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Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in

combating cancer due to their independent cytotoxic capabilities in antitumor

immune response. Unlike predominant treatments that target T cell immunity,

the limited success of T cell immunotherapy emphasizes the urgency for

innovative approaches, with a spotlight on harnessing the potential of NK cells.

Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity,

there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This

comprehensive review delves into the foundational features and recent

breakthroughs in comprehending the dynamics of NK cells within the tumor

microenvironment. It critically evaluates the potential applications and

challenges associated with emerging CAR-NK cell therapeutic strategies,

positioning them as promising tools in the evolving landscape of precision

medicine. As research progresses, the unique attributes of CAR-NK cells offer a

new avenue for therapeutic interventions, paving the way for a more effective

and precise approach to cancer treatment.
KEYWORDS

natural killer cell, CAR-NK, cancer immunotherapy, the tumor microenvironment,
adoptive cell transfer
Abbreviations: NK, Natural Killer cell; ILC, innate lymphoid cell; HSC, hematopoietic stem cell; KIR, killer-

cell immunoglobulin-like receptor; CNS, central nervous system; HLA, human leukocyte antigen; MHC,

major histocompatibility complex; iPSC, Induced pluripotent stem cell; KIR, killer cell immunoglobulin-like

receptor; NKG2D, NK gene 2D; NCR, natural cytotoxicity receptor; ADCC, antibody-dependent cell-

mediated cytotoxicity; CTL, cytotoxic T lymphocyte; TME, the tumor microenvironment; HIF-1a,

hypoxia-inducible factor 1 alpha; ECM, extracellular matrix; TGF-b, transforming growth factor-beta;

GE2, prostaglandin E2; FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; DC, dendritic

cell; CAR, Chimeric Antigen Receptor; GVHD, graft versus host disease; CRS, cytokine release syndrome.
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1 Background

Natural Killer (NK) cells are essential contributors to the

immune response, demonstrating formidable cytotoxic

capabilities towards infected, stressed, transformed, and foreign

cells (1). Belonging to the innate lymphoid cells (ILCs) family,

NK/cells actively engage in the initial stages of host defense. They

originate from CD34high hematopoietic stem cells (HSCs) in the

bone marrow (2). The developmental stages involve differentiation

from HSCs toward common lymphoid progenitors, progressing to

NK cell progenitors. Although the bone marrow serves as the

primary site for NK cell development, extramedullary maturation

takes place in secondary lymphoid tissues, including the thymus

and lymph nodes. Mature NK cells originating in the bone marrow

migrate towards secondary lymphoid tissues and peripheral organs

(3). The maturation process is marked by changes in surface

markers, with CD56 expression indicating distinct functional

properties (4). CD56bright NK cells are primarily cytokine

releasers, evolving into cytotoxic CD56dim NK cells with further

maturation, acquiring type III Fcg receptor CD16 and killer-cell

immunoglobulin-like receptors (KIRs) (5). Memory-like features in

NK cells are observed following exposure to cytokines like IL-12, IL-

15, and IL-18. These memory-like NK cells exhibit improved

activation upon re-exposure to stimulation, contributing to

adaptive immune responses (6–10).

Mature NK cells undergo orchestrated migration from the bone

marrow to SLTs and various peripheral non-lymphoid organs. This

migration is regulated by a myriad of molecules, such as

chemokines, integrins, and selectins. The receptors S1P5 and

CX3CR1, along with downregulated CXCR4, facilitate NK cell

exit from bone marrow into the bloodstream (11). Specific

receptors and ligands dictate NK cell homing to organs. For

example, CCR7 engagement with CCL19 and CCL21 is crucial for

NK cell homing to lymph nodes (12). NK cells are found in various

organs, each exhibiting distinct trafficking patterns. The liver, lungs,

intestine, uterus, and even the central nervous system (CNS) are

infiltrated by NK cells, contributing to immune surveillance (13,

14). The local environment of liver involves both resident and

recruited NK cells, promoting tolerance to avoid chronic

inflammation. Chemokine receptors like CXCR6 play an

important role in NK cell retention in the liver, and similar

mechanisms guide NK cell infiltration in other organs, including

the decidua and lungs (15–17).

NK cells contribute significantly to the defense mechanisms of

the host by directly targeting and eliminating infected and

transformed cells (18, 19). Additionally, they release cytokines

that coordinate the actions of various immune subsets.

Importantly, the killing mechanism employed by NK cells is

distinct from that of adaptive T lymphocytes, as it operates

without being constrained by human leukocyte antigen (HLA)

restriction (20). The balance between suppressive and activating

receptors on NK cells determines their status, with inhibitory

receptors recognizing major histocompatibility complex (MHC)

class I molecules on target cells (21). In the context of cancer

biology, NK cells exhibit anti-tumor activity, targeting cells with low
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MHC-I expression and recognizing stress-induced ligands.

Inhibitory receptors, including killer cell immunoglobulin-like

receptors (KIRs) and CD94/NKG2A, contribute to NK cell

education, ensuring self-tolerance (22). Activating receptors, such

as NK gene 2D (NKG2D) and natural cytotoxicity receptors

(NCRs), play crucial roles in NK cell responses against cancer

cells (23, 24). NK cells can also contribute to cancer therapy through

antibody-dependent cell-mediated cytotoxicity (ADCC) effects by

CD16 receptors (25–27). The activity of NK cells is subject to

intricate regulation by a balance of inhibitory and activating

receptors, which together play a crucial role in the immune

response of NK cells against tumors and foreign pathogens. This

delicate equilibrium ensures that NK cells can discriminate between

healthy cells and those presenting abnormalities, such as infected or

malignantly transformed cells, contributing significantly to the

body ’s natural immune surveillance mechanisms. This

comprehensive overview provides a nuanced understanding of

NK cell development, particularly in cancer progression and

therapeutic interventions. The integrated perspective highlights

the multifaceted roles of NK cells in immune surveillance and

their potential as therapeutic targets in cancer treatment.
2 The role of NK cells in
cancer progression

NK cells, play a crucial role in the complex landscape of cancer

development (28). Specifically implicated in hematopoietic tumors,

these cells engage in direct interactions with tumor cells, marking

them as promising candidates for therapeutic interventions in the

battle against cancers (29). The significance of NK cells in cancer

immunotherapy is underscored by their unique ability to recognize

and eliminate abnormal cells without prior sensitization, a feature

that sets them apart from other immune cells (29). Despite their

potential, the practical application of NK cells in cancer therapy

faces a myriad of challenges. One prominent hurdle is the limited

infiltration of NK cells into solid tumors, a phenomenon that stands

in stark contrast to the robust infiltration of cytotoxic T

lymphocytes (CTLs) (30, 31). This discrepancy raises questions

about the mechanisms that impede the effective interaction between

NK cells and the tumor microenvironments (TME). Understanding

these impediments is crucial for optimizing NK cell-based

therapeutic strategies.

A multifaceted obstacle to NK cell infiltration lies in the

intricate architecture of the TME. The solid-tumoral contact and

subsequent infiltration of NK cells are thwarted by various factors,

contributing to a significantly lower density of infiltrated NK cells

when compared to CTLs (31). The hypoxic conditions within the

TME, characterized by increased levels of hypoxia-inducible factor

1 alpha (HIF-1a), emerge as a significant player in blunting NK cell

activity against solid tumors (32). HIF-1a not only contributes to

the immunosuppressive milieu but also hampers the efficacy of NK

cell-mediated anti-tumor responses (32). Adding another layer of

complexity to the interaction between NK cells and tumors, recent

research has provided insights into the role of cancer-derived
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exosomes in undermining NK cell function (33). These extracellular

vesicles, secreted by cancer cells, carry bioactive molecules that can

modulate the immune response. The impact of cancer-derived

exosomes on NK cells further emphasizes the need for a

comprehensive understanding of the intricate crosstalk within the

TME (33).

NK cells face the challenge of overcoming these obstacles and

successfully infiltrate solid tumors. First, they must extravasate from

the bloodstream, navigating through the stiff extracellular matrix

(ECM) and tumor stroma. This process involves the secretion of

enzymes such as urokinase plasminogen activator, matrix

metalloproteinases, and serine dipeptidyl peptidase IV (34).

Additionally, heparinase plays a crucial role in this process,

emphasizing the complexity of the microenvironment that NK

cells must navigate (35). However, even when NK cells overcome

these physical barriers and reach the tumor site, their journey

is far from over (36, 37). The TME, molded by various

immunosuppressive factors, transforms arriving NK cells into a

state of immunosuppression. This transformation involves

exposure to a plethora of immunosuppressive cytokines,

including transforming growth factor-beta (TGF-b), activin-A,
adenosine, IL-10, and prostaglandin E2 (PGE2) (38–43).

Additionally, the TME harbors inhibitory immune cells that

further hamper the functions of NK cell within solid tumors

(44–47).

Despite these challenges, the infiltration of NK cells into the

TME is associated with a relatively favorable and promising

prognosis in numerous cancers (48–50). This observation

highlights the role of NK cells in cancer initiation and

progression, while facing formidable barriers, their presence

within the TME signifies a potential positive outcome. Mouse

models provide further evidence of anti-tumor capabilities,

revealing that NK cells actively suppress tumor occurrence

through immunosurveillance (51–53). Understanding the

mechanism of NK cell activation is fundamental to unraveling

their role in tumor occurrence and development. The activation

process within the TME involves a complex interplay of activating

and inhibiting receptors, along with various cytokines and their

corresponding ligands or receptors (54–56). These receptors allow

NK cells to specifically recognize biomarkers presented on the

cancer cell membrane, setting the stage for either tumor

surveillance or the promotion of tumor immune escape.

The activation of NK cells culminates in their ability to

eliminate tumor cells through multiple mechanisms. Direct

release of perforin and granzymes, as well as the induction of

apoptosis through ADCC effects, Fas ligand (FasL), or TNF-related

apoptosis-inducing ligand (TRAIL), represents the tumor-killing

toolkit of activated NK cells. Furthermore, the secretion of

lymphokines, including IFN-g and TNF-a, contributes to retard

tumor growth across various cancer types (28). An intriguing facet

of NK cell-mediated anti-tumor responses is the release of

neoantigens upon the destruction of tumor cells. These

neoantigens act as beacons, prompting an adaptive immune

response that extends beyond the immediate actions of NK cells.

This communicative bridge between innate and adaptive immunity

involves dendritic cells (DCs), which play crucial roles in tumor
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immune responses. NK cells, in their activated state, promote the

recruitment of conventional DCs to the TME, further enhancing the

immune elimination of tumor cells (57).

While hurdles exist in their efficient infiltration into solid

tumors and the subsequent immunosuppressive shaping by the

TME, the potential for NK cells to act as potent tumor suppressors

cannot be overlooked (58–60). Advancements in understanding the

intricacies of NK cell activation, the complex TME, and innovative

approaches like iPSC-derived NK cells collectively pave the way for

novel therapeutic strategies (61–65). Harnessing the full potential of

NK cells holds the promise of revolutionizing cancer treatment,

particularly in the context of “cold” tumors that lack neoantigens,

thereby surpassing conventional cancer therapies and ushering in a

new era of precision immunotherapy (66).
3 Chimeric antigen receptor-
engineered natural killer cells in
cancer immunotherapy

In the realm of cancer treatment, immunotherapy has emerged

as a revolutionary approach, particularly with the advent of

Chimeric Antigen Receptor (CAR) technology. The emergence of

CAR-NK cell therapy represents a promising shift in the landscape

of cancer immunotherapy, offering potential solutions to the

challenges faced by CAR-T cell therapy (67). While CAR-T cells

have demonstrated clinical benefit in some specific hematological

cancers, the field has encountered obstacles, including the time-

intensive generation of therapeutic doses and the difficulty in

obtaining sufficient autologous T cells from heavily pre-treated

cancer patients (68–70). In response to these challenges, CAR-NK

cell therapy emerges as an attractive alternative, showcasing distinct

advantages (71).

One of the primary strengths of CAR-NK cells lies in their use

of allogeneic NK sources, addressing concerns related to GVHD.

Unlike CAR-T cells, CAR-NK cells can utilize an unlimited

allogeneic NK source without triggering GVHD, providing a

considerable safety advantage (72). Furthermore, CAR-NK

therapy introduces the potential for “off-the-shelf” products,

leveraging NK cell lines or iPSC-NK, resulting in a substantially

shortened production time (73, 74). This efficiency is crucial for

treating patients with rapidly progressing diseases, a limitation

often encountered in CAR-T therapy. The versatility of CAR-NK

cells is evident in their ability to target a broad range of tumor

antigens in both hematological and solid malignancies (61, 75–82).

The antigen recognition domain, typically consisting of a single-

chain fragment derived from a monoclonal antibody, facilitates

targeted therapy. While CD19/CD20/CD33 remain major targets

for hematological cancers, CAR-NK cells have demonstrated

efficacy against solid cancer targets, such as Her2, EpCAM, and

EGFR, offering a broader spectrum of applicability (82–85).

Like CAR-T cells, CAR-NK cells undergo genetic modification

to express CARs designed to recognize specific antigens present on

target cells (Figure 1). The pre-clinical studies have employed

various delivery methods, such as lentiviral or retroviral-based

transduction, transposon systems, and electroporation of mRNA,
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highlighting the adaptability of CAR-NK technology (86). The

signaling domains of CAR-NK cells closely resemble those of

CAR-T cells, incorporating TCR co-stimulatory molecules, such

as CD28, 4-1BB, NKG2D, 2B4, and DNAM1 (86). Notably, CAR-

NK cells not only direct cytotoxicity against tumor cells by targeting

specific antigens but also exhibit potential in eliminating

immunosuppressive cells within the TME. This includes targeting

myeloid-derived suppressor cells (MDSCs) and M2-like tumor-

associated macrophages (TAMs), indicating a broader therapeutic

impact beyond direct tumor cell killing (87, 88). The proposed

combination of CAR-NK cells with T cell-based therapies for solid

tumors further underscores their potential in reshaping cancer

immunotherapy strategies. The safety profile of CAR-NK cells is a

significant advantage, with allogeneic haploidentical NK cells

demonstrating safety for adoptive cell therapy by reducing the

risk of GVHD (89). Unlike CAR-T cells, CAR-NK cells exhibit

fewer safety concerns, including on-target/off-tumor effects,

cytokine release syndrome (CRS), and tumor lysis syndrome. The

unique ability of CAR-NK cells to detect MHC class I-negative

tumor cells further extends their applicability (90).

CAR-NK cell-mediated immunotherapy has rapidly emerged as a

compelling alternative for patients facing metastatic malignancies,

showcasing considerable promise in the realm of cancer

immunotherapy (91). Despite significant exploration of CAR-NK
Frontiers in Immunology 04
cells in preclinical studies, their applications in various tumor models

are predominantly at the preclinical stage, showing both potential

and the need for further investigation. Notably, clinically approved

second-generation CAR-NK cells, incorporating the CD3z domain

and a 4-1BB or CD28 co-stimulatory domain, have primarily targeted

CD19+ lymphoid-derived hematologic malignancies (92).

Initially designed to combat hematological malignancies such as

lymphoma, myeloma, and leukemia, CAR-NK cells have

demonstrated efficacy in preclinical settings. CD19-CAR-NK cells,

in particular, have exhibited superior efficiency in treating lymphoid

malignancies compared to CAR-T-based cellular immunotherapy,

showcasing their potential advantages (92). For instance, the phase

1/2 study NCT03056339 explored the efficacy of anti-CD19 CAR-

NK cells, derived from cord blood, in 11 patients with relapsed or

refractory CD19+ hematologic cancers (93). The CAR-NK cells,

modified with a safety switch, were administered in varying doses

after lymphodepleting chemotherapy (93). Results showed that

CAR-NK cell treatment was well-tolerated, with no major toxic

effects such as cytokine release syndrome or neurotoxicity (93). Of

the 11 patients, 73% responded positively to the treatment, with 7

achieving complete remission (93). Responses were rapid, observed

within 30 days, and CAR-NK cells persisted for at least 12 months.

The study suggests the potential effectiveness and safety of CAR-NK

cell therapy in CD19+ cancers (93).
FIGURE 1

The development of CAR-NK cells. The NK92 cell line is commonly used due to its ability to indefinitely expand in vitro. Primary NK cells can be
directly isolated from peripheral blood mononuclear cells (PBMCs) or umbilical cord blood (UCB) using a NK cell isolation kit. These cells are then
activated, genetically modified with CAR-expressing vectors, and expanded in NK cell-specific media with cytokines for clinical use. CD34+
hematopoietic progenitor cells (HPCs) can be differentiated into NK cells with a cytokine cocktail, and these cells are engineered with CAR before in
vitro expansion and infusion. Induced pluripotent stem cells (iPSCs) have emerged as a promising “off-the-shelf” source for CAR-NK cells, given their
unlimited proliferative capacity. iPSCs can differentiate into CD34+ HPCs, then into NK cells. Importantly, CAR-expressing vectors can be introduced
into iPSCs, leading to CAR-iPSCs, which can further differentiate into CAR-HPCs and CAR-NK cells (Created with Biorender).
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Beyond hematological malignancies, CAR-NK cells hold

promise for addressing metastatic solid tumors, where CAR-T cell

therapy faces substantial limitations (94). With intrinsic advantages

such as substantial cytolytic ability, non-MHC-restricted

recognition, natural tumor tissue infiltration, and minimal

untoward effects, CAR-NK cells present a viable therapeutic

option for solid tumor management (94). Preclinical studies have

demonstrated their efficacy against diverse solid tumors (95, 96).

However, clinical data on CAR-NK cells in solid tumor treatment

remains limited, with ongoing phase I/II trials showing feasibility

and potential efficacy. Continued exploration and clinical trials are

essential to unravel the safety and efficacy of CAR-NK cells in the

dynamic landscape of cancer therapy. Additionally, Generally,

CAR-NK cell therapy stands out as a promising alternative to

CAR-T therapy, presenting a myriad of advantages, including

safety, versatility, and efficiency. Current clinical trials, examining

the safety and effectiveness of CAR-NK cell therapy in both

hematological and solid malignances, underscore its potential to

transform the landscape of cancer treatment (Table 1). Further

research and clinical exploration are crucial to fully understand and

harness the transformative power of CAR-NK cells in the realm of

cancer immunotherapy.

There are some other cancer immunotherapy paradigms except

CAR strategy, such as oncolytic viruses and immune checkpoint

inhibitors (97, 98). CAR-NK cells, oncolytic viruses, and immune

checkpoint inhibitors represent cutting-edge cancer therapies with

distinct mechanisms and applications. CAR-NK cells, engineered to

target specific cancer antigens, are notable for their safety and

specificity, particularly in hematologic malignancies. Oncolytic

viruses selectively infect and kill cancer cells, showing promise in

solid tumors; however, their effectiveness varies (99). Immune

checkpoint inhibitors, enhancing the immune system’s ability to

fight cancer, have been successful across various cancer types but

can cause significant immune-related side effects. While CAR-NK

cells are in early research stages and involve complex manufacturing,

oncolytic viruses require careful genetic engineering for effectiveness.

Immune checkpoint inhibitors, widely applicable, face challenges in

cost and accessibility. Each therapy offers unique benefits and

limitations, shaping individual treatment plans based on cancer

type, stage, and patient health. The evolving landscape of these

therapies continues to advance cancer treatment options.
4 Perspective and conclusion

In conclusion, the intricate interplay between NK cells and the

formidable challenges posed by the TME highlights the dualistic

nature of these immune actors in the context of cancer. While

obstacles such as limited infiltration into solid tumors and the

immunosuppressive milieu within the TME impede the full

realization of NK cell potential, their presence within tumors is

associated with a relatively favorable prognosis. Understanding the

complex activation processes involving key receptors and cytokines

is pivotal for unraveling their role in tumor occurrence and

development. Advancements, particularly in iPSC-derived NK
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cells, offer new dimensions to NK cell-based immunotherapy,

potentially revolutionizing cancer treatment by enhancing tumor

surveillance, elimination functions, and the recruitment of T cells to

the TME.

Simultaneously, the emergence of CAR-NK cell therapy

presents a dynamic and promising alternative in the realm of

cancer immunotherapy. The unique advantages of CAR-NK cells,

including allogeneic sourcing, reduced risk of GVHD, and innate

anti-tumor capabilities, position them as a versatile tool in the fight

against cancer. While preclinical successes demonstrate their

efficacy against hematological and solid malignancies, addressing

challenges such as low cell persistence and efficient trafficking to

tumor sites is imperative for successful clinical integration. CAR-

NK cell therapy, additionally, faces challenges including limited NK

cell persistence and difficulties in targeting and infiltrating solid
frontiersin.o
TABLE 1 The ongoing clinical trials of CAR-NK in cancer
immunotherapy, which have progressed beyond phase 1 thus far,
are documented.

CAR
target

NK
cell
source

Targeting tumor
NCT
number

CD19

UCB Hematological malignancies NCT03056339

Non-
referred

B cell hematologic malignancies NCT05570188

HPCs B-cell lymphoma NCT05654038

CD70
UCB Hematological malignancies NCT05092451

UCB Solid tumors NCT05703854

CD19/
CD70

UCB B-cell NHL NCT05842707

CD19/
CD28

UCB B-cell NHL NCT03579927

CD5 UCB Hematological malignances NCT05110742

CD7 PBMCs Leukemia and lymphoma NCT02742727

CD123 PBMCs AML and BPDCN NCT06006403

PD-L1 NK92 GEJ cancers or HNSCC NCT04847466

Claudin6 PBMCs Reproductive system tumors NCT05410717

BCMA NK92 MM NCT03940833

CD33 NK92 AML NCT02944162

MUC1 PBMCs Solid tumors NCT02839954

Robo1 NK92 Pancreatic cancer NCT03941457

TROP2 UCB
Ovarian cancer, mesonephric-like
adenocarcinoma, and
pancreatic cancer

NCT05922930
UCB, Umbilical cord blood.
HPCs, Hematopoietic progenitor cells.
NHL, Non-Hodgkin lymphoma.
PBMCs, Peripheral blood mononuclear cells.
AML, Acute myeloid leukemia.
BPDCN, Blastic plasmacytoid dendritic cell neoplasm.
GEJ, Gastroesophageal junction.
HNSCC, Head and neck squamous cell carcinoma.
MM, Multiple myeloma.
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tumors due to the complex tumor microenvironment. These factors

impact CAR-NK cells’ effectiveness, particularly in solid tumor

treatments. The ongoing clinical trials targeting various antigens

underscore the commitment to realizing the therapeutic potential of

CAR-NK cells, marking a critical phase in reshaping the landscape

of cancer treatment.

In navigating the future of cancer immunotherapy, the

convergence of NK cells and CAR-NK cells offers a transformative

outlook. The intricate mechanisms underlying NK cell activation and

the adaptability of CAR-NK cells in recognizing diverse tumor

antigens illuminate the depth of research required for their

successful integration into mainstream oncology. As these cellular

therapies progress from scientific promise to clinical reality, they hold

the potential to redefine precision immunotherapy, providing

renewed hope and improved outcomes for patients facing

challenging malignancies. In this evolving landscape, NK cells and

CAR-NK cells stand as promising agents, guiding us toward a future

where cancer treatment is not just a battle but a personalized,

targeted, and effective therapeutic strategy.
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