulation (195). MicroRNA-

26b is significantly downregulated (P = 0.0016) in HCV+ splenic
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marginal zone lymphoma (SMZL) and this might cause miR-26b to

stop inhibiting never in mitosis gene A (NIMA)-related Kinase 6

(NEK6) and have oncogenic potential in HCV-associated SMZL

(196). MicroRNA-26b functions not only in the specific area of

HCV-associated SMZL, but also in HCV-associated NHL, including

MZL and DLBCL (197). Overall, these findings suggest that miRNA

network dysregulation is involved in the development of HCV-

associated lymphomas.

Cytokines are small glycoproteins and peptides that usually

have relatively short half-lives and act via autocrine and paracrine

signaling. Cytokines mediate interactions between immune and

non-immune cells in tumors and can promote or inhibit cancer cell

growth (198). B-cell activating factor (BAFF) is a key survival factor

for B cells that is upregulated during HCV infection (199). An

excess of BAFF in the absence of protective tumor necrosis factor

(TNF) leads to a high incidence of lymphoma in BAFF transgenic

mice, suggesting that BAFF functions in promoting B-cell

malignancy (200). Notably, other cytokines and growth factors,

including IL-6, -17, -10 and TGF-ß, also contribute to B-cell

proliferation in HCV infection (201–203).

However, the molecular mechanisms underlying the

development of HCV-associated lymphomas remain poorly

understood. The prevailing views are not mutually exclusive and

might involve parallel pathways leading to HCV-associated

lymphoma, as it is likely that a combination of translational

conditions is required to eventually lead to the development of

lymphoma. Additional bridging studies combining in vivo and ex

vivo investigations are required to further explore this topic.
5 Human immunodeficiency virus

It is estimated that 38.6 million people are currently infected

with HIV-1 worldwide, that some 25 million people have died, and

that heterosexual transmission remains the dominant mode of

transmission, accounting for about 85 per cent of all HIV

infections (204). HIV infection carries multiple immune cell types

for CD4 and CXCR4/CCR5 co-receptors. This includes helper T

cells, macrophages. If untreated, it may also infect microglia and

astrocytes of the nervous system (205).An association between HIV

and aggressive lymphoma was initially reported in 1982 (206). As

the most prevalent malignancies among patients infected with HIV,

the relative risks of NHL and HL are 60-200- and 8-10-fold higher

than patients with lymphoma without HIV infection, respectively

(207, 208). The WHO classification system recognizes subtypes of

HIV-NHL (9b). Over 95% of malignancies are of B-cell origin,

including DLBCL and BL, whereas plasmablastic, T-cell, and

primary effusion lymphomas, are rare, and primary central

nervous system (CNS) lymphoma is a very rare B-cell subtype

that was more prevalent during the early stages of the AIDS

epidemic. These lymphomas have high-grade features such as

typically late presentation, extra-nodal involvement, and a

marked tendency to involve the gastrointestinal tract, CNS, liver,

bone marrow and perinodal soft tissues (209). Despite the

introduction of highly active antiretroviral therapy (HAART) and

the improved survival rates of patients infected with HIV during the
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past 20 years, malignant lymphoma remains the leading cause of

morbidity and mortality (210).
5.1 Human immunodeficiency
virus structure

The two types of HIV isolates comprise types 1 (HIV-1) and 2

(HIV-2). The globally predominant pathogen of AIDS is HIV-1,

whereas HIV-2 is restricted to certain areas of West and Central

Africa (211).Human immunodeficiency virus forms spherical,

membrane-enveloped, pleomorphic virions, 1,000–1,500 Å in

diameter. that contain two copies of a single-stranded, positive-

sense RNA genome (212) This virus is characterized by the

structural genes gag, pol, env (211). Like other retroviruses, gag

genes encode the structural proteins of the core (p24, p7, and p6)

and matrix (p17), and env genes encode the viral envelope

glycoproteins gp120 and gp41. The pol encodes enzymes that are

essential for viral replication.
5.2 Carcinogenic mechanisms

That HIV causes chronic antigenic stimulation, immune

dysregulation, is generally accepted. However, the high incidence

of lymphoma in patients who are HIV+ despite the introduction of

HAART suggests that incomplete immune reconstitution or factors

unrelated to immune dysfunction also play causative roles.

Although HIV-1 infects a subpopulation of human cells, namely

CD4+ cells, soluble HIV-1 proteins that are detectable in serum

from infected individuals invade and/or bind to receptors in

uninfected cells, including B lymphocytes and endothelial cells.

These proteins interfere with host gene expression and other

cellular processes, ultimately leading to cellular transformation
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and the development of HIV-associated lymphomas. This section

summarizes current mainstream views (Figure 4).

5.2.1 Chronic antigen stimulation and cytokines
Although HIV infection is characterized by a reduction in the

function or number of CD4+ T cells (213), the obviously increased B

cell activation in HIV infection is primarily driven by the abnormal

production of B cell-stimulating cytokines such as IL-6 and chronic

antigenic stimulation. Elevated levels of circulating free

immunoglobulin light chains in patients at increased risk of HIV-

associated lymphoma might represent a marker for polyclonal B-

cell activation (214). In addition, evidence indicates a skewed IGHV

repertoire in specific HIV-NHL categories. Heterogeneous

expression of IGHV genes in HIV-NHL might be related to

specific pathways of antigenic stimulation (215).

Serum levels of IL6, IL10, C-reactive protein (CRP), soluble (s)

CD23, sCD27, and sCD30 are significantly higher in patients with

HIV-NHL compared with HIV+ or AIDS controls after adjusting

for numbers of CD4+ T-cells (216). The CD40 ligand (CD40L) can

insert itself into the surface of HIV-1 particles when budding from

activated CD4+ T cells (217), and HIV containing CD40 ligand

(CD40L) activates B cells, which leads to secretion of the cytokines,

IL-6, IL-10, IL-12 and TNF-a (218), in a way that mimics

physiological stimulation. The role of CD40L in cancer has been

detailed in a review (219). The HIV-1 trans-activator of

transcription (Tat) induces the expression of IL-6 and IL-10 at

the cellular level. Findings were similar at the individual level by in

transgenic mice (220), and numerous spleens from Tat-transgenic

mice had malignant lymphomas of B-cell origin. The HIV Tat also

enhances the intrinsic antibody diversification mechanism by

increasing activation-induced deaminase (AID)-induced somatic

mutations in the variable heavy chain (VH) region of human B cells

(221), which might lead to genome-wide mutations in malignant B

cells among patients with HIV.
FIGURE 4

Mechanism of HIV causing lymphoma development.
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Mice transgenic for a defective HIV-1 provirus lacking part of

the gag-pol region overexpress the HIV proteins p17, gp120, and

negative regulatory factor (nef), then develop B-cell lymphoma

(222). This supports the pathogenic role of aberrant HIV protein

and B-cell-stimulating cytokine expression during lymphoma

formation. Indeed, the HIV-1 matrix protein p17 persists in the

germinal center after HIV-1 drug inhibition, and its variants

(vp17s) activate Akt signaling and promote the growth of

transformed B cells. This protein might also upregulate LMP-1 in

B lymphocytes infected with EBV, leading to lymphoma

development (223). Infection HIV can directly induce lymphoma

formation. The oncogenic effects of HIV-1 proteins have been

reviewed in detail elsewhere (224) and are not discussed herein.

5.2.2 Immunodeficiency status
For immunity, although multiple mechanisms may contribute

to the development of lymphoma in HIV-infected individuals, two

mechanisms appear to be involved: (1) loss of immunoregulatory

control of EBV and/or KSHV; (2) chronic B-cell activation due to

immune dysfunction caused by HIV infection. The cooperation of

HIV, EBV, and KSHV in the pathogenesis of lymphoma and

resulting microenvironmental abnormalities have been reviewed

in detail elsewhere (225, 226). Table 3 shows associations between

HIV-associated lymphoma and EBV and KSHV infections. It has

long been shown that B-cell activation and immature phenotypic

changes in vivo are accompanied by polyclonal Ig production in

HIV-infected individuals (228). Notably, recent studies suggest that

HIV may contribute to lymphomagenesis by acting directly on B

lymphocytes as a key microenvironmental factor. It is worth noting

that recent studies have shown that HIV may lead to

lymphomagenesis by acting directly on B lymphocytes as a key

microenvironmental factor. Various HIV-encoded proteins,

including gp120, may trigger and maintain abnormal activation of

B cells, abnormal secretion of cytokines IL6 and IL10, and so on,

which have been stated in other subsections of HIV-associated
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lymphomas in this paper. Perhaps it is time to revisit the second

immune-related mechanism.

5.2.3 Abnormal DNA rearrangements and
genetic abnormalities

Retroviruses damage DNA via various mechanisms such as

genome integration, replication, inflammation, and direct

interaction of viral proteins with DNA and HIV might be

randomly integrated into the human genome. However, a pattern

of integrated duplicated Alu elements and introns of Breast Cancer

Gene 1 (BRCA1) has been identified (229) that supports the

tendency of HIV-1 to integrate near the Alu class of human

repetitive elements (230).

A genome-wide analysis of 57 HIV lymphomas found that

genes associated with fragile sites such as Fragile Histidine Triad

(FHIT; FRA3B), WW domain-containing oxidoreductase (WWOX;

FRA16D), Deleted in Colon Cancer (DCC; FRA18B), and

Parkinson Protein 2 (PARK2; FRA6E), are frequently inactivated

by mesenchymal deletions in HIV-NHL, and that the prevalence of

FHIT alterations is significantly higher in HIV-DLBCL (231).

Among these, FHIT, WWOX and DCC are tumor suppressor

genes that are frequently inactivated in various human

malignancies (232–234). Thus, HIV might act directly at the

genomic level to promote the pathogenesis of HIV-NHL, and this

translational effect is partially independent of the expression of viral

oncogenes. Human immunodeficiency virus induces c-myc

dysregulation in B cells, and levels of viral RNA and myc

expression correlate (235). Expression of the highly oncogenic

transcription factor c-myc is enhanced at the transcriptional and

translational levels in the presence of HIV-1 Tat protein (236).

5.2.4 Other factors
Viruses and their components manipulate the expression of

host miRNAs and play important roles in cancer pathogenesis. Hsa-

miR-200c-3p is significantly downregulated in HIV-associated BL,

and the zinc finger E-box binding homeobox epithelial-

mesenchymal transition (EMT) transcription factors ZEB1 and

ZEB2 are upregulated and actively help to promote tumor

metastasis and invasion (237). Moreover, miRNA-21 is

significantly elevated in peripheral B cells of patients infected with

HIV, suggesting that it might contribute to the maintenance of B

cell hyperactivation (238). A proteomic analysis of plasma proteins

from AIDS-NHL recently identified 20 host proteins and a set of

protein combinations that might serve as biomarkers for the

pathogenesis of AIDS-NHL (239). This indicates a new direction

towards a better understanding of the pathogenesis of

HIV lymphoma.
6 Kaposi sarcoma-associated
herpes virus

This virus (human herpesvirus-8, HHV-8) is the causative agent

of Kaposi sarcoma (KS) and is associated with the

lymphoproliferative primary exudative lymphoma (PEL) and the
TABLE 3 Lymphomas in patients infected with HIV include pathological
subtypes with different virus-specific associations.

HIV EBV KSHV

DLBCL CB +25% (I) –

DLBCL IB +100%
(II/III)

–

BL-plasmacytoid +60% (I) –

PEL and its solid variants +90% (I) +100

PBL of the oral cavity type +80% (0/I) –

Large B-cell lymphoma arising in KSHV-
associated MCD

– +100

Hodgkin lymphoma +80%-
100%(II)

–

Values indicate internal rates (%) of positivity, and infection and no infection is shown as +
and –, respectively. Parentheses show latent stages of EBV. BL, Burkitt lymphoma; DLBCL-
CB, diffuse large B-cell lymphoma-centroblastic; DLBCL-IB, diffuse large B-cell lymphoma-
immunoblastic; MCD, multicentric Castleman disease; PBL, plasmablastic lymphoma; PEL,
primary effusion lymphoma. Adopted and adapted from review by Carbon et al. (227).
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plasmablastic form of MCD (240, 241). The other types of

lymphoma associated with KSHV are KSHV-positive large B-cell

lymphoma not otherwise specified (NOS) and GLPD. The

geographic distribution of KSHV is variable, with the prevalence

of infections being highest in sub-Saharan Africa (seropositivity >

50%), intermediate in Mediterranean, Middle Eastern, and

Caribbean countries (seropositivity 20%-30%), and lowest in Asia,

Europe, and the USA (seropositivity < 9%) (242). At present, the

transmission route of KSHV is not completely clear, but it is

believed that the infection mainly occurs through salivary

transmission (243). Several studies have shown that KSHV can

infect almost any type of cells, including epithelial cells, monocytes,

macrophages, dendritic cells, T cells and fibroblasts. (243)

Lymphoproliferative primary exudative lymphoma is a rare HIV-

associated non-Hodgkin lymphoma (NHL) that accounts for ~ 4%

of all HIV-associated NHL. This type of lymphoma tends to locate

in the pleural space, pericardium, and peritoneum. It is

morphological ly var iable with an empty lymphocyte

immunophenotype and evidence of KSHV infection (244). It is

aggressive, rapidly progressive, and is associated with high mortality

rate; the average survival of patients with PEL is 2- 6 months (245).
6.1 Kaposi sarcoma-associated herpes
virus structure

The KSHV genome consists of linear double-stranded DNA

that is cyclized during latent infection. It contains a unique coding

sequence of ~ 140 kb flanked by 25-30 kb repetitive terminal repeats

(246). The life cycle of KSHV is biphasic, with consecutive latent

and lytic replication phases (247, 248), each of which has a unique

gene expression profile like EBV (249). The viral oncoproteins,

KSHV latency-associated nuclear antigen (LANA; ORF73), vCyclin,

and latent viral FADD-like interleukin-1-converting enzyme

(FLICE) inhibitory protein (vFLIP) are encoded by KSHV during

the latent phase, whereas KSHV G protein-coupled receptor

(vGPCR), viral B cell lymphoma 2 (vBcl-2), vIL-6, viral IFN

regulatory factor 1(vIRF) 1/vIRF 3, K1, K15, and viral protein

kinase (vPK) (250) are encoded during the lytic phase.
6.2 Carcinogenic mechanisms

KSHV has evolved to produce a large number of viral gene

products that intricately subvert normal cellular pathways. The

proteins encoded by KSHV that are thought to have transformative

and oncogenic properties include latent proteins, which increase the

survival and proliferation of infected cells, and lytic proteins, which

are thought to mediate tumor growth. Due to space constraints, this

section only summarizes the main mechanisms.
6.2.1 viral proteins
6.2.1.1 LANA

The mechanisms underlying KSHV carcinogenesis remain

unclear. Analysis of infected cells by immunofluorescence and
Frontiers in Immunology 13
immunohistochemistry confirmed that LANA is one of the latent

proteins consistently present in all KSHV-infected tumor cells of

Kaposi’s sarcoma, PEL and MCD. (251) As a multifunctional

protein, LANA is involved in the regulation of transcription,

chromatin remodeling, exome maintenance, DNA replication,

and the control of latency and lytic phase reactivation. In

addition, LANA is also involved in cell cycle regulation, which

has been described in the review by Wei et al. (251) LANA binds to

and inactivates the tumor suppressor proteins TP53 and

retinoblastoma (RB1), thereby regulating cell growth. (252)

LANA expression also affects MYC levels by binding to the

negative regulator GSK-3b and thus promotes lymphomagenesis.

(253) Based on current knowledge, LANA appears to provide the

basis for at least the formation of KSHV-associated lymphomas.

6.2.1.2 Viral cyclin

Viral cyclin (ORF72) is a viral homolog of cell cycle protein D

(254) which plays an important role in lymphangiogenesis via

several functions. Physiologically, cyclin D forms a complex with

cyclin-dependent kinase (CDK) and CDK4 that phosphorylates

retinoblastoma protein (Rb) and leads to the release of E2F

transcription factors (255). The KSHV vCyclin interacts with

CDK6 to promote cell cycle progression (256, 257). Moreover, the

vCyclin/CDK6 complex can phosphorylate nuclear phospholipid

histone chaperones, leading to genomic instability (258).

6.2.1.3 vFLIP

vFLIP is the viral homologue of cellular FLIP. Transgenic mice

expressing vFLIP exhibit B cell transdifferentiation and acquire the

ability to express histiocyte/dendritic cell markers (259). These mice

have hematological properties typical of PEL and MCD. Previously,

it has been found that vFLIP prevents apoptosis by up-regulating

NF-kB. (260) In addition, the study of Lee et al. demonstrated that

vFLIP can protect cells by preventing autophagy to further maintain

latency. (261).

6.2.1.4 vIL-6

vIL-6 is the viral homologue of hulL-6, and immunohistochemistry

has shown that it is expressed in variable proportions in KSHV+

lymphoproliferative lesions. (251) One characteristic of KSHV-driven

PEL is elevated serum human IL-6 (hIL-6) levels. Notably, v-IL6 can

replace hIL-6, activating it constitutively via the rat sarcoma/mitogen

activated protein kinase (Ras/MAPK) and JAK/STAT pathways (262).

6.2.2 miRNAs
KSHV miRNAs are generated from 12 pre-miRNA transcripts

in the latency region, ultimately producing at least 17 mature

miRNAs. (263) The biogenesis of KSHV miRNAs and their role

in the development of KSHV-associated malignant tumors has

recently been described in detail. (242, 264) Among the large

number of miRNAs encoded by KSHV, KSHV-miRNA-K11

compares particularly because it shows significant homology to

cellular miRNA-155. (265) MiRNA-155/bic overexpression can be

observed in many human B-cell lymphomas, (266) and B-cell

lymphomas can be induced in mice. (267).
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7 Conclusions

Themain aspect of virus-driven lymphangiogenesis initially focuses

on the direct transforming activity of a single viral oncogenic product.

However, cooperation among different viruses also plays crucial roles in

the development, survival, and dissemination of lymphoid

malignancies. Therefore, many studies have targeted relationships

among the microenvironment, oncogenesis, tumor growth, and

dissemination. How EBV and KSHV support each other in terms of

persistence and lymphangiogenesis has been explained in recent reviews

(268), (269). A relationship between EBV and HCV replication

markers has not been identified in patients with AIDS (270), which is

in contrast to other known coinfections. Indeed, HCV and HBV co-

infection inhibits HCV replication, whereas HCV andHIV co-infection

stimulates HCV replication and exacerbates HIV-associated

immunosuppression, and EBV and HIV co-infection stimulates HIV

replication in CD4T cells (271, 272). All of these complicate

understanding the mechanisms through which co-infection causes

carcinogenesis. To further elucidate and characterize the mechanisms

of viral induction of lymphoma is a considerable challenge that will

require an integrated multidisciplinary approach involving

epidemiologists, molecular biologists, and immunopathologists.
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